<<

:.:.:.:":":":":.:":":":

,# ..

• NATIONAL AERONAUTICS AND SPACE ADMINISTRATION ~:~:~:~:~:~:~: ~:~:~:~:~ MSC INTERNAL NOTE NO. 69-FM-126 ~ ::::::::::::::::::::::: ::::::::::::::::::::::: " ::::::::::::::::::::::: .~ ::::::::::::::::::::::: May 9, 1969 \l ::::::::::::::::::::::: e, I ::::::::::::::::::::::: ~ ::::::::::::::::::::::: ...... ::::::::::::::::::::::: ... :":.:":.:":":":.:":.:": :::::::::::;::::::::::: ::::::::::::::::::::::: ~~???I~I REVISION 1 TO THE ::::::::::::::::::::::: ::::::::::::::::::::::: CONSUMABLES ANALYSIS FOR TH E ::::::::::::::::::::::: ::::::::::::::::::::::: :.~":":":":":":.:":":": 10 (MISSION F) ::::::::::::::::::::::: ::::::::::::::::::::::: ::::::::::::::::::::::: OPERATIONAL ::::::::::::::::::::::: ::::::::::::::::::::::: :.:.:.:.:.:.:.:.:.:.:.: ::::::::::::::::::::::: TRAJECTORY :.:.:.:.:.:.:.:.:.:.:.: • ::::::::::::::::::::::: ::::::::::::::::::::::: ::::::::::::::::::::::: .:.:.:.:.:.:.:.:.:.:.:. ::::::::::::::::::::::: ::::::::::::::::::::::: :.:.:.:.:.:.:.:.:.:.:.: j echnicaf library, Belicomm, Trrc.. ::::::::::::::::::::::: ::::::::::::::::::::::: ::::::::::::::::::::::: ::::::::::::::::::::::: .:.:.:.:.:.:.:.:.:.:.:. ~~~~If~I~~I JUN 2 1969 :.:.:.:.:.:.:.:.:.:.:.: ::::::::::::::::::::::: Guidance and Performance Branch ...... :.:.:.:.:.:.:.:.:.:.:. :.:.:.:.:.:.:.:.:.:.:.: • J·:·······r····...... MANNED SPACECRAFT CENTER HOUSTON.TEXAS

~8(NASA-TM-X-69660) REVISION 1 TO THE N74-70733 ::::::CONSUMABLES ANALYSIS FOB THE APOLLO 10 • ~~(MISSION F) SPACECRAFT OPERATIONAL :}~TBAJECTORY (NASA) 79 p Unclas 00/99 16451 • MSC INTERNAL NOTE NO. 69-FM-126

PROJECT APOLLO •e. REVISION 1 TO THE CONSUMABLES ANALYSIS FOR THE APOLLO 10 (MISSION F) SPACECRAFT OPERATIONAL TRAJECTORY

By Martin L. Alexander, Sam A. Kamen, Arnold J. Loyd, Samuel O. Mayfield, Dwight G. Peterson, Walter Scott, Jr., and Richard M. Swalin Guidance and Performance Branch

May9,1969

• MISSION PLANNING AND ANALYSIS DIVISION NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAFT CENTER HOUSTON, TEXAS

J,

A-~~dJ~-:;:f'~ A .._A. . M~~IVV"U. h /,. , -- Marlowe D. Cassetti, Chief • Guid and P.erf nce Branch • •

FOREWORD

The following table summarizes the consumables requirements for the Apollo 10 mission, May 18 launch. Percentages refer to nominal usage only and do not include dispersions and contingencies.

Consumable Percentage of available consumable used for mission planning

CM RCS 15

SM RCS 73

SPS 92

LM RCS 59

DPS 6 a APS through rendezvous 8 • CSM 02 62 CSM H 73 2 1M descent battery 27

1M ascent battery 71

1M ascent H O 59 2 1M descent H O 21 2 1M ascent 02 31 • 1M descent 02 8

~rom rendezvous through the depletion burn, the remaining 92% propellant is used. • The results were obtained from detailed consumables analyses per~ formed on the Apollo 10 systems and include Apollo 8 and 9 postflight • iii • data as well as Apollo 10 simulation data. A time history of total consumables weight loss is also presented. Consumables for all systems anlayzed have adequate margins to complete the nominal mission.

The principal sources of data were the data books (refs. 1, 2, and 3). The analyses were based on the Apollo 10 draft final flight plan (ref. 4). The operational procedures described in this study are • not intended to define mission rules or crew procedures but are merely an attempt to establish an estimate of the consumables requirements.

Support was obtained from TRW Systems Group, from North American Rockwell, from Grumman Aircraft Engineering Corporation, from the Apollo Spacecraft Program Office, and from the Instrumentation and Electronics System Division. •

iv • • ABBREVIATIONS

AGS abort guidance system

APS ascent propulsion system • CDR constant differential height CM command module

COAS crew optical alinement sight

CSI concentric sequence initiation

CSM command and service modules

DB deadband

DAP digital autopilot

DOl descent orbit insertion

DPS descent propulsion system • ECS environmental control system EECOM electrical, environmental, and communications

EPS electrical power system

F.T.P. full throttle position

hydrogen

inertial measurement unit

• fuel cell current

specific impulse • LM lunar module LOI lunar orbit insertion

LOS line of sight • v • LPO lunar parking orbit

MCC midcourse correction

Ml minimum impulse MPAD Mission Planning and Analysis Division • MSFN Manned Spaceflight Network

NR North American Rockwell

ORDEAL orbital rate display, earth and luna.r

O2 oxygen

PGNCS primary guidance and navigation control subsystem

PTC passive thermal control

RCS reaction control system

REV revolution RR rendezvous radar • SCS stabilization and control subsystem

SEP separation

SLA spacecraft/1M adapter SM , SPS service propulsion system

SPS-n number of the SPS burn; n = 1, ... ,8

T, D, and E transposition, docking, and extraction

TEC transearth coast TEl transearth injection • TLC translunar coast

T1MC translunar midcourse correction vi • • TPI terminal phase initiation (of rendezvous)

TPF terminal phase finalization (of rendezvous) I. t time .. WT weight

• •

• vii • CONTENTS

Section Page

1.0 THE CM RCS ANALYSIS. 1 , 2.0 THE SM ReS ANALYSIS. 2 • 3.0 CSM - ACTIVE RESCUE OF LM. 23 4.0 THE SPS ANALYSIS . ... . 27 5.0 THE 1M RCS PROPELLANT ANALYSIS 30

6.0 THE DPS ANALYSIS 37

7.0 THE APS ANALYSIS 38

8.0 THE CSM EPS ANALYSIS 39

9·0 THE GSM EGS ANALYSIS 47 10.0 THE LM EPS ANALYSIS. 54

11.0 THE 1M EGS ANALYSIS. 58 •

12.0 TIME HISTORY OF CONSUMABLES WEIGHT LOSS. 64 13.0 REFERENCES ...... 67 , •

viii • • TABLES

Table Page

I-I CM RCS PROPELLANT SUMMARY ...... 1 •-J, 2-1 GROUND RULES AND ASSUMPTIONS FOR THE SM RCS ANALYSIS ...... 2

2-11 SM RCS PROPELLANT LOADING AND USAGE SUMMARY 2

2-111 SM RCS PROPELLANT BUDGET ..... 4

3-1 CSM-ACTIVE RESCUE OF NONPROPULSIVE 1M, SM ReS USAGE ABOVE NOMINAL CSM SUPPORT OF 1M-ACTIVE RENDEZVOUS 25

3-11 MINIMUM SM RCS PROPELLANT REQUIRED FOR RESCUE AND RETURN ...... 26

3-111 SM RCS MARGIN AT UNDOCKING WITH CSM-ACTIVE RESCUE . 26 4-1 SPS PROPELLANT SUMMARY .... 28 • 4-11 ASSUMPTIONS FOR THE SPS ANALYSIS 29

5-1 GROUND RULES AND ASSUMPTIONS 30

5-11 1M RCS PROPELLANT SUMMARY . 30

5-111 ONABOARD READING OF RCS PROPELLANT REMAINING 31

5-IV 1M RCS PROPELLANT BUDGET 32

" 6-1 ASSUMPTIONS FOR THE DPS ANALYSIS 37

• 6-11 DPS PROPELLANT SUMMARY ..... 37 7-I ASSUMPTIONS FOR THE APS ANALYSIS 38 7-II APS PROPELLANT SUMMARY ..... 38 • 8-1 ASSUMPTIONS FOR THE CSM EPS ANALYSIS 40 8-II CRYOGENIC SUMMARY ...... 41

9-1 ASSUMPTIONS USED FOR THE ECS ANALYSIS 47 • ix • Table Page

9-II ECS OXYGEN REQUIREMENTS . . .. 48 10-1 ASSUMPTIONS FOR THE LM EPS ANALYSIS 54 • ll-I ASSUMPTIONS FOR THE LM ECS ANALYSIS 58 " ll-II LM ECS CONSUMABLES SUMMARY . 59 • 12-1 TIME HISTORY OF CONSUMABLES WEIGHT LOSS 64

, •

x • • FIGURES

Figure Page

2-1 SM RCS propellant profile •"', (a) Total. 20 (b) Quads A and C 21 (c) Quads Band D 22

5-1 1M RCS propellant profile 36

8-1 Total CSM spacecraft current profile 42

8-2 Hydrogen remaining per tank, CSM 43

8-3 Oxygen remaining per tank, CSM 44 8-4 Total DC energy 45

8-5 CM bus voltage . 46

9-1 Potable water tank quantities as a function of mission time ......

9-2 Waste water tank quantities as a function of mission time...... 50

9-3 CSM water generated as a function of mission time 51 9-4 CSM water evaporated for cooling as a function of mission time ...... 52

9-5 CSM water dumped as a function of mission time . 53 .. 10-1 Apollo 10 descent stage electrical power profile 55

10-2 Apollo 10 ascent stage electrical power profile 56

10-3 1M-4 total spacecraft current 57 • 11-1 Descent stage water tank quantities as a function of mission time ...... •... 60

11-2 Ascent stage water tank quantities as a function of mission time ...... 61 • xi • Figure Page

11-3 Descent stage oxygen tank quantities as a function of mission time . .. . 62 11-4 Ascent stage oxygen tank quantities as a function .. of mission time 63 • ......

12-1 Spacecraft weight versus ground elapsed time 65

xii • • REVISION 1 TO THE CONSUMABLES ANALYSIS FOR THE APOLLO 10 (MISSION F)

SPACECRAFT OPERATIONAL TRAJECTORY

By Martin L. Alexander~ Sam A. Kamen~ Arnold J. Loyd~ Mayfield~ Peterson~ 't, Samuel O. Dwight G. • Scott~ Walter Jr., and Richard M. Swalin

• 1.0 THE CM RCS ANALYSIS

The CM RCS propellant data were taken from reference 1. Usage data were taken from reference 5. The CM RCS propellant summary is presented in table 1-1.

TABLE I-I.- CM RCS PROPELLANT SUMMARY

RCS propellant RCS propellant Item used~ 1b remaining~ 1b • Loaded -- 245.0 Trapped 36.4 208.6

Available for mission -- 208.6 planning

Nominal usage 30.8 177.8

Margin -- 177 .8

• • • 2

2.0 THE SM RCS ANALYSIS • TABLE 2-1.- GROUND RULES AND ASSUMPTIONS FOR THE SM RCS ANALYSIS

The following ground rules were used to calculate the SM RCS budget.

1. The first and third MCC's (translunar) are executed as SPS burns with the third MCC trimmed with the RCS. •

2. Passive thermal control is assumed to be in the PGNCS wide deadband control mode and to require 1 lb/hr, compared with 1.1 to 1.7 lb/hr requirement on Apollo 8 in the SCS control mode.

3. The sixth MeC (transearth) is executed as an RCS burn of 5 fps. •

• •

------3

• TABLE 2-11.- SM RCS PROPELLANT LOADING AND USAGE SUMMARY

Item Propellant Propellant required, Ib remaining, Ib a Expected loading 1342.4 •lJ, Initial outage caused by loading a mixture ratio 15.6 a Total trapped 26.4

Gaging inaccuracya 80.4

Deliverablea 1220.0

Nominal Usage Lift-off through SPS burn to evade S-IVB 114.0 1106.0 Remainder of translunar period 199.5 906.5 LOI-l to undocking 116.3 190.2 Undocking through two REVS beyond • docking 224.2 566.0 Remainder of lunar stay to TEl 66.3 499.1 TEl through CM/SM separation 141.4 358.3 Outage caused by mission duty cycle mixture ratio shift 36.8 321.5

Nominal remaining 321.5 ,. ~ata provided by Auxiliary Propulsion and Pyrotechnics Branch of Propulsion and Power· Division.

" • • 4·

TABLE 2-111.- SM Res PROPELLANT BUDGET • EVENT SM-HCS SM-RCS SM­ us~o LEfT ~~ (LBS) (LBS) LEfT ------_. '- - ~-_.- ._-- -t-.-r-- .0 MISSION F 63529. .0 .1220.0 lo.a...

• 0 S~-RCS CHlCKouT 63529. .0 1220.0 100 • •"

NOfL.PROPULSI VE ...... ~_... -f--- -- ... 1------1--... -

3.1 TNANSPOSITIUN AND DOCKING 63511. +X .arps, NULL TO 0.3 FPS

3.1 ~ITCH TO ACQUIRE sIva 6351'+ • 2.3 1205.5 1-a~EG • • d __ .ellCI:L.U.G-..O£G .. ISEC-----.-· ....--- .--- I----....,~· __·-

3.1 ~ULL CSM AT 0.5 DtG/SEC 6J51~.

3.1 NULL DELTA V 6350'+. 9.5 1195.6 98. .. --.----r-'-- -

3.1 PHOTUGRAPHY ANO SYSTEMS fAMILIARIZAT 6J~5~. lUNINCREASED PER HESULTS 3.2 I r~DEX AND DOCK 26.0 1120.3 • LANliLO SrUUy

't.1 LM EJECTION PLUS R'S BURN 9'+267. 7.9 1112.'+ 91. 'i JlT5. 5 SEC

't.!) SPS BURN TO EVADE SIVB 9 .. 263. 'I • 1 1108.3 91 • - 3 A.X I S oRJ EN l p.G1iCS ... s ATTITUDE HOL.O ,

... s 51'S BURN 9~260. .0 1107.9 91 • BUU..D .Ue...-._... I--- _ .._ .., +----- I-----+-- .. _.

STEADY STATE BURN 1 1 • 1 1-1-07...a .. .9-1.

".s TAIlOFF 9 .. 18,+. .81107.1 91. -+---.------_.. -+---_._- .._-- • DAMP SHUTDOWN TRANSIENT 9~la2. ..l...1 I 1Dit • 0 9 1 • • 5

• TABLE 2-III.- 8M Res PROPELLANT BUDGET - Continued TIME EVENT SIC lilT SM-RCS SM-RCS SM- ( H'" ) (LaS) US EO LEFT Res (L.BS) (LBS) LEFT

.--, - ...... 7 U~lENT TO MON ITOR SL I NGSHOT 'lfI78. .. ,. lJ 01_. 8 __ '0. •-, 0.2 DE(;/SEC PGNCS !:l.a P!)2 IMU ALIGN ''f17S. 2.8 1099.0 90.

.. ~ _._- ---._--_.---- ... ..- ~ • - __ ----_. 5.5 ORIENT FOR' NAV SIGHTINGS ,lfI71. 'f.l J..Q''f., _'0, SET 1 _. -_._-_.-_.~---'------~------_.- 5.6 ORIENT FOR NAV SIGHTINGS 9'f167. 1f.1 1090.8 89,

SET ~------.._. ._~-_. . - ' Z __ __ 5.7 ORIENT FOR NAV SIGliTINGS 9'f163, If,J J 0.8..6. ..6.. 8.9. S~T 3 -- .- ._---- ._--- -- ~.8 ORIENT FOR NAV SIGHTINGS ''flS9, 1f.1 1082.5 89. --- coEr .. - --_. ----._. ---_._---- !).9 URIENT FOR NAV SIGHTINGS 9'flS!:l, Ifa.l 10ZL.~1 U. SET 5 • _._- ___'0_- -. _. .------!).9 ALLOW FOR MIN DB HOLD DURING SIGtiTIN 9'f153. 1.8 1076.5 88. -c. ~ ._- - --_.------_._------_.. - - 5.9 Sf-'ACECRAFT IN ~ANOOM DR I FT 9'flS3. & lOl.iu S .8a.

-_. - - ..- -- .. _- '1.2 P!)2 IMU ALIGN 9'flS0. 2.8 1073.7 88. f----.---- .. ------.- 1---- .. - '1.2 MCC 1 , NO ULLAGE. NO TRIM 9lfl"'. ".L lO.il... 1L 8L-_

.------~------'------9.2 ATTITUDE HOLD 5 OEG DB 9 .. 1.. 6. ... 1069,2 88.

n _ ft II r"\ ... ..,.~ ~ ~u_~ rt___ .______9ttltt3. .0 10~•• 2 IIA_ BUILD UP

.. -~------.. _- - • 9.2 STEADY STATE BURN I 1 ' .. 108. •I 1069.1 88.

9.2 106A • .1 8A. ,----- '''067..1. I- _----.Jl • .- U lI...llF'f ------6

TABLE 2-III.- SM RCS PROPELLANT BUDGET - Continued • EliE r-IT SIC ttT SM-RCS SM-RCS SM­ CLeS) \t5-[-o- ,t;t.f' I"CS CLBS) CLeS) LEFT -+------.. --..... --.-..----..------+----- +----+----w.i-t-,-t

DAMP SHuT.DOWN TRANSltNT 9li06&.

._-~ ---_..._- •• 12.0 ~S2 IMU ALIGN 9'tOb3. 2.8 106... 't 87. - --- .. -...------·f------4-·---·-4---·-f--· - ..---

12.0 U~IENT FOR PTe 9'tDS9. 4,f.O 1000.If 8-1-. 3AXIS 0.2 nEG/SEC - ._- .- _. - 12.0 ESTABLISH ROLL 9'tOS8. .li 1060.0 87. -- - 1---..._- .-.. ------~I---- .. _..-

9 IiO-lio.. 12....1. WU---.l-- ~....

._~ .-_. ----~ .. 21f.7 ~~l IMu ALIGN 9't0.. 3. 2.8 10't... S 86.

I----_._~--_. __._------_.._. -- - I--

25.3 O~lE~T FOH NAil SIGHTINbS 9 .. 0JCl. _...... 1 1.0 ...0.. ... ~ SET 1 ._.- 2S.'t ORIENT FOR NAil SIGHTINGS 9't03't. 't.l 1036.3 8S. • __ - - _....5.E T l-- __ . -_...... - _ .. f------..-.-f----- ..

2!:1.s O~lENT FOR NAil 51GHTINGS SET 3

25.6 OI

2S.7 OHIENT FOR .NAV .slGHTlNGS 't...1 1021.9 8~. SET s . ----jf- --.---- 2S.7 ALLOW fOR MIN DB DUNING SIGHT1N(,S 9 .. 019. 3." 1020... e... . - --...... ------+----+----+----+---f 26 ... SXT CMEeK

_. ------..------26.S M1DCOURSE CORRECTION NO 2 9't012. ".1 101 ... 0 83. _ ..- f---M.H.ll..iL-l 0 BUR N AT I • 26.5 • 7

• TABLE 2-111.- SM RCS PROPELLANT BUDGET - Continued TIME EVENT SIC wT SI1-RCS SH-RCS SH­ ,HF< I (LBS) USED _ - ~E.f T RCS (LBS) (LBSI LEFT .---+--.------.------+-----If----+---...... ,H-a.+--;• cr • • 2b.S DELTA VEL. NOMINALLY lERO 914012. ,p- 1013.8 83. 27.0 U~IENT FOR S-BAND REFL~CTIVITY TEST 9.. 008. 't.l 1009.0 83. --- ._-- 27.1 ORIENT FOR PTC 9 .. 00't. 't,l 100S.6 82. 3AXlS 0.2 OEG/SEC ---- -._. 27.1 lSTABLISH ROLL 914003. • 't 100S.2 82. '.- ---._- -_..- ----+-----4 32.0 PITCH AND YAW CONTROL 8..1 99'. S 82...

- . - 38.0 PITCH AND YAW CONTROL 93986. 8.7 987.8 81 •

.- _.. ~. . ------_._---- .. -----,--~ --_.- ---" - - -- -_.. - 1----- "S.U f'~2 IMU ALIGN 9398't. 2.3 98S.S 81.

-- • '45.0 O~ 1Ern Fo..~ PTe 93980. 't.l 98le't 80. . ----- _- .------_ . _.- -- - -~-- 't!:l.O ESTABLISH ~OLL 93979. ... 981.U 80.

'tY.U PIT CH AND YAW CONTROL 93971. 8.0 973.0 80.

------_. --- -.- - -_. ------.- -_. ..- _.~. - - --.._- r------. ._-

513.0 PS2 IHU ALIGN 93969. 2.3 970.7 80.

513., MIDCOURSE CORRECTION NO 3 939651. ".1 96,.6 79. _ MNV_IL TO BURN All -+ • + -+- _

513., ATT I TUOF. HOL,D __

.- - f- _.- 513.7 SPS BURN 93961. .0 966.0 79. • _-_ CII1 " UP --+-----+----+----t---. 513.7 STE·ADY STATE BURN ___.. 1L _9.If.lt.t.. __.... CI....lis. Ii Lz.9. • 8

TABLE 2-111.- SM RCS PROPELLANT BUDGET - Continued • EVENT SIC WT SM-HCS SH-RCS SI'I- CLRS) USto-- - L~fT ReS (LBS) CLBS) LEfT -- -. ------4------t---- -. 53.} TAILOFf 9389'h • i- Us.l _19.

'I -- -- - • DAMP S~UT.DOW~ TRANSIENT 93893. 1 • 1 96'f.0 7'1. ------. ------

53.7 ~cs TRIM TO O.S FP~ 93077. 16.2 9'f7.B 78. ALLUW 1.5 FPS TRIM - ---- 53.7 TV ALLOWANCE 93873. 'f.0 9'f3.8 77. ~.------..------._.------

S't.l OHIENT FOR PTe 93869. 't.l -9-39.7 77. 3AXIS 0.2 DEG/SEC -- - - - 5'1.1 [STABLISH ROLL 93869. ... 939e3 77. ---._-f------_.- --~ --'--f------

5't.~ PITCH ANU YA~ CONTROL 93861. 7.8 9 J 1. S lA.

62.U PITCH AND YAW CONTHOL 9385J. 7.8 923.7 76. • . . ------__ -_._-

69.~ P~l IMU ALIGN 938&1. 2 • ..1 _9.21. 't 76.

71.7 MIDCOUHSE CORRECTION NO 'f 938.. 7. At • 1 917.3 75. MN V ~ l-O aURN.-411 -. ------.- 71 .7 ATT HOLD a.s DEG DB PuNCS 938'+6. _.'1 916.9 25. ,

-- 7 I • 7 DEL VEL • NOM ZlRO 938,+6. .0 916.9 75. ------_._------._------72tl ORIENT FOR C.Q.MM _!....L --'-1-,.A 7~_

72.1 TV ALLOWANCE 93838. ".0 908.8 7,+. - -- 1------. ---- .-._------It------• 72.1 SlXTANT STAR CHtCK1N~ 9383" 2.~ 'OluS. _1't. • 9

• TABLE 2-111.- SM Res PROPELLANT BUDGET - Continued TI ME. EVENT SIC WT SM-HCS (HIO SJ04-RCS SM- (L&S) USEO LEFT RCS (LBS) (LBS) LEFT --- H&t 7~.~ LUNAR ORelT INSERTION BURN 1 93832. ".1 902." 7 ... •., J-AXIs ORIENT PGNCS ATTITUDE HOLD ... 902.0 7 ... ----1------7~.7 TRANSIE~T STAHT CONTHOL 9383U. 1 .3 900.7 7 ...

76.~ LOll, NO ULLAGE, NO TRIM 93627. .0 900.1 7 ...

STEADY STATE BURN 1 1 702lf J. .6 900d 7 ...

76.5 TAILOFF 70203. .0 '00.1 7... ---1------1------.

76.~ DAMP SHUT uor~ TRANSiENT 70202. 1.1 899.0 1 ...

• 76.~ ~EV 1 ATTITUO[ HOLD 70200. I.!:» 8Yl.S 7 ...

7b.5 ~OLL lriO nEG FOR COMMUNICATIONS 70200. .s 897.0 7 ...

7b.7 MANEUVER TO LUNAR OBSERVATION ATTITU 7019b. 3." 893.6 73. [> l _ _. __ __ _

7b.3 ~lV 2 ATTITUDE HOLD 70193. 3.0 890.6 73.

7/.2 MANEUVER TO SLEEP ATT fOR COHM TEST 70190. 3." 887.Z 13. ------l~-.- I--- - OBSERVATL~N 7ij.S HOLL TO IMPROVE LUNAR 1019U, __ .I Of

- 79.Z LUI 2 LPO CIRC 70186. 3 ... 883.3 72. • _ .l1..Ci.YJL -r OBI/ H NA II I------~------+----+------

A TT nUOE HOLD 70186. -,-" 882,9:12. • 10

TABLE 2-111.- 8M RCS PROPELLANT BUDGET - Continued • SIC tn SM-~CS SH-RCS SM­ CLaS) \t5EO l~fT ~., (L as) (LBS) LEFT ------.- -- --t------+- ---4-4-1"uH----t

8U.2 ULLAGE 7017 U Z JUS A ANO C

8U.2 Sf'S BUI-

80.2 TA[LOH 691S0. .0 867.S 11. ------t------+----"1I---f

DAMP SHUTDOWN TRANSIENT 1 ._1 BAA. /oj_ 71 ..

8U.2 REV 3 ATT[TUDE HOLD 691~6. e- --1--- -_. - -- . ---"-' ------

au.3 ROLL FOR COHM 691~6.

8U.3 TV ALLOWANCE 691~2. ~.o 8S9.0 70...... • .- ----...- _ __ -_. - -_._------'.--_.- . _._.- . _.- -..- --._-- -

8U.3 f'52 H1U Al.I GN - 69138. J.J:a ASS.S 10.

-. 81 .0 MI~V R TO L(lMK TRKG ATT 6913't. J.S 8S2.0 10.

----_.~--- .- .. --_.__ - -'..- ----_.,,- '.-1------

82.S REV 't ATTITUDE HOLD 691Jl. J.u 8~9.0 70. ...

82.S R~OR1ENT TO SLEEP ATTITUDE 69128. --- I-- •.. -.------._- ---+------1-----;----; 8't.~ H£V S ATTITUDE HO~O

80.~ REV 6 ATTITUDE HOLD 69122. ------._.------t------t-._. -----+----r- - -- • 88.3 REV 7 ATTITUOE~OLD • II

• TABLE 2-111.- SM Res PROPELLANT BUDGET - Continued

EVENT ~T SIC SM-RCS sr1-RCS SM- (LBS) USI:.O LEf T Res (LBS) (LBS) l.EFT .. ._-..--- .-•. -_.-k-s) YU.3 Hev 8 ATTITUD~ HOLD •.. 69116. 3,0 8J3.S 68 • 9~.3 ~~v 9 ATTITUO~ HOLD 69113. 3.D a30.~ 6a. _ .. - -- - 9'4.3 IH:v 10 ATTITUDE HOLD 69110. 3.0 827,S isa,

9S.S ~~ORIENT FOR LoMK STG 69106. 3.5 82,..0 68 • ._--f--....-... - .. - ..

9 ~ • 2 I~ L. VII ATTl TU0 E Hal. l) 69103. 3,0 821.0 67.

UNDOCKIN~ 96.7 ORIENT TO ATT, ROl.L£O lao 69100. 3.5 8l7.S 67. Q.lJi.. . _ _._.__. _. . - ..-- '- _. ----- 69098. 1.5 816.0 67.

• YA~ 97.U LEFT 1'4 DEG 69097. 1 .9 81'4.1 67.

~-- _..- t-. .-- PRE-S£~ARATION 97.U EXTRA ALLOCATION 69073. 23.9 790.2 65. BASED OM APULLO 9 DATA

98.2 UNL>OCK 38222. ".7 7eS.5 6'4. .. _.- ._-- .-- --- • 9B.2 srATION KEEP FOR l.M PHOTOGRAPHy 382ll. 10.0 77S.~ 6'4,

98.2 REV 12 ATT HOLD IN MIN 08 38207. 5.2 770.J 63. .. . -. --+----_._----_._._--- ..- .. _._.------.- _. _._-_ . ._.._-----+-_.- -_.- 38206.

------• ORIENT FOR SEP BURN 3820't. 1.8 767.7 63, ---+------.. ------. -4----~.---_+--.-- 98.7 RlS SlPA~ATION BURN 2.5 FPS 3'193 • • TABLE 2-III.- SM RCS PROPELLANT BUDGET - Continued "- • TIME EVENT SIC WT SM-HCS SM-RCS SM .. (HRI (LaS) USfO- -tV'T ~~--- I L BS) rL as) ~~FT -- -.._- .- -"------_.._------_.-- - ~----_.- -- . 91;.8 I"lU ORIENTATION .1BI90. --L-L 71:"0.'\,,, -6..2-.

~ - • 9Y.~ 1-'20 MANEUVER IPlfCHI J8187. l.1 7S0d 61 • -,-- -- . - .. . ------._-_.

9Y.tJ I-'2Ll ORIENTATION MANEUVE:R I P lTtH I 3818... .1 ..1- 1~:]. 2 61. TIol I t1 TRKG A TT POST 001

------luu.2 REOIolIENT PITCH AND ROLL fOR COI1M 38182. 1.9 7445.3 61. - ._.-. - - .------_.- ._-- ._- -_. --_.- ._-

10U,2 ~I::.V 1J ATI HDL[) IN MIN UB 38111. S.2 1~~ -4--1.

.-- f--~ -. IOU.7 MANEUVER TO TRACK PHASING BURN 38173. l.l 736.8 60.

~._----- _. ..•.•.. .. ._-._--- ._-- ._ .. -_.- ---- _._- ._- ..'- - _._ - ._-- "--.

10U.~ 11-/11'1 TRKG ATT POSt PHASING l8170. 3..0 71-~.a 6-0-.

10l,2 tn 'J I 'f ATT HOLD IN MII~ DB J816!). 5.2 728.6 60. •

-- --- _._-~. -- ._._-- - - - ._-- -. --_.- --- - ~---_. .- I02.~ P'fU ORIENT TO BACK up LM INSERTIUN B 38162. UIolN

103.0 P20 TRIM TO TRKG ATT 38159. l.1 722." 59. ---- _.------. --_.._-. '-'---'- --- - .....-.------... f------... --·------+----t---- , lUJ.~ MANEUVER TO BACKUP CSI J81S6.

-- -_. .------10J.b TklM To TRKG ATT PO~T C51 381S3. 3.2 716.2 59 •

. _._--~-

IO't.l REV l~ ATT HOLD IN. MIN DB 381't1. L.2 -.u~o U-.--

-. ---" ----- r-- - .. - lO'f,7 TRIM TO THK LM POSI PLA~E CHANGE 381't44. 3.2 707.8 58. --_._-_. .. _..•. _------• I O~. U I1ANEU VlR TO BACK UP TP 1 _~...Ll 7~... ,-t---.s..a..... • • TABLE 2-III.- SM RCS PROPELLANT BUDGEI' - Continued TIME EVENT 5/, WT SH-RCS SM-Res SM- tHIn (l.BS) Ui-Eo. ~ ~T ~cs- (L.BS) (LaS) LEFT

I-'-~' ... -- .. 10~.0 TRIM ATT TO TRACK L.M POST TPI 3813tt. 3,L1-1.01,6 _ 5.8.- -, • -- I- - lOS." ORIENT TO MCCI ATT 3813!). 3.1 698 ... 57.

-_._------" ..- 10~." 11<11'1 TO TRKG ATT 38132. 3.2 6'5.2 57,

._--~._- ,. ,------,,"-'._.------""------~- IDS." OHIENT TO Hce2 ATT 38129. 3.1 6'2.1 57.

TRIM TRI

.... .-. .. .- -_._._--_. ~. -- __ __ ".'-_._ ... _- -. __ .- -, ------106.0 STATIOI~ KEEP FOR Lf'I PHOTOGRAPHY 381 U. 10.0 67,.0 56.

~,-, ~. ---- 106.U HI:.OR 1EIH. FOR poClSlNG -~ - .. 38112. 3,1 ~.6lit~ ss...

., .-- - -- _. --1-----. .----- • 106.1 Rl:.V 16 A1T HOLD IN MIN 08 38107. 5.2 670.7 55. -, --- -- _._. - -._---- - ,--_..- ..---_ .... .--- _.--_._-

1U6. 1 MAINTAIN BORESIGHT 38105. . 1.. 1 1- 6 U...o ss._

- ---_._- , 't--" ,-. f---,- 106.1 E~TRA ALLOCATION DURING RENDEZVOUS 380'0. 15.0 65... 0 5... --_._, gACrr\ ON APOI.L.O 9 DATA - -- 106.3 CSM ACTIVE STATION KEEP AND DOCK "57.. '. 25. L 6.28.9 --u.....

--_. .. _. -- ._.-.- ..._- . -'- -- .. _. - -"--,._------106.3 EXTRA ALL.OCATION POST DOCKING .. 5720. 29.0 5".9 .. ,. RACiF"O ON APOlLO 9 nATA

&.... _~ 106.7 MAt!E~YEJL .JJLAPSaT0 &TT fI!;717. -.3.... 2 •• 0.5 DEli/SEC -, f---- • 108.1 REV 17 ATT nUDE HOLD .. 571 ... 3.0 593.7 "'.

108.6 OHIENT fO~_SEP BURN --- ~.1tl.!..r-- _~.t.1 590.c;. fiAt.- • 14

TABLE 2-111.- SM RCS PROPELLANT BUDGET _ Continued TIME • EVENT SIC wr SH-RCS SM-RCS SM. "'flU (La SJ IJ5-ED LE-"T RC5 CLas) CL8S J LEfT . _._- ;" f--- --f- - --- •. --_ .. --- , . , 10ij.7 JETTISON LM 2FPS - 38016. _10 .. 9 I--S.7!J .,. _Ita.

108.7 M~VR TO ooSERVE LM 3801", 1.8 577.8 't7. •

108.7 TV ALLONANCE 3801U.

108.7 MANEUVER TO SLEEP ATTITUDE 38DOY. 1.8 572.0 't7. --- '------f------1-----+----+

11U.O ~~v 18 ATTITUDE HOLD 38006. .1.0 ~9 .o..W7-.-

- - 112.0 HEV 19 ATTITUDE HOLD 3800.1. .1.0 566.0 't6. -- ---. -- ~------.- _._-.- 11".U H~V 20 ATTITUDE HaLU 38000. 3...0 i ••• O- "6.

llb.U ~EV 21 ATTITUDE HOLD .17997. 3.0 560.0 If6. ------• ------4-----4----.- 11/.Y ~lV 22 ATTJTUDl HOLD J799't. .1.0 SEt7.0 ....

--- PHOTO~RAPHY 117.9 MANEUVER FOR 37991. 2.6 551f ... "S. .----. - -.--2.- .lUllIEI!VE.RS-_._ -----~._--

1tY.9 HEV 23 ATTITuDE HOLD 31988.. _SSl./i 3.11 liS. ...

- -- 119.9 MNVR To SUBSOLAR pT 37986. I .7 SAt9.7 AtS. ------1---

.l7!8S. ..B ~-S .... ~ -!4i~

121.9 ~lV 2't ATTITUDE HOLD 37982. ------~------4------lI-----4 • 122.S REORllNT FOR LANDMARKS 37979. 3 TIMES PER REV • 15

• TABLE 2-III.- SM RCS PROPELLANT BUDGET - Continued T pH. EVENT SIC "'T SM-RCS SM-RCS SM- (HI'<) (LBS) USED LEfT ReS (LBS) (LBS) LEFT f-- - N .. 122.51 fofOLL TO ACQUIRE HsFN 37979. .3 ._~'f2..ID 'llh

" • ._.. 123.9 tH:V ZS ATTITUDE HOLD 37976. 3.0 539.0 'f'f. . -- ._.- ~------~ ..------_ .. __ . _ _._._---_ .. 1-- - ._- lZ'+.O REV 25 IHU ALIGN 37975. .8- -- 538.3 'f 'f...

------.------12't.~ RI:.ORIENT f'OR LANDMARKS 37971. 3.6 53'f.7 'f'f. REV ---- 3 TIMES _P...E.R --_._------'. ~ --

lZ't.!) ROLL TO ACQUIRE MSFN 37971. _,3 SJIt.If. _If.!i-e-

------" 12!).8 REV 26 ATTITUDE HOLD 37968. 3.0 531." "'f. .. - f------'-'-- ._------._- ._ _- --, ------'_4·' foIEV ~L1GN 126.0 26 IHU 37967. 11 8 530.6 '13.

... ------.. ------• 126.5 foff-ORIENT FOR LANDMARKS 3796't. 3.6 527.0 'f3. _. ___ ...3 •.._.. - J I t1£ SJ£B-..B.O -- --- _. -- --- . - - -- 120.5 ROLL TO ~CQUIRE MSFN 37963. .3 526.7 'f3.

._- -- 12/.8 IH.V 27 ATTITUDE HOLD 37960. 3.0 523.7 'f3.

-_...- ~---_._------_..- ----_..- -- - " 128.0 REV 27 IHU ALIGN 379S9. , • Q. SUI..8 ~t3.

-- - .. 1-- 128.0 O~IENT TO REST ATTITUD£ 379!:tS. 1.7 52110 "3.

12S.0 REV 28 3.n c;. ... n &I" ATT HQLlL------'------...Jll§.§ •

- -~. __._-- -~-~ ----._,.. _------~------I---- - • 128.0 folEY &9 ATT HOLD 37952. 3.0 515.0 'f2.

O_~R ~Plir._ f-...Jll~O c;.''ll 'l 131 .9 MNYR FOR - .. HOT ------_.- • .. LJ &I" • • 16

TABLE 2-111.- SM RCS PROPELLANT BarrG~ - Continued - .. _-. - - • SIC ttT SM-RCS SM-RCS SM. - iLe5 ) US~o-- -U...-T ~ (LBS) (LBS) LEFT ~ ---~ .. ------._-- - --'-'--- _.0- ,., 13~.O M~¥R FOR PHOTO~RAPHy 379'18. 1~1 5-11-- 6 'i2-.. • 133.9 MNV~ Tu LDMK STG ATT 379'16. 1.7 S09.9 '12. ------

133.9 ~ULL TO 4CQUIRE MSFN 379'16, .• 3 SO.9..S_ '12.

- 1-­ 133.9 HEV 3U ATT HOLD 379'13. 3.0 !»06.S "2. -- ---.------. -- .._------+----1----+----+

13~.9 MNVR TO PHOTO ATTITUDE 319'11 .. 1.1 .---Sn~ ..B at 1 •

- I-- ..- 136.0 YAN 2X fOR PHOTOS 37939. 2.1 S02.7 '11 • ------._------I- -_...- 1----- _ .. _-

136.0 HlY 31 ATT HOLD 37936. 3..0- !t 9-9.1 -~l-..

- - 13b.3 MNVR TO TEl ATT (HOLLED 180 DEGI 3793S. 1.7 '198.0 .. I• • 1------1------_. -- ---.------.------._- ---I-- - _.- - - --'-

13b.3 O~IENT FOR TEl 3793". .S ~91.~ '11.. ROLL 180 DEG

136.3 - ATTITUDE HOLD 3793'1. .'1 .. 97.1 'I 1 • _.------_.- -- 1------~- '------

136.3 ULl.AGE 31918. lS...2 'Ul.9 39, 2 JlTS B ANL) 0 - - 137.3 SPS ~UR~ 3791S. .0 '181.9 39. ___ aU 11.0 lip . __ --

137.3 STEADY STATE BURN 136 SEC PGNCS 281S 1. .3 -U1 • .6 -.19... -

137.3 TAILOFF 28711. • 0 '181t6 39 • --- .- .-4-----..... ------+----...-- • 137.3 O~MP SHUTOO~N TMAN51tNT Z8710, • • 17

TABLE 2-III.- SM Res PROPELLANT BUDGET - Continued

TIMI:: EVENT SIC ilT SM-~CS sr1-RC 5 SM- ( H 10( ) (LBS) USEe L.EFT Res • (LBS) (Las) L.EfT -- - - _. -_._- -_.. ----"------f------~-- 131.3 TV ALLO~ANCE 28706. 'f.0 't16.!) 39.

138.,+ P!',)l. IMU ALIGN 2870'" 1 • S "'75.0 39. - - .--- .. _.. ---

_138.5 l) f.l I NT t:: FOR PTe 2870'" .6 '+7,+.J 39. 3AXlS 0.2 Dt.G/StC

13M.S E~fAULISH ROLL 28703. .2 '+7".2 39 • ..- ..- -- 138.!) PITCH AND YAt/ CONTROL 28692. 1 1 • U '+63.2 3a.

ISU.U P~2 HIU ALIGN 28691. 1.5 '+61.7 38. . •. ---._- -- - - _ ._.- ~.. .- • ------f- - 150.U CISLUNAr. NAVIGATION !> STAR ~ETS 286S!;), !).9 't!;)S.8 37.

I 5 U• II CISLUNAR NAV SIGHTI~GS TorAL OF 9 5 28681. '+.2 '+51.S 37. EIS --- -- _. ---.._- --..

150.0 ATT CONTROL 28679, 2.2 '+'f9.,+ 37.

152.3 MIDCOU~SE CORRECTION NO 5 28677. 1.5 '+'+7.9 37. _.!'1N\I.ij AtL__ TO-BURN ------152.3 ATTITU:l1:: HOLD 28677, .3 ..... 7.b 37.

15l.3 OI::L VEL • NOli lI:. R0 28677. .0 '+ ... 7.6 37.

_.. --_. -".._..------.-- --- . - - ._------. ------'-- -- • 15.2.3 TV ALLO\'l ANtE 28673. 't .. D 'HU. b 36,

. ISJ.u lIRIENT FOR PTe 28672. .6 ... .. 3.0 36. ---- lAXl S U,2 DEli'SEC ------ISJ.U • EST, 0.3 DEG/SEC ROI.1. ZB612. -_. .-L2 1l'l..2-e a. -3... 18

TABLE 2-III.- SM RCS PROPELLANT BUDGET - Continued • TIME EVEt\JT SiC. NT SM.fo(CS SM.RCS 51'1 .. eHI< J (L8S) ust:.o LEn IH:S (LBS) (LBS) LEfT - ~~ 1~3.u fo> ITCH ~ND Y A·~ cunTROL 2866U. 12.0 '+Jo.t:1 3S. • 1':I6.U /-,!;)2 IMU AL I GtJ 28659. I .!) '+29.3 3~.

16!;).U I~AVIGATION CiSLUNAR 2a6!;»). S,9 '+23 ... 35. 5 T AR/Ll!NAR HO~llON ORIENT

16!;).~ ORIENT FOR PTe 28652. .6 '+22.R 35. :1"".1 S 0.2 D~'/St:.C 16!;).5 ESTAHLISH ~OLL 28b!;),l. .2 '+22.6 3:..

165.5 PITCH AND YA'II CU"JT~OL 286'+6. b.O '+16.6 3 ...

171 • U PSZ !MU AL I GN 286'+'+. 1 • S '+IS.1 31i. • III • U IJ A V SII:,HTIN~S 2861.1-'. .7 '+11i.5 3,+. _.- - --I-- -.-

17 Z. U (l ~ I t:: r.. T rOR PTe 2861i3. .6 '+13.1:1 3,+. 3AXlS '.1.2 OlG/Sl:.t 172.0 EST. 11.3 nEG/SEC ROLL 28b1i3. .2 '+13.b 31i. ,..-- I 72. U PITCH AND YAiN CUNTlo/OL 28639. Ii.O '+09.6 3,+.

17~.U fo>~l IMU ALIGN 28b37. I.!;) lioe.l 33. _. -

176.2 tl I UC0 lJ RSE (ORRE.CTIlJN NO 6 28036. 1.S li06.6 33. ~'NV R TO BURJ~ ATf

176.2 ATT P~NCS HOLD .5 DEG DB 26636. .'+ "Ob.2 33. _ • .. ------176.2 ~c~ -x TRANS 5 fP~ 28b19. 16.e 389.5 32. • • 19 TABLE 2-III.- SM RCS PROPELLANT BUDGET _ Concluded M TI l EVlNT SIC it r SM-RCS SP1-RCS S/l1- ( t~ H ) (LaS) USEO UF1 ~5 (LBS) (LBS) LEFT ~-- - ~------~ ------I. ., • 176.7 () k I E.t~ T FOR PTc 28b18. _J8B., u. 3AXl5 0.2 nEG/S!:.C ••

176.7 ~OLL L5TAt:lLISH 2ett18. .2 381.7 32.

- - ~

17t).7 PIT eli AND Y Ail CL)IJTROL 2860<1. 9.0 ~JL9L7 31..

- 187.0 PSl IMIJ ALIGN 28007, 1 • !:I 378,2 31 • - - - -

IA/.Ll TV ALLOwANCE 28603. '+.0 _31'i.L ~

18 H. J 11 I i) C[) Uf~ SE COR ~ ECTIU~1 NO 7 28602. 1.S 372.6 3 I ,

__ w_ t.lNVW TO a.uWN ATT ~ - - • 18 H • :\ All HOLD .s OE.~ l>B PGNCS 28602. ,3 312, .. 31 , - --- 18ti.3 [)C.L VEL .. NOM ZI;.RO 28002. • 0 372 ... 31 •

-- _._-- -~- 189.0 I"!l2 IMU ALIGN 28600. 1,6 3ZD, a Jo.

189.0 t"ANEUVER TO ~EENTRY ATTITUDE 28599. I• ~ 3'9.3 30.

189.0 ATTITUDE HOLD o.z OEG DB ScS 28598. .8 3Ila.!;, 30.

- -- 18Y.U PITCH TO AC(./UIRE HOKIZON 28597. .7 367,8 30. I------I---- • 189.U YA~ "IS DEb 28596, .7 361... 2 30. 189.0 ATT HOLD .s DEu DB PGNCS 28596. ... 3 ••• 8 30. - ~---- t------

1<11.6 CHISM SEPARATION 1611J, ~..J.s ls..a. '\ '1'1_ DlLTA VEL-3 FPS

• ~xcept for mission duty cycle mixture ratio shift, (table 2-11), this propellant is usable. 12201200 100 [otall -e 1000 0'> 80 C c n; "E QJ E ~OO u QJ ...... QJ "E C- 60 ~ 0'> C QJ .0, C- 600 0 ~ .... O'> C- -0 VI .... ~ 40 U 0 a::: .c c 1\) ~ 0 VI o QJ .c I ~ 20 r V'l I I I Undock I I ::::> 200 SPS evasive maneuver MCC-3 LOI-l TEl I I I I Dock I I I o 0 I I 0 20 40 60 ~O 100 120 140 11)0 180 200 220 240 Ground elapsed time, hr

(al Total.

Figure t.. ~. SM RCS propellant profile.

• • • • • ••• • • ~5 I ~: [ 100~h _ ~. c: c: c ~ C1> 200 U ~ ~ 60 C 0, ..!!! 160 c: ~ ...a tV"" 0. "" -=~ V'> 120 40 u atV 0::: .0 c: :E 0 V'> eo :c'" 21H,1 I tV I I Undock I I =>'" SPS evasive maneuver MCC-3 LOI-l TEl «I I Dock I I I I I I 0 0

--_.-_. - I I\) . , I\) "[ "ore ~ ': eo ""c: : c: ;; C E 200 uC1> C1> ...... 8. 60 C 0, tV 160 c: 8- '0. ...a tV 0. "C..."" VI 120 tV «l I U a ~ .0 i 0:: c: -, :E 0 VI 80 ~ .- .0 tV 20 =>'" «I

o L o 0 20 «I 60 SO 100 120 1«1 160 ISO 200 220 2«1 Ground elapsed lime, hr

Ie) Quads Band D.

Figure 2.1. - Concluded.

• • • • • • • 23 3.0 CSM - ACTIVE RESCUE OF LM

The critical consumable for a CSM-active rescue of a disabled 1M is the SM RCS propellant. The rescue situation analyzed here is one in which the CSM must begin rescue with the insertion burn. The 6V re­ • quired from the SPS (320.5 fps) is well within the 900 fps mission flexibility 6V available (section 4.0: The SPS Analysis).

The minimum quantity of SM ReS propellant remaining at undocking for initiation of the nominal LM-active rendezvous must be sufficient to provide for a CSM-active rescue of a nonpropulsive 1M and for the transearth phase of the mission. Two rescue situations are considered here.

1. The LM is unable to perform insertion, CSI, CDR, and TPI, but the malfunction does not preclude use of the LM RCS for the braking phase.

2. Same as above, but the LM is also unable to perform the braking.

Based on an appraisal of the likelihood of various failure modes, it is felt that case II is unduly conservative, and it has been recom­ mended that case I be the redline requirement for the decision of • whether or not to commit to the rendezvous. Case II is included for reference purposes.

The propellant budget for the CSM support of the nominal 1M-active rendezvous has been increased considerably over the budget of reference 6. This increase reflects Apollo 9 postflight results and Apollo 10 simulator data. If a CSM rescue occurs, this propellant would be avail­ able for those activities common to the nominal CSM support of the 1M-active rendezvous and the CSM-active rescue.

Above the nominal rendezvous usage, the propellant quantities listed in table 3-1 for case I must be reserved for the rescue situation. Because the total allocation for the nominal CSM support of the 1M-active rendezvous is 161.3 pounds (table 2-111, undock through dock) with an extra allocation for the rescue of 190.2 pounds (table 3-1, case I), the total propellant available for the rescue rende~vuus is 351.5 pounds (of ~Thich 161.3 Ib are included in the nominal bUdget) with the LM doing • the braking. The minimum SM RCS propellant requirements for rescue and safe re­ turn are summarized in tables 3-11 and 3-111. Case I is recommended to establish a mission redline. It is based on a rescue that includes 1M-active braking followed by an immediate return to earth (deleting sub­ • sequent lunar orbit activities and nonessential transearth TV allocations). 24 • Case II shows the margin for the 1M-active braking followed by comple­ tion of the nominal mission. Case III is based on the CSM braking with immediate return. Case IV shows the CSM braking completion of the nominal mission. As shown in table 3-111, all but case IV show a posi­ tive margin at undock. •

• • 25

TABLE 3-1.- CSM ACTIVE RESCUE OF NONPROPULSIVE 1M, SM RCS USAGE ABOVE NOMINAL CSM SUPPORT OF LM-ACTIVE RENDEZVOUS

Propellant used Propellant used • for Case I for Case II (LM braking) , (CSM braking) , lb lb RCS usage for SPS insertion burn Ullage, four jets, 10 sec plus 2 sec overlap 17.3 Same as case I lVJ.oment control 2.0

RCS usage for SPS CSI Ullage 17.3 Moment control 2.0 Same as a Trim 10.4 case I

RCS usage for SPS CDR Ullage 17·3 • Same as Moment control 2.0 a case I Trim 13.0

RCS usage for SPS TPI Ullage 17.3 Moment control 2.0 Same as a case I Trim 10.4

Subtotal 111.0 111.0

Braking -- 150 b MCC's and LOS control 69.2 69.2

Mixture ratio allowance 10.0 10.0 - • Total 190.2 340.2

~eference 7. • bReference 8. 26 • TABLE 3-11.- MINIMUM SM RCS PROPELLANT

REQUIRED FOR RESCUE AND RETURN [Case I, LM braking] • Mission phase Minimum propellant required, lb

Undock 581.2

Postinsertion 497 .2

Post-CSI 461.4

Post-CDH 429.1

Post-TPI 384.6 Postdocking 229.7 TEl 166.8 CM/SM separation O· •

TABLE 3-111.- SM RCS MARGIN AT UNDOCKING

WITH CSM-ACTIVE RESCUE

Case Active vehicle Mission activities Propellant margin no. for braking post-rendezvous at undock, lb

I 1M Immediate return 209.0

II 1M Nominal mission 130.7 III CSM Immediate return 59.0 IV CSM Nominal mission -19.3 • • • 27 4.0 THE SPS ANALYSIS

The budget presented in table 4-1 is for a May 18 launch, 72° launch aximuth, first opportunity injection, and fast earth return. The assumptions used to prepare this budget are presented in table 4-11. • Engine performance characteristics are taken from reference 1, and the bV requirements are taken from reference 9.

Note that the mission flexibility bV of 900 fps has been used in addition to the fast return. In real time, however, it is highly likely that a slower return would be performed if the 900 fps had been used prior to TEl (e.g., for 1M rescue). Hence, the margin of 762 pounds shown in table 4-1 assumes both a fast return and use of the 900 fps contingency bY . •

• • 28 • • TABLE 4-1.- SPS PROPELLANT SUMMARY

, Item Propellant Propellant required, Ib remaining, Ib a Loaded -- 40 808.7 a Trapped and unavailable 441.4 40 367.3 Outage 78.5 40 288.8 Un-oalance meter bias 100.0 40 188.8 A-raila-Dle for !:::.V -- 40 188.8 Required for !:::.V • b TLMC (120 fps) 1139·7 39 049.1 1,01-1 (2978.35 fps) 23650.8 15 398.3 JJH-2 (138.5 fps) 952·9 14 4!+~~.4 TEI C(3622.5 fps) 11101.4 3 )44.0 r~ominal remaining 3 544 .c Mission flexibility !:::.V (900 fps) 2234.1 1 10S'·9 Dispersions (- 5J) 348.4 761.5 Propellant margin 761.5

~eference 3. b Includes 19.7 fps for evasive burn and 57.0 fps for nominal MCC-l. • cApproximately 9100 Ib are required for I-day later return. • • 29 TABLE 4-11.- ASSUMPTIONS FOR THE SPS ANALYSIS

1. Launch was on May 18, 1969 at a 72° launch azimuth with a first opportunity injection and a fast earth return. • 2. Each SPS engine start used 14.4 lb of propellant in non­ propulsive losses.

3. Spacecraft weight:

CM, Ib . 12 276.8

SM, Ib 10 641.8

SLA ring, Ib 98.0

Tanked SPS, Ib 40 606.4

LM (unmanned), lb. 30 848.8

Spacecraft at TLC, lb.. 94 471. 8 • 4. SM RCS, EPS, and ECS weight losses Mission Period

Lift-off to evasive maneuver. 97.9

Evasive maneuver to MCC-l 53.4

MCC-l to LOI-l. 404.8

L01-1 to LOI-2. 26.3

.. LOI-2 to TEL . 231.8 5. CM equipment jettisoned with the ascent stage in lunar orbit • was 193.4 lb. • 30 •

5.0 THE 1M RCS PROPELLANT ANALYSIS

TABLE 5-1.- GROUND RULES AND ASSUMPTIONS • 1. Data for the 1M RCS propellant re~uirements were obtained from reference 2.

2. All orientation maneuvers were assumed to be made at 2.0 deg/sec.

3. All orientation maneuvers were assumed to be three-axis maneuvers.

4. Line of sight with the CSM was assumed to be maintained in the AGS minimum impulse mode.

TABLE 5-11.- 1M Res PROPELLANT SUMMARY

Propellant, Ib Description Re~uired Remaining • Loaded 633.0

Trapped 40.6

Gaging inaccuracy and loading tolerance 39.5

Mixture ratio uncertainty 17.0

Usable 535.9

Nominal mission requirement 318.2 Nominal remaining 217.7 • • • 31

• TABLE 5-111.- ONBOARD READING OF RCS PROPELLANT REMAINING Event Percentage of propellant Percentage of propellant remaining in system A remaining in system B Post-DOl 96 94 Postphasing 93 89 Postinsertion 85 82

Post-CSI 79 75

Post-CDR 75 71 Post-TPI 69 65 Postbraking 54 51 • Postdocking 51 47

• •

• ;; TABLE 5-IV.- LM RCS PROPELLANT BUDGET - Continued TIME EVENT TI HE SIC WT UI lV l,.. HRS r~ (lBSI RCS ReS Res USED lEFT lEFT (lBSI (lOS) ( & ) • lC~O 46 ATT nUDE HOLD 30314. .5 56~ .6 89. 1CO 46 YA,~ 30313. 1.5 560.1 88.

100 4,., PITCH 30311. 1.8 558.3 83.

lCO 50 RR LOCK ON 30307. 3.9 55',.5 58.

1 cr: 50 MAINTt.rr~ RR TRACKING 30306. .7 553.8 87.

lei 0 INU REALIGN STAR 1 30302. 3.9 549.9 87.

1 G1 0 H1U REALIGN ST tlR 2 302119. 3.9 546.1 86.

lOl- a CGAS (t.L i BR IH ION 30295. 3.8 542.2 86.

J0' 1:) RR LOCK ON 30291. 3.8 538.4 85.

1n 10 MAINTAIN RR T~ACK INC 30289. 2.0 536.3 85. • 102 10 RR LOCK ON 30285. 3.8 532.5 84. 102 10 MAINTAIN RR TRACKING 30784. 1 • It 53l.1 84.

102 33 ORIENT FOR STAGING 30280. 3.9 527.3 83.

102 "33 STAGING 8378. .e 527.3 83.

10L 33 START STAGING 8377. 1.9 525.4 '33.

102 33 C01~PLETE STAG I NG 8375. 1.9 523.6 8'2-' . 1C2 '37 j,\NVR TO BURN ATT I TUDE 8374. .9 522.7 '33.

lei 37 ATTITUDE HOLD 8372. 2.2 520.5 82.

102 43 2 JET ULLAGf 8369. 2.8 517.7 82.

.,.. ... , .. r·~ctl T ~l C t: D T T nI.l .I.vt.: .. = [NT CONTR.OL ... I'" """ r-" , & ... ~ I 'I BURN 8197. .9 516.8 8Z";' • 1.02 43 NULL CVEL lFP S XA XI S 8196. .9 515.9 82. 102 43 NULL DVEL lFP S YA XI S 8195. 1.1 514.8 81.

le 2 43 NULL eVEl lFPS lA XIS 9193. 1.0 513.7 8).•

Ifl2 43 YAW 81Q3. • 3 513.t. 81 • • 1C' 2 43 PITCH 8193. • 2 513.2 ''1 • 34~

TABLE 5-IV.- LM RCS PROPELLANT BUDGET - Continued • TIt-lE EVENT TITLE SiC WT LM LtJ L/ll HRS M ( LBS) ReS RCS RCS USED LEFT LEFT (LBS) (L BS) ( f. )

1~2 43 ATTITUDE HOLD 8191. 2.3 510.9 81. n, l02 50 IMU REi'LIGN STAR 1 8190. •a SiO.O (J.I.. • Ie? 50 Ito'lJ REALIGN STAR 2 8189. .8 509.2 80.

1 C2 50 I/o1U REALIGN STAR 3 8188. • 8 508.3 80.

103 0 RR LOCK ON 8187. .8 507.5 80.

103 a MAINTAIN RR TRACKING 8180. 6.8 500.7 79.

103 27 I.1NVR TO BURN ATT lTUDE 8180. .8 499.~ 19. lC327 ATT lTUDE HOLD 8179. .Q 499.0 19.

)03 33 CSI RCS BURN 81. 33. 14.2 484.7 77.

103 33 ATT nUDE HOLD 8131. 2.3 482.4 76.

!03 37 RR LOCK ON 8130. .8 481.5 76. 1(\3 37 MAINTAIN RR TRACKING 8125. 4.6 417 .0 15. • 104 ! PLANE CHANGE 8123. 2.0 415.0 75. 104 5 MAINTAIN RR TRACKING 811t. 11.4 463.6 73.

104 25 ~'NVR TO BURN ATTITUDE 8111. .8 462.7 13.

104 25 ATTITUDE HOLD 8109. 2.2 460.5 73.

104 31 C()H +Z BURN 8105. 3.4 457.1 12.

1C4 31 ATT nUDE HrJlD 8103. 2.4 4S4.7 72.

104 35 MAINTAIN LCJS 8095. 8.0 446.7 71-0.- 105 <; TPI Res BURN 8070. 24.7 422..0 67. lC~ 9 ATT (TUDE HIJLD 8068. 2.4 41S.7 66. IO!:> 12 OR lENT TO ATTl TUDE 8067. .8 418.8 66. • 105 12 MAINTAIN LOS S063. 4.6 414.3 05. le5 I.e Mec AND BRAKING 8013. 49.1 365.1 58. 105 40 ATTITUI)E HGLD 8011. 2.4 3.2.8 57. • • 35' TABLE 5-IV.- LM RCS PROPELLANT BUDGET - Concluded

T It4E EVENT TITLE SIC WT LM Lr-' LM HS M (LBS) RCS RCS ReS USED LEFT LEFT • (LBS) (LBS) u:.) 1C5 40 HTITUDE MNVRS AND lCS CONTROL 7985. 26.0 336.8 53.

lC5 55 FOR FLYING 7913 • 12.0 324.8 51. • 106 70 U' CO" TROL DURING CSI-l ACTIVE 0 79 ~3. 10.0 314.8 50. OCK.

lC7 C TRANSFER EQP TO U1 8243. .0 314.8 50.

107

lea 39 APS BURN TO DEPLE. ')47'5. .0 314.8 50. •

• • 633 100 I ', I

600 -i 90

500

400

c ~ -Q) ~ Q) "if Co "2 -0- Q) 50 .9 -0 iij 300 .9'" 15 iij I- VI 15 f-C ,_ I- L ., '~l'~1E,,!i±"'- 0'\ [' !--i-t-ilf-+ ,,:r,;;.I:;;j::Ti:f:" ~@,;tt: ... "~"b~ p ~ -~~.- "-- j t- 1:-- r= ',::£*=.tT. '~t?: ..I 30 H II 1 i ~iL ~·'If:lc;!~'I>kJ~.:L.I~l2. 11 1 I, ~d~~__ ~ lib "c±:,Y;' +tff;t~r~ ,,;;t,"~'L, :i:" ; :-=--i'=:-i= tdmtlff1''tl¥., .••....:.::u.:-. '*i.~~ ···~t; tt.:;.g;.:E.= 100 ID,. .f: =~!'".I:C. 10 .. I' j' 1"-'

I--.,--\- ~--r-;--t-±~ L o oL.....:.L--'-.L....:--l..--'-...L-:....:...J.._....L---i--'---l.....-Ji-:..--L.._L-:..:-.J..c=:f=.;J"'--'--=""'-L..-'-'c.....L...J..;...=...I====~====="""-'===== 16 97 98 99 100 101 102 103 104 105 106 107 1m 109 110 Ground el~sed time, hr

Figure 5-1. - LM ReS propellant profile. • • • • • • 37

6.0 THE DPS ANALYSIS

The assumptions for the DPS analysis are presented in table 6-r, and the DPS propellant requirements are shown in table 6-11. Propellant loads are taken from reference 3. Burn requirements reflect the following thrust profiles: DOl performed at 10 percent thrust for 15 seconds and • at 40 percent thrust for 14.9 seconds; phasing performed at 10 percent thrust for 26 seconds and at F.T.P. for 19.3 seconds. There is a propellant margin of 16 865 pounds.

TABLE 6-1.- ASSUMPTIONS FOR THE DPS ANALYSIS

1. Mixture ratio = 1.597 ± 0.0141 (ref. 10).

2. Propellant cost for engine and valve operation is 8.6 Ib per engine start.

3. Buildup and tailoff cost is 19.15 Ib of propellant per burn.

4. Propellant flow rates for various throttle settings were taken from reference 2.

TABLE 6-11.- DPS PROPELLANT SUMMARY

Propellant Propellant • required, Ib remaining, Ib a Loaded 18 264.2 a Trapped 198.2 18 066.0

30 outage 125.2 17 940.8

Available for b,V 17 940.8 b Required for b,V c DOl, 71.1 fps, 29.9 sec 308.2 17 632.6 d Phasing, 195.6 fps, 45.3 sec 767.8 16 864.8

Propellant margin 16 864.8

~eference 3.

bIncludes nonpropu1Slve . usage and buildup/tailoff usage. c • 15 seconds at 10% thrust and 14.9 seconds at 40% thrust. d 26 seconds at 10% thrust and 19.3 seconds at F.T.P. • 38 • 7.0 THE APS ANALYSIS

The assumptions for the APS analysis are presented in table 7-I. The APS propellant budget is presented in table 7-II. The data for usable propellant were taken from reference 3 and assume a 50 percent APS propellant loading. The CSI was performed with RCS/APS inter­ connect for 22 seconds. Because of the APS burn to depletion, there is a zero APS propellant margin. •

TABLE 7-I.- ASSUMPTIONS FOR THE APS ANALYSIS

1. I = 308.5 ± 3.6 seconds (ref. 2). sp 2. APS propellant tanks are 50% loaded.

3. Ascent stage at earth lift-off weighs 7959 Ib (unmanned).

4. LM RCS and ascent stage EECOM weight loss is 122.6 Ib prior to insertion.

5. Mixture ratio = 1.587 ± 0.018 (ref. 2).

6. Engine and valve operation uses 3.6 Ib of propellant per APS burn. TABLE 7-II.- APS PROPELLANT SUMMARY • Item Propellant Propellant required, Ib remaining, Ib a Loaded 2631.7

Trappedb 48.9 2582.8

Available for tJ.V 2582.8

Required for tJ.V Insertion, 206.9 fps, 15.4 sec 174.8 2408.0 CSI, 50.3 fps, 22 sec through interconnect 32.3 2375.7 Burn to depletion 2375.7 0

Propellant margin 0 ~eference 3. • bDoes not include trapped in feed lines and heat exchanger, which is considered usable for depletion burn. • ~ 39

8.0 THE CSM EPS ANALYSIS

The power levels of each component were obtained from reference 1; the cryogenic loading data were obtained from reference 3. Cislunar ~ heater cyclic rates were used for TLC and TEC.

The EPS profile presented in figure 8-1 indicates that no serious problems exist. Because the May 18 mission is only 192 hours, there are ample cryogenics (figs. 8-2 and 8-3) for mission completion. However, a worst case tank failure could occur at TEl minus 18 hours (REV 24) which would increase the time on one tank. REV 24 was deter­ mined to be the worst case point because at this point there is not enough SPS ~V available to return to earth earlier than the nominal 192 hours and still land in the primary landing area. Therefore, a nominal power-down of the spacecraft to 55 amperes for TEC insures a safe return to earth. The total DC energy accumulated throughout the mission is presented in figure 8-4. The CM bus voltage profile is presented in figure 8-5 and indicates that no voltage limits are vio­ lated.

The metabolic O requirements were altered to 0.197 It/hr, rather 2 ~ than 0.23 Ib/hr, based on postflight analyses of Apollo 7 and 8. This alteration corresponds to approximately 400 Btu/hr as compared with 467 Btu/hr.

The 45 A-h rating mentioned in assumption 3 also was based on postflight testing of the entry and postlanding batteries.

~

~ 40

8-I.- ASSUMPTIONS FOR' THE CSM EPS ANALYSIS • ------]. The system was assumed to opei'atE~ witb three fuel celli> and t'y/o j nv c:J:ters . 2. '1'1Ic fuel cells were pU)'L~e(l ev(;]'y 900 A-h. • 3. 'J'hree entry and postlanding batteries were com;idcrcrl nvailaiJle to Bupply the total spacecraft power required for entry, parachut.e descent aHa postlHildinc; time. Bach battery was assumed to have a 40 A-h capacity until splashdown, at which time the caj,acity was uprated to 45 A-h.

4. 'J\ro batteries were considered to be in parallel with the fuel cells during ascent and for each SPS rr,aneuver.

5. No cryoGenic venting ....IRS assumed. 'I'he Ii:PS hJ'drogen consumption rate (lb/11r) ::: 0.00257 x I ' G. rc 'r. 'l'he EPS oxygen consumption rate (lb/hr) = 7.936 x fIr")' L. 8. An SPS evasive m::l.lleuver find h;o S1'S midcourse correctiO!1S were assumed. 9. Six battETy eharces were assur.,ed: three on battery A and three 0:'1 b3.ttery B. • 10. Five perc:ent uncertainty ir, the EPS profile is included in the cryogenic reqnirements.

• • • 41

• TABLE 8-11.- CRYOGENIC SUMMARY Description Required Remaining Required Remaining

Loaded (two tanks) 58.60 660.20

Residual 2.32 56.28 13.0 647.20

Instrumentation error 1.53 54.75 17.5 629.70

Available for mission planning 54.75 629.70 Prelaunch requirements

t minus 28 hr to t minus 12 hr at load of 10.8 amperes .45 3.59 626.11 Vent allowance (H = 0.055 lb/hr), 2 (02 = 0.65 lb/hr) .88 53.42 10.40 615.71 • t minus 12 hr to t minus 9 hr at load of 60 amperes .46 3.67 612.04 t minus 9 hr to t minus 2 hr (includes 6 hr hold) at load of 45 amperes 1.50 51.46 11.93 600.11

Crew ingress at t minus 3 hr (0.196 lb/hr) .59 599.52

t minus 2 hr at 75 amperes .39 51.07 3.06 596.46 Mission requirements

EPS 36.12 260.86 335.60

ECS (includes CSM LM requirements) 95.62 239.98 Uncertainties

- ", , "") , 1. , "':) ",v"") 5% uncertainty in EPS .L.O.L .L.) • ..LAot ..L-J.vt"- • Launch window 4.5 hr .87 12.27 7.80 219.16 Margin 12.27 219.16 • 150

140

130

120

". E 110 C'Cl T~-rr C If! ~ - . ~ Ii' :> , : u t - --+_- ---t---- 100 I , 1ii.... -I u i Cl> u +:­ ~ I\) ". CXl ~ I-

i- ' , fLs --i_..--- "'IW, 1- - -- -r - ,i - l.ILLL-LJ h1JLu- f--- 70 LJLLU I, - 1- ~--I , I 60

50 I I , • « t I , , ,] J I I , I o 20 40 60 W ~ m ~ ~ ~ ~ m ~ ~ 280 Ground elapsed time, hr

Figure 8-1. - Talal CSM spacecraft current profile. • • • • • • • • • •

28.14 ~ IOJ 28

26 14~ ~J 80 22

~~ 70 18 -c 60 :9 16 '"u ~ - •.. ~---i r= i·, ! 8''" a, c ~,O __~ l---,_ I • ~ 14 .~ , I~ .c: C> oF ~ ---L- I, I :c'" l~: \>I '" 12 .§ i . ~'" c 0 /10 10

30 8 :~ ,~O 10 2

0 0 20 40 60 80 100 120 140 160 180 200 220 240 260 Grou nd elapsed time, ty-

Figure 8-2.- Hydrogen remaining per tank, CSM. -- --I _ l -F i -j---- -F -:----+- I \

Instrumentation error

20 40 60 80 100 120 140 160 180 200 220 240 260 Ground elapsed time. hr

Figure 8-3. - OXygen remaining per tank, CSM.

• • • • • i • o ll-\f 'sJnoll aJOOWV • I

I 34

33

32

31 i --~------30 ~ (5 > Q; +... ~ 29 ---I-- (5 > ! I +:­ 0\ '":> "" r----- ~ .j 28 ,

i--· -- II f,

26 --I !

25

24 160 ISO 200 220 240 260 280 0 20 40 60 80 100 120 140 Ground elapsed time, hr

Figure 8-5. - eM bus voltage. • • • • • 47

• 9·0 THE CSM ECS ANALYSIS

TABLE 9-1.- ASSUMPTIONS USED FOR THE ECS ANALYSIS

1. Average metabolic O rate was as follows. 2 • a. One man, lb/hr. 0.066 b. Two men, lb/hr. 0.131

c. Three men, lb/hr. 0.197

2. Cabin leakage rate was 0.1 lb/hr.

3. Tunnel leakage rate was 0.05 lb/hr.

4. 1M leakage rate was 0.1 lb/hr.

5. Waste management vent flows O at 0.85 lb/hr. 2 6. H 0 tank bleed rate was 0.032 lb/hr. 2 7. Waste management was 0.024 lb/hr for the first 96 hours and was 0.051 lb/hr from 96 hours to end of mission. • 8. Cabin temperature control was set at 70°F. 9. Water produced by the LIOH-C0 reaction was 0.108 lb/hr. 2 10. Crew water usage was 18.96 lb/day.

11. Water lost by crew micturition was 2.64 lb/day per man.

12. Waste tank water was dumped from 85% of full capacity to 25% of full capacity when the waste tank quantity reached 85% of full capacity.

13. Water tank capacities were the following.

Potable, lb. 40

Waste, lb. 60 • 14. Water tank quantities at lift-off were the following. Potable, lb. 21.2 • Waste, lb. . 45.0 48

TABLE 9-1.- ASSUMPTIONS USED FOR THE ECS ANALYSIS - Continued •

15. The water evaporator boiling efficiency was 100%.

16. The average glycol flow rate was approximately 225 Ib!hr.

17. The heat loads of the cold-plated equipment were split so that 88% of the heat load went to the glycol, 9% was lost through the • structure, and 3% went to the cabin.

18. The heat loads of the noncold-plated equipment were split so that 50% of the heat load went to the cabin and 50% was lost through the structure.

TABLE 9-11.- ECS OXYGEN REQUIREMENTS

I-- Oxygen .6t, Oxygen I Mission time, hr consumption rate, hr requirements, I Ib/hr Ib

o - 3·2 1.203 3·2 3.85 3.2 - 4.5 ·503 1.3 .65 4.5 - 8.0 1·353 3·5 4.73 • 8.0 - 95·92 .503 87.92 44.22 95·92 - 106. It .215 10.48 2.25 106.4 - 107·7 ·530 1.3 .69 107.( - 192.0 .380 84.3 32.03

IM and tunnel pressurization at 3 hr 25 min 6·9 Tunnel pressurization at 106.4 hr ·3 Total ECS 02 requirement, Ib 95.62 • • • • • • •

60 ----··-~l· - ._.. __ .. -.. "--'-'---'--',-- .-.,. -----:--._------, I . i i! l I . --! . , ~ Solar absorptivity = 0.35 i '~_ 4 '-'--y---'-: .- -j" .-.. -··"i -----·T -,- ...... '.' .... -·--r···· -", L _I'I. i.' : +_1" ,..i •. I I ...... I _~_. .. ~_._,---~' .... --'-I .._.-l..._~_-+_.-,-_~I I. .-~ I 50 l .-..... ,' : . L. t ... !. _l! .- L ·-1 . !, ,: I I ! : . i -+--r'i-'~-r-'t --t--r-~--1-'-iJ---r--t····;-_·-i- .. ~­ 'T ---. -+ .. r'- .. TOo .. __ ._~t-~.LJ~J-

40 ,. tIt I 1 1 :E. ~ .~. _!- "1' -- L_ ~ 1'· ..._,' - l t' ;-- i-.: -' -' -- I' i I r' I -1 I I I I' I I \ z;... -"~-"l--~' ·l--··---~-· L-1"~1 ~-"I"--- -.j---~---_.- -_·t-·-t--T +-f- : __e. ,.. .. 1__.·__ ·1· :;:; I!, :I J I ,,' ,,, I I ~ I c I' II '-_..-I 1-- - ._- .J. l-:---I·-f'!-- '- l' '-'j'- -- - roo' 1"" :::J '" I 1 ;. I 1 I \ : I. ii' :; I : I ! C" --'-J.--:-r---.-.~ --r~-t-. ----- ...}II-+-...... - ...... __ ..L.. _~ +----~-·,-~·--·r---· -- _·t--- ~ ~t t---. 30 I·: I I I I I' ,I 1 I I: 1 c _____ <- __ t- _ \, I l I I I It: j I I •I 1 .:g ' c.' J" -. ,- r - .. - '- --I : .- , --- L, ... , ~ :. I:! Ii, : 1 ' I ! I I I I I' I j <1) 1 ---f··_~--+-_·-t_ r=.L ',' -'.'- .J.----.~-.r--J.- --f----T .0 - --_. ------.l--"---r-' ,-. r ... "-"1- ._-_. ;-_ .. -'1'-- ---. i " ! 1 I I 1 I, ' .j:'" .... ,. ,-' t· ....-.'- --I! --~-I- -t~- 1-. ,":!, .". -I -rooiI'too-I-' _l - _. L·_I_ ,- TOO '"0 t- \0 a. J -t-.:.... . I• J I! L I I· I'! 1 L I I I 20 r !---+-,. :T---i----j-;-,'"',-"!,' -'-j --'I-r l'-'--l--"--r--'-' r-- --j-- ---;-- ._,--.. ,. r I c +. f-·, .,. ,-- -/ - -I j- -t- too - '-., t~:-, '--too ·_-t _. =1 Ii' lit itt I' f I j i !, I I:' I :-=l----t- -+-t'--. -- -t-l- ---j- _~ L_,"- :-.....:... --.; '-:-'1- ..i'-T---:- - +.. ~---t-r-- 1--'-+.-- ~-r---I-- ~ -". ------r..··..:·- 'j I I L ,I ! II,' I !" I i I' I : I: --; I ,.. -,-_. 1'- -I' t-~ I--- ,- , ,- . t - .. I' r . i ,.- t· I - I -. jl It· "I~ I I' 1" ~L ,. I' 1 10 ;. -.'i'-,- .----r-;.--- ....., --I - -!--- ._-i--'-- i II +- ._.....;_._.. -.. __-r--;- [--"---1--'-'-+ . --- II I I 1 ~ • .! I I" I I, I. '1 ---j- -- . I. . i I t - - ,--- I ~._-~.._...... I - - c' 1 - . . ,. t . - _~-_.-.. - -, -.~_.. I .;~ .--,~-- -. ----c-- --' ,- -i, -- -!--+_ .. j-- +---1- .I.-f--1--- _.1 _I- ···--J-·-f'.. - J... ..: ----- r'.. : .. . .l_. --; .... -- ... -J .1~ I" I I I Ii" I I I':' " ------j- I I J ...r-'~---';"-I'''r ~ c.. ~ .,.' I· I '- I "'1 ,I II 'i I I:.:: ,. I I i 1 , o 25 50 75 100 125 150 175 200 225 Time, hr

Figure 9-1.- Potable water tank quantities as a function of mission time. 60 I I ! Solar absorptivity =0.35 : - J.._-_ .. ! ...-._- ~-. -- .._- l ~-- .... - --_·t-,,:: t ... L ~I~·_-~j _.~ _. I .l __ I 50 ---t--.. ~ __ L ~ __ .:.__ ~

f--,-.-r-..:' -7-·-i-··: '~ .. t· ':-'i-~- ~ -·r.. 1--r'- -.. 40 ;.+-i-H---.~------~--~-.- II . iii :e f·· -I .. , -!I , , QJ , : __ :. ,1._... ., U t: l1:l ~ 30 ~ t: .lS , .. \ 2 +- L .._ i VI Vl l1:l f- -~'- --- I :-~ o ~ _ f - I ,. f --~ -1--~ 20 rL' i .--+--! !:~i ! h _!L~l ' j_·,-.,-t--+- , __ \ _." I I ___ L__~ __L' i - --1'--' 10 , '~J I:I --.._+----t---.-- -- j , __ +_•. 1 __ ! ,. i _. j' i_ -- i_ .,.---I -,'-"

o 25 50 75 100 125 150 175 200 225 Time, hr

Figure 9-2.- Waste water tank quantities as a function of mission time. • • • • • ••• • •

350 r---'-" --,,---- -,------.-----,-----r-- ---, --"--'1'-' ------.. - -. ------

,i i i Solar absorptivity =0.35

300 r~ i-;-i-:~~:1··t· ·i·~roJ: -.+~~L!· .~ .• ~ ... . I , , , , , - _L~--~--"-.L.----;-----j----!-- -i---· ;----t-- i --:--- i --j

!, Ii "-I I ~ i, It i' 1I - f ' I r -;' - - t - p":'-- ,,I, t- -, ,- " , I 250 t- ---1- ---.L ...... --~-_._--j.---- "':""'-(..-j- .,.--t--L- '--+--:"-1'- ~-- ~_-~--I -- -: - --~ - --'1 I' j I, J I, I' I 1 I -~ ~ I--t--- ,_I. 'i1- 1-" --- -+--r r, -i -(I 'I I" I ' :e ------~----T-i I, H-±T-r----~-I--'---l~--f--, !~---l- .. -J----t---,~--+--~ '0 2 -- +--1- --1 ~--t--I----'-I-' - r -I .- t 1----r-- j i ," ~- ...-; : ',' .J , I ~ i ,I ,. I L' I I I' I' I Q) 200 !-~..;:--~-+- -~ t' --I-~r----r----t'-- <: --;- ..-;------i - '-----1-- ---. Q) ---8,-_._-,~- ~_ ~-,-t------l- ·t--,--I--- ,--- _.- _._l __ .. '" ~-,' ~-j.." L-'----~i-I I" I, I; I ' I~- I I t +...L..-h-...: .. _-,,--1-._. -+-- '.-I --'--'-- "--,.--....--j_ .. -....-... -+----t".--.·---j 'iii ;: -t-L --,---.'-; --: i - -' -·1.;1 ii-i'· ~---t---fLji f--I-( i :---f ~'--"j' Q) + ------L-..-. L__• i· -,- - c I_....L_ ' --l_ .-...;.l.. -J-_-,-.' -----~. ~ 150 t L_._ L_;_L __ .,.-_-'_'-.-. ·t---·- \.J1 I II ,', I I•,I:' I I.I C1I I 'I ; 'I' : r-' :3 -:-I~ -+/:-- - ! ---il- .' .• C 'j'- -;-!--"---j--t--:-l "- -·-t-+·,-7- j -, 5 ~-L-+-.-'--.+---1---'-.-.-..t----~------.. -. _,-+-_.-l- __. ---1---,,- --"- --. _. - ._~- .. - ----'.-----+---.-+-;_-_.-- u 'j_L+i !--~cL:~ -j-:r- ~---I-r- !,)-~--+--:--; , 11-1 ·l 100 ,-t- '7---i,---'-+~ ~---.. --1----.--1---~--~.--·.·------+-~-+---+-- ---r-+-+-:---J--i. r----+.i...~--I- -~: ,-~ -J.. 'I I -, ; '!-A--1- f+ +-':--:, r i j -; J+ I .. -~: +---1--+' ------/- -,--j-+-'-I fc- .• I---~L-~·-i----+--J_- ..t'---,-.L-:-j---f---,' ", 'I', 'I I , I 1,", -- .-- I' , - .L.. -. ~ - : -- t -- f f I -, ..i - it' -, --' I " I . /:' I I t J r J ' l 50 ~~-i---I1- -l----~·-I-- ~- --I -- --- r~--:-I~-- --~---r - :~ - r--r------~ -r- - --! I d~~4f+-,-:-,-!.- .1+ f -.. j~ ! . -+~J;'t .....J e--,-·- '-. r --,- -1·--1.-' _,-_..L .- - 1-" --_I- t -+----. -! , - I t! ! I! I I l ! r I I o 25 50 75 100 125 150 175 200 Time, hr

Figure 9-3.- CSM water generated as a function of mission time. 60

50

~ .. 40 "'0 ....Q) III ~ a. III > ...Q) ....Q) 30 III ;;: Q) > .1-_~ -~--~-+_~-t--+----r]tl--'" ---+----t -T-'-'---t------+---+"-+ ---r "-t---I-~ V1 :;:; r-l -0 1 " - :; ., "I -. - -"' I - . !; :" I I! I. i . "I\) III I :> E :> 20 u

10

o 25 50 75 100 125 150 175 200 225 Time, hr

Figure 9-4.- CSM water evaporated for cooling as a function of mission time. • • • • • • • • • •

240 -~---l--'~'--r_,~.J=---~T·-~-·~L-J-~'-=-C:·--·--_j~--r--·f~-·-r---~--·~-·-·--T~~---~-.---~;---*l

1 J.__ ..__ ..1. _'--ti_-_~- li_ ....~ __L.l __ ;_ ... -L.+- .. i.------.--.. __ ._~ _l_._S~~~a-bso!pt~~itY_=--~.3~-.--~ ,I I J I I 'I I," I --; 1- --T c---l-_ .;. - ---k- - 1·-1 :-- 1 :! _.I .. -.;. [ I- e .J. .1. --.j _+-_~_L Lt r ~ ~-.J --t-----[-~.--i -.~- _~_L.-"_I 200 _.. 1_ .... r--':---.1._1- __.+..;.d -1_ __ L ... .. I I , i ' I I I ! -~--i-i'l 11' : I --~-1, ---~,I '-t: 'I' It' ! r- -I ,. T i .'--1'- --:-J- ,., -+- ._.; ! --t t -, - ,1 - I ... =t- --- , 'f ,[ •. 1.· , '--4' I I' I -----··t-----·r--- -,' ~T -T -':I....:.l--t--r-t---'· ,---t--,-··-t----j -~,l :--l--~--·Ir'-'~ j.-~_~l t~._~L__ ~.LJ.-LiI----l 1 _I. t 1 -l.-~- L J-· t'-·i·--' :--1 , I: I :.' r I II I' ,I II' 1 , J ~ "t r-+'---+-~---',1 ' -C 160 " I -_.-t-'TiLII---j----... .---.f-- ---1---'--1 -----, -'--'--'-i-'---- ~ --1- I I It· ~--T:-., I I I '"~ I, "l:l --1- -1-- .-+- r- 1.. 1···--1 -t'-=-_L ---f- -r' - -- .. - -, - .. l - ,! t - i LtI 'I ' 1- , • I, I 1 , 'I' I, I ~ ~~.l---H--~-- !.c.!--~--i----:-·..I·- -"~--~-i E -j- __L_ ' ._ ..'-- -' --.---f--r'-_L:..... -r-- ,- -:---,-_." -- ::> "l:l L.~ rl __ L ri . 'r' __ ._t_ !.I -1- ,·-t··I r -4,J---'I·--L1 ...... lI -t' -II L-..;t t' -I.-.r I--=-,I 1-- L'-IJ f \ : 1 J I i l ~ I 1 ' ,I f I I ". a; _··~-t- ~+- ~ 120 .::..L_-L.:..l __ T_·_-- >-.-1-.__ :". -t'_-L ....- ---.L--f--";-....c.:.l-. - _L - +-i ,-,-.-c-r ,) I I 'I ilL' 'I :--Fl'-- :: _~l_ -~ ~ ~- ~--- 'j' , .i ;. -l -,- -! -i. _. i -;.-' ._,.J - I • - I _..,_.- i ---t - -: !. -- j ~ ~-It-.l-...l._-~--.-L-L.J... _~~_~_.l ~.~ 'Jl ...L-J.. _ _" I --r.... j W ....ra -:--1.-.- _p''.- I ,I I, I '" I I ',I, ' '" ::> ~--l- i I E --:-'-t- t 1- , -;--r-r., .- .:.-if-r- "-- f---:'":--"---!- ·t-·-:---!- --!- -j - I'- i - ~, ~I -~,I-. --,~I-l--: ~--- ~. +--~' <3 80 i- ._. i.-:------.. }--~ ,- -l-t:·--i- : +-"1"- -tt-·--;• -,.-,I'1"- I -.--~ -" .,-t .. +-.--L--T--;-·l-·~·i-·-:--i--I I f 1 -1- --h=tI--~,I---1 I II! I J I 1: J j I i J t I I I ! t I -T--+--r ·f-: -1--+'+-,'--+-'--'- -j -1-+--;--1---i ..·t--,·+ I f-- r--;-:~_L ..t------j J ' 1--· L.....L .-l-_L .l_ '--f'- --- L f· --1- l__ ~ - ~-,j- : L'-h": 'I ' I, I 1 "I -rl-. '"I· ,- ' I 'I I" --:--~-' ,I 1 I I I l 'I 1 40 J._- -j-- +;-'j -, _r __ ,__ l..--t-1--t---r-:!-·-;- -i-T ._-'- ·t--r·t---t..-'--C'--J -~m'- C. __ - -f -( --f-- -.:. r--r-'! -.. _or --;- 1 :. t -: j. --;. -- ii,--! - j I .L ,...--f , l ' , , , , '..J..:...!."'" "1"-- --":- I·-T~., _," ,_ j~--l--·-\.·-; -l---T- ~- ,- ; .~ l~- ~ ·_-~--1-·_---1--·-·"~--·~·--1 I··~-I--~ 1-' j-l~r-l i··t-, t'-fT-l :fl- f+: i I f 1- ' o 25 50 75 100 125 150 175 200 Time, hr

Figure 9-5.- CSM water dumped as a function of mission time. •

10.0 THE 1M EPS ANALYSIS

The 1M descent and ascent stage battery energy used for the nominal mission is 423 A-h and 391 A-h, respectively. Unusables defined in assumptions 2, 3, and 4 of table 10-1 indicate that the descent • stage and ascent stage have 10 and 28 percent energy remaining, respec­ tively.

TABLE 10-1.- ASSUMPTIONS FOR THE 1M EPS ANALYSIS

1. Energy available for the descent stage batteries is 1600 A-h and for the ascent stage batteries is 592 A-h.

2. Energy unusable for the descent stage batteries and the ascent stage batteries because of lack of MSFN coverage is 21 A-h and 1 A-h, respectively.

3. Energy unusable for the descent stage batteries and the ascent stage batteries because of telemetry inaccuracy is 14 A-h and 11 A-h, respectively. 4. Energy unusable for the descent stage batteries and the ascent • stage batteries because of equipment power dispersions is 21 A-h and 20 A-h, respectively.

5. The descent stage batteries would go on the line at lift-off minus 30 minutes with no recycle on the pad. They would go off the line again at transposition and docking.

• • • • • • •

1600

Undocking 1400 Start of second checkout 001 Phasing II IIIIII1 ~ «I .; 1200 ...::3 o ~ Staging ...(IJ (IJ 0­ E

400 94 95 96 97 98 99 100 101 102 103

Ground elapsed time I hr

Figure 10-1.- Apollo 10 descent stage electrical power profile. E.-. ~ ... ~. ;'~t~ ~ t--+ -". ~-+-.--~~-+l- i- -+-o_-1--.--" _ .l--:-~------+_...... ---t- t. t Summary :ttl Total loaded = 592.0 A-h rtf Total unusable for -.- premissioll planning = 38 A-h (6.4 %) t-'-. Total used =391 A-h (660/0) Usable remaining at staging = 163 A-h (27.6'70 ) -.­ « ~ ~" OJ Oi ::>.

'"t:: ~ \JJ ~ ~+- 0\ .t-+-+:-~ 5 o tilt- I- ++-

o 100 101 102 103 104 105 106 107 108 109 110 Ground elapsed lime, hr

Figure 10-2.- Apollo 10 ascent stage electrical power profile. • • • • • • • • • • • 80

70

CDR IVT to CSM Closeout for LM jettison Burn to depletion 60

c: 50 -Q) .... II DOI- "'-Staging ::::l u ==n:l.... u 40 Q) u la. VI Vl n:l ~ "5 II r- 30

20

10 Start of second checkout

o II I I I I I I I , I I I 94 % 98 100 102 104 106 108 110 112 114 116 Ground elapsed time, hr

Figure 10-3. - LM-4 total spacecraft current. 58 • 11.0 THE LM ECS ANALYSIS

Because of the late availability of a revised trajectory and updated EPS data, the ECS analysis shown in this report is based on a previous flight plan and trajectory. A revised ECS analysis will be performed and documented as soon as the above information is available. However, this analysis is presented here because it provides a good estimate of • the ECS requirements.

TABLE 11-1.- ASSTlMPTIONS FOR THE LM ECS ANALYSIS

1. Cabin 02 leakage rate was 0.1 Ib/hr while pressurized.

2. Metabolic rates were varied according to reference 2.

3. Metabolic O consumed was (1.643 xIO- 4 ) x (metaholic rate). 2

4. H 0 consumed because of sublimator cooling was (total heat 2 load, Btu/hr) x (H 0 x 1/1040, Btu/lb). 2 5. H 0 lost because of micturition was 0.11 Ib/hr/man. • 2

h. Cabin temperature control was set at 75° F.

7. Average glycol flow rate was 250 Ib/hr.

8. Uncertainty in the water nrofile was calculated using 1 Ih/hr.

9. Uncertainty in the oxygen profile was calculated as 5~ of the required 02 plus 0.1 Ib/hr for the uncertainty in the cabin leakage rate. • • • 59 •

TABLE 11-11.- 1M ECS CONSUMABLES SUMMARY , I (:-J.! L}ctjl~(,ll ,. stage

'escriJ,tion J 1) Ii, ,t), :Ill 0", ,

Loaded 4t\.o(l 555·00 Unusable 3.11 CJ 2lJ.00 Available for mission 44.60 307.GO Required for mission 3·>7 63. T) lh~a-ble remainin;",: in tanks , 111.C! :) ;?64.2') I I I ! (0 ) Ace en",', stage

• I Loaded 4.06 8').00 UnuGat1le • 'f!1 1, • ~,() Available for mission )j .l~' nO.AU I\equired for mission j 1 .,n'I }I '( J:: 'Usable rerna-ininr; in tankc I 2. E-') -;~. J :; • • 350 ~ ~ -!~--. '-T -- -,- --1-: IT I--l-r r- __ L_ '-LJ_lLLL-Jd-- ,~~ inaccu!a~les -- i--f-- _. I ;--j--; -r --t---;-T ! "4\\\\\\Gaging 100 307 I --I-t-~r=' I '_ ' __ i __ ~1I d_ 300 L..:c~ ,j ,-H-!-L-cH ,---'I -'- --~ ~- t-- '_ .\ :-\--r r- t _ -:~ I_~ -~t i I .~ J. ~: ! __ I__-c-t- tttt= __ I b-+- _ ..c 1+:: .... f •..... C-. I .....J. •... I :. I !.I :! II , ~._DlsperSJOn' 80 1 ..} I, -j---L ._Tt:,, J. +:-:-+-:+--'--f---'--1 o ..... 1--r_= - ':--. ~t----, tr ; .~ I . I:} I N c ; i! Ii··: ; : " ., . F :::c Q) L> I·,: I t' '," '-(c I, 1 ·1 1'---. .... ' ,-r-----f-. --t----r, -r-+~f-- --r-, ,-~-. 'L'_~I. ; .. g' 200 Q) i' : : II '" f- .'-. -- 1__ -- ,-- .__ -',J-.-, Ef'.:'.--. D.. FIi. I !. I':: I .. i ,-'-- • -t, .. , J t- 1- >_, _." ":::.: . _.. _ _ !~ n:l ..... 60 'I' I ..,.1 .'. ±- . I. ' .. __ E ::l Q) o '"- -0 n:l Q) Q) ·c~f·"=rcubH~.~ '~4+':17 ..c '"- -0 n:l ,: ····r ~r t 'I· III '"- 40 t' .:I::::I,'·j g. n:l 'I": 0 ',-- '. -.-- . "-- ... :1-- , t 'J' => o ~ f--+-:+:~L : ".•' :,.: _:'t t-; ;~--:c "~'" 100 ..c 1- c i" -----I.' -++--f-#f+,., ,··:!ttt\rmsT,l,r I '. o 0 t--e--t--'+---'-+--~+-+----I-IIf-::+~:;~:~ ~ 2 [if

.I- 1- o ~\& ~~X\.x\. o \"\'\;'\1\\J\V\'J\l.,{\'lX'\.\.'k\.\.'\t'J\ '\t\\{\\(.\.'\\.\.'\\.,\X'\K\'\''\J\. 'k'\'K\.\.'\ 94 96 98 100 102 104 106 108 110 Ground elapsed time, hr

Figure II-I.-Descent stage water tank quantities as a function of mission time .

• • • • • • • • \ • • •

50

40.4 100 40 ...:.: c ....ra ~ 80 , 30 o .... N ~ ::c (,) ~tm~ 'I 1 ... L t:'li Cl Q) ~ , "-t-- ,:iE f ~~~!=!:-aiiLt--:t;': te,"': It;:.tttt+'' ~ •. ,+-' - -1 ..,. - • : . c a._ tl", ".~ 60 l=.T ~~i~q~~-2~ ~-'t:+ ,t::-:-- ra ....::; II I 1" I ~ 20 .g ,c': I:' ~H1 , .1':' ... ra ;;,,'1 -~.:. :~ :.~:ffi1ff:I '-q g; Q) ~ ~~ '2., ..0ra "0... 40 ~:nr: VI ra ~:' . f:" ~ 0 . ..0 C ~ 10 ~ 0 trl j :t e" it •. .' ~ ~ ! 20 f::t,":t:tt; Wt~ " ~tt~:.---t- - ..··1-::1-;:,'~~.'''Uff:+-:t'+:'~:ff''f''''h'-''nL''i- r-' ~ . - ~-... . r' ~ ±r-t I n:F-i' ,,~:", t: :-:q:: " • Fn4~~ :r-:: F:e'kt::: :1 ~'-j_,-3_:: I__±.:....l., .1;. ,.1::: ~ "L,r.II~L r":ll';'...'-l..':I=c..'.'P:::. ~:'-':FL'. o o ,"\;llt:'lI. 94 96 98 100 102 104 106 108 110 Ground elapsed time, hr

Figure 11-2. - Ascent stage water tank quantities as a function of mission time. 50

44.6 100 40

-J::l 80 , N .... 0 t: 30 Q) en t: ~ Q) t: n 60 co .... E :J ...Q) o ""0 Q) 20 co J::l Q) co ... Ul "E 40 R;' :::> co .B t: 10 o 20

o o ~~\\\\\\\\\{\\~ 94 96 98 100 102 104 106 108 110 Ground elapsed time, hr

Figure 11-3.-Descent stage oxygen tank quantities as a function of mission time.

• • • io • • • • • • • • •

2.4

.,... :'''.. ":+.:r::LcL..-- ~-

2.062 . 0 100 .0.. N 1.6 80 o d: C'l TTl~-bn8T~fSttHpt~tJ-·.~~~F--:+-:±+4== c ....c f:i: Q) 12. C o n:l ... IC:Ldt~1-~hHf:~:4_~~~~~r::I::ffF 1.2 Q) E a. ...Q) .. 60 OJ ....:::s .0 o n:l ""C CIS "m~t en .8 Q) ::::l ... l]£L=F-;:;F':: ~£[~ j ~-'--'-'-'--"': & ""C 40 ~+ ... 'Ifg :i': 'ti ,~t CIS -- Ascent 1 I,'m"'"., .Ct o llill " .:=1: r·tt:t1J .~tmtir!2tW'i:h rt'!:Ettl .4 .0 Ifrl,'i ;' Ascent 2 :r C lft,fU: t.FLfr.;:Jr+I::':hCt';ti::t;r,::.ti-':I~'G :t: o IRf~ tn4t~~ :t--::~: ~-=-...:t-±:-y: ~:::T:t:t-:.+-l~.- :.::t: ttt-:: t!-t---: .:Hi r ,'\.'\.'\."" Gag ing inacc urac ieSE 20 ',I.i'II,,--I-tJ:E~:_(I'I1't"1-1-"t~~_-: ::_~~ =:: ~~;: ::-~~::L~ I"rj::: .. iii:t~T ... p;~ , o ". ~~ ;,"~:-' l\: ...... ~ ,'I"'\,"\' ,"I.:'l."'. ~ o 94 96 98 100 102 104 106 108 110 Ground elapsed time, hr

Figure 11-4.-Ascent stage oxygen tank quantites as a function of mission time. ~',\i~LF -1.- TI>fr: ill. 'f.'"! (IF 1J~1t,:;,:_: ~TElr;}r;

'wf': ~rJt ,~S, 11, Il~r:;:. ~...l(·i;:!!It c>, 1t, w"iD'"ht loss, ~ ~ I •_ -e, I '," ·...''?igh:- 1C'S5, SPS ·...;'2i€"~Jt loss, i r Ib """,," ti'''''T 1b 1 ~j Co" I L:.~

j ,?l L~f·t-_· to extract L lTr.t

11: Extra:-ti::·r: ~; '1CC:-l 45. ? lL39. i

2(,: 3:) ~,:CC-l to 'iCC-2 j) :;3.4

53: 4) ::r;C-2 to ~KC-3 42 66.0

70:45 '!C-:-3 to :.!C',:-L y) .~4

15: 43 r~cc-4 to LOI-1 31 17. ') 23 (,5'. B

80 :1':) LJI-l ca LOI-' 32.6 .9

96.35 ~Ol-2 to CSr.1/L:·~ SEP 11 10';.9

~:J: 34 s::::? to DClI 10 I 3L.O 30~.2 1J'J: 46 ~C:-I to ::....:: phasi r.~ 1 28.4 161.8 ~CJ2: ~.3 u: !=r.'J.3in~ to staging 40.0 0\ 16 112; .6 ,J::- :i..". ~: ~ 3 2:-:3.giL;- =..Y i::.ser':icr. 6.8 114.8

105: 34 =~serti,:rJ to B 32.1 32.3

... ,:4: 32 8 3J .r;

:-'.1'/ j --::'H :.;::. :1--:;: (, ~;.;. L

='-:-. -:: r: i ,,;:- 1)4. ~ ~:,~: ,j:, :'-':::::-f-:' ~.€ t:, ',:::t~:3 ';, 1" I :"-" L : :;. :'-.?? t,-Jr:. :~- j'~_-rle~i::H: -- -- 2315.1

:. ~1' 2. .. ':":~ :::::-. 'r. I >',' #:: 11 Dl."

-,- ;, :2'J I :EI to '.~--:(~-~J

:. i~: 5· '.~C'C-5 ~:' ',,~~_r 37 57.3

1-33: 50 !1cc-6 tC' 17.2

~?l: 35 ~·t:"C-7 :.C' ~>l/::!·~ '::'':"':) 14.1

• • • • • • • • • • , • •

3-~-~~~--'------~ 100 x 10 ,-~ .--~-----,- -r~ I 1 : woc~eo I i I I. __ /~,___ .--0--"---~1 .. /TLOI-l+-: I .- - r---r-~ Dock I I I I 90 l-J-~---~-l .IIUII"...III,,1 CSM i I I I 1 I I, 1 I I I I ",/~/"",,/""""""'''LM I---f-- ! I I I, i--l--~-r-I-+-H r I I 80 ! I i I I I' I I -- -' I V- -kOI'-2 I 70 I ./ == 1 I :c lcSM 1'1 t.::7L ~ ....N H ...... CSM/LM separation . I ...... 'N ... Q) ...111 ..t'- ;;: 60 l'\.1" ;t::: ro ...u Q) u roc.. 50 VI 0\ 0.... i v' « CSM/LM separation~ 0 I ~ 40 ...... I ...... 'Co" ...... f' ...... '" L i\.r" H

~ ""_A ~.....-1:--...... I--.-A ~.....-1-...... V.-A ...... - ...... "'-...0 l-....- lv.-A 1:--...... "-"A .A 30 r------.. l-....- -- ll\ ..... --...... Ll\ .... ""'.- 1\1 I 1/ CSM/LM separation-LJ I i 20 -+----- f--- t-

___ L..._ 10 .~- r-.... .- r-.... t± '-I ..... 6 7 8 9 10 11 12 76 77 78 79 80 81 98 99 Ground elapsed time, hr

Figure 12.1. - Spacecraft weight versus ground elapsed time. 3 48 x 10 ,--,----j --r' -. .. T r- r--~-;--t_. ;- + I CSM 44 .-;'.M'/~/~/.. LM ----"

TEl

I i I ! :e i 1: en .Qj ;;: ;::::: '"..... u ~rm ----r-+----t-~+__+-+----+-+-I--+-+---1---'=-+==+=---N+---.;----1 Q) i: Ii! -+-1 u + '"c. V> 24 Ii"H' -1-I' I I C- I . G\ o« I 0\ Cl ~ 20 Li-l- I ; i I ~fl I ! II ~ ,, Fl. I I H', I i I I" I . . II I·1--1 i I i I T I- I 1 i 1I-H-~-+-.· t--~., i 16 i I+tt+.· I I r Tl. I.! I Iii I I I I' I I b I I . I I 1 I I I I i \ 1 1 1. '4±",i I I .1 i 1 TI I ' I I. I .1 I 12 II i-L- Ii' 1-Lj i I I I I i II i r rl iii ,i I. I' I I . Iii • i I i I II InsertlOn~ -l i I ! ' . :- __'=CDH i I • ' I i I II i D-CT~~T~' ~APSburntodePletion I I 1 I I ii, I I 8 ---j III ~~ i I l -j ~ll I L~ ~_ _--L_~ _ 1 __1 ! _.L ,_ r±±ill 4 99 100 101 102 103 1~ 105 106 107 108 109 l1Ol37l38 190 191 Ground elapsed time, hr

Figure 12.1. - Concluded.

• • ~ ( • • • • • 67 13.0 REFERENCES

1. CSM!LM Spacecraft Operational Data Book, Volume I- CSM Data Book, Revision 1. MSC SNA-8-D-027, November 1968. • 2. CSM!1M Spacecraft Operational Data Book, Volume II - 1M Data Book. MSC SNA-8-D-027, June 1968.

3. CSM!LM Spacecraft Operational Data Book, Volume III - Mass Properties, Revision 1. MSC SNA-8-D-027, November 1968.

4. Flight Planning Branch. FCSD: Apollo 10 Flight Plan (Draft Final, April 17,1969).

5. Lunar Mission Design Section: Spacecraft Operational Trajectory for Apollo Mission F, Volume I- Operational Mission Profile Launched May 17, 1969. MSC IN 69-FM-65, March 26, 1969.

6. Alexander, Martin L.; Kamen, Sam A.; Loyd, Arnold J.; Mayfield, Samuel 0.; Peterson, Dwight G.; and Scott, Walter, Jr.: Consumables Analysis for the Apollo 10 (Mission F) Spacecraft Operational Trajectory. MSC IN 69-FM-76, April 7,1969. • 7. Graf, O. F.: The Predicted Accuracy of D Mission Short Burns. MSC memo 69-FM73-46, February 11, 1969.

8. Simpson, R. W.; and Smith, H. E.: Apollo Rendezvous with Command Module Active. MSC IN 67-EG-23, September 28, 1967.

9. LMAB; LAB; and OMAB: Revision 1 of the Spacecraft Operational Tra­ jectory for Apollo 10 (Mission F), Volume I- Operational Mission Profile Launched May 18, 1969. MSC IN 69-FM-96, April 28, 1969.

10. Seto, R. K. M.; Roson, D. F.; Wood, S. C.; and Ware, J. 0.: Apollo Mission F!1M-4!DPS Preflight Performance Report. TRW document, February 21, 1969. • •