The following supplement accompanies the article

Marine connectivity: a new look at pelagic larval duration and genetic metrics of dispersal

K. A. Selkoe1,2,*, Robert J. Toonen1

1Hawai‘i Institute of Marine Biology, University of Hawai‘i, Kāne‘ohe, Hawaii 97644, USA 2National Center for Ecological Analysis and Synthesis, 735 State St., Santa Barbara, California 93101, USA

*Email: [email protected]

Marine Ecology Progress Series 436:291–305 (2011)

This data table is available as an Excel spreadsheet by request. No. pops No. alleles Mean HE Study in IBD Mean No. or hapls. or hapl. Global Log

Dataset Genetics Reference year Taxon PLD (d) Log PLD analysis indiv/pop Marker type loci total diversity FST Global FST Row 1 IBD Acanthochromis polyacanthus Bay et al. 2008 2008 Fish 0.0 0.00 15 18.9 MtDNA‐ cntrl. rgn. 1 NA 0.90 0.8100 ‐0.0915 2 IBD Acanthopagrus latus Xia et al. 2008 2008 Fish 34.0 1.53 8 21.1 MtDNA‐ cntrl. rgn. 1 111 0.96 0.0114 ‐1.9431 3 IBD Acanthurus triostegus Planes and Fauvelot 2002 2002 Fish 53.0 1.72 12 45.4 Allozymes 18 47 0.12 0.1990 ‐0.7011 4 IBD Coryphaenoides rupestris White et al. 2010 2010 Fish 182.0 2.26 9 46.3 Microsatellites 15 342 0.77 0.0010 ‐3.0000 5 IBD Fucus vesiculosus Tatarenkov et al. 2007 2007 Alga 0.0 0.00 16 24.0 Microsatellites 5 46 0.57 0.1200 ‐0.9208 6 IBD Gadus morhua Beacham et al. 2002 2002 Fish 100.0 2.00 18 275.3 Microsatellites 7 NA 0.64 0.0080 ‐2.0969 7 IBD Haemulon flavolineatum Purcell et al. 2006 2006 Fish 18.7 1.27 14 111.0 Microsatellites 9 234 0.78 0.0030 ‐2.5229 8 IBD Hippocampus barbouri Lourie et al. 2005 2005 Fish 0.0 0.00 11 9.2 MtDNA‐ cyt b 1 23 0.80 0.8900 ‐0.0506 9 IBD Hippocampus kuda Lourie et al. 2005 2005 Fish 0.0 0.00 28 9.4 MtDNA‐ cyt b 1 65 0.95 0.7540 ‐0.1226 10 IBD Hippocampus spinosissimus Lourie et al. 2005 2005 Fish 0.0 0.00 23 7.4 MtDNA‐ cyt b 1 87 0.97 0.1900 ‐0.7212 11 IBD Hippocampus Trimaculatus Lourie et al. 2005 2005 Fish 0.0 0.00 29 3.1 MtDNA‐ cyt b 1 43 0.94 0.6770 ‐0.1694 12 IBD Nassarius reticulatus Couceiro et al. 2007 2007 Mollusk 49.0 1.69 6 26.0 MtDNA‐ CO1 1 36 0.74 0.0001 ‐3.8861 13 IBD Nucella lamellosa Marko 2004 2004 Mollusk 0.0 0.00 10 8.9 MtDNA‐ CO1 1 24 NA 0.1449 ‐0.8389 14 IBD Tridacna crocea Kochzius and Nuryanto 2008 2008 Mollusk 10.0 1.00 15 20.0 MtDNA‐ CO1 1 132 0.89 0.2800 ‐0.5528 15 IBD Tridacna crocea DeBoer et al. 2008 2008 Mollusk 12.0 1.08 22 15.9 MtDNA‐ CO1 1 236 0.95 0.0690 ‐1.1612 16 IBD Tridacna crocea Benzie and Williams 1997 * 1997 Mollusk 11.0 1.04 19 45.3 Allozymes 6 48 0.43 0.0840 ‐1.0757 17 IBD Tridacna maxima Benzie and Williams 1997 * 1997 Mollusk 11.0 1.04 19 45.3 Allozymes 6 46 0.45 0.1560 ‐0.8069 18 IBD Gruenthal and Burton 2008 2008 Mollusk 6.5 0.81 7 26.0 AFLP 142 142 0.30 0.0440 ‐1.3565 19 IBD Acanthaster planci Yasuda et al. 2009 2009 Echinoderm 14.0 1.15 19 52.4 Microsatellites 7 193 0.80 0.0391 ‐1.4074 20 IBD Acanthochromis polyacanthus Miller Sims et al. 2008 2008 Fish 0.0 0.00 7 108.1 Microsatellites 5 109 0.78 0.1050 ‐0.9788 21 IBD Adalaria proxima Todd et al. 1998 * 1998 Mollusk 2.0 0.30 9 33.9 Allozymes 5 21 0.14 0.2210 ‐0.6556 22 IBD Amphiprion clarkii Pinsky et al. 2010 2010 Fish 8.8 0.94 8 20.9 Microsatellites 13 123 0.62 0.0010 ‐2.9838 23 IBD Atherina presbyter Francisco et al. 2009 2009 Fish 15.5 1.19 4 25.3 MtDNA‐ cntrl. rgn. 1 86 0.98 0.2010 ‐0.6968 24 IBD exarata Bird et al. 2007 2007 Mollusk 10.0 1.00 6 21.4 MtDNA‐ CO1 1 52 0.75 0.0360 ‐1.4437 25 IBD Bird et al. 2007 2007 Mollusk 10.0 1.00 6 18.2 MtDNA‐ CO1 1 59 0.96 0.0780 ‐1.1079 26 IBD Bird et al. 2007 2007 Mollusk 10.0 1.00 5 21.0 MtDNA‐ CO1 1 49 0.90 0.3040 ‐0.5171 27 IBD Cittarium pica Diaz‐Gerguson et al. 2010 2010 Mollusk 4.0 0.60 8 13.0 MtDNA‐ CO1 1 37 0.94 0.2262 ‐0.6455 28 IBD Coris julis Aurelle et al. 2003 2003 Fish 29.0 1.46 12 22.0 Microsatellites 8 130 0.53 0.1751 ‐0.7567 29 IBD Crepidula fornicata Dupont et al. 2007 2007 Mollusk 21.0 1.32 13 55.3 Microsatellites 4 66 0.79 0.0110 ‐1.9586 30 IBD Cyclopae neritea Simon‐Bouhet et al. 2006 2006 Mollusk 0.0 0.00 5 33.8 MtDNA‐ CO1 1 21 0.83 0.1350 ‐0.8697 31 IBD Gadus morhua Skarstein et al. 2007 2007 Fish 100.0 2.00 14 55.0 Microsatellites 7 120 0.83 0.0100 ‐2.0000 32 IBD Gadus morhua Pogson 2001 * 2001 Fish 100.0 2.00 4 103.0 RFLP 10 80 0.34 0.0040 ‐2.3979 33 IBD Hypoplectrus puella Puebla et al. 2009 2009 Fish 21.0 1.32 9 49.0 Microsatellites 10 283 0.81 0.0040 ‐2.3979 34 IBD Laminaria digitata Billot et al. 2003 2003 Alga 3.0 0.48 9 34.8 Microsatellites 7 51 0.59 0.0295 ‐1.5302 35 IBD Lophius budegassa Charrier et al. 2006 2006 Fish 84.0 1.92 7 19.1 MtDNA‐ cntrl. rgn. 1 39 0.88 0.0055 ‐2.2588 36 IBD Macrocystis pyrifera Alberto et al. 2010 2010 Alga 1.3 0.12 8 50.0 Microsatellites 12 NA 0.77 0.0220 ‐1.6576 37 IBD Nucella lapillus McInerney et al. 2009 2009 Mollusk 0.0 0.00 7 34.6 Microsatellites 6 76 0.53 0.1330 ‐0.8761 38 IBD vulgaris Cabranes et al. 2008 2007 Mollusk 52.0 1.72 6 41.0 Microsatellites 5 91 0.90 0.0308 ‐1.5120 39 IBD Launey et al. 2002 2002 Mollusk 13.5 1.13 15 39.0 Microsatellites 5 114 0.84 0.0190 ‐1.7212 40 IBD Rios et al. 2002 * 2002 Mollusk 24.5 1.39 4 175.0 Allozymes 13 56 0.14 0.0080 ‐2.0969 41 IBD Phycomenes zostericola Haig et al. 2010 2010 Crustacean 14.0 1.15 19 14.7 MtDNA‐ CO1 1 125 0.72 0.3000 ‐0.5229 42 IBD Sciaenops ocellatus Gold and Turner 2002 * 2002 Fish 22.0 1.34 7 138.1 Microsatellites 8 111 0.66 0.0030 ‐2.5229 43 IBD Sebastes caurinus Johansson et al. 2008 2008 Fish 75.0 1.88 12 62.4 Microsatellites 11 154 0.72 0.0042 ‐2.3768 44 IBD Sebastes crameri Gomez‐Uchida and Banks 2005 2005 Fish 90.0 1.95 33 36.9 Microsatellites 6 NA 0.69 0.0010 ‐3.0000 45 IBD Stegastes partitus Purcell et al. 2009 2009 Fish 31.1 1.49 4 79.0 Microsatellites 5 270 0.93 0.0030 ‐2.5229 46 IBD Tripterygion delaisi Carreras‐Carbonell et al. 2006 2006 Fish 17.7 1.25 8 28.0 Microsatellites 10 NA 0.81 0.0300 ‐1.5229 47 IBD Seriatopora hystrix Maier et al. 2005 2005 Coral 1.1 0.04 7 20.7 Microsatellites 4 56 0.74 0.0890 ‐1.0506 48 IBD Chlorurus sordidus Bay et al. 2004 2003 Fish 30.0 1.48 9 20.6 MtDNA‐ cntrl. rgn. 1 146 0.99 0.1700 ‐0.7696 49 IBD Kenchington et al. 2006 2006 Mollusk 30.0 1.48 11 58.3 Microsatellites 6 197 0.80 0.0110 ‐1.9586 50 IBD virginica Rose et al. 2006 2006 Mollusk 17.5 1.24 18 59.9 Microsatellites 8 218 0.86 0.0010 ‐3.0000 51 IBD Littorina saxatilis Makinen et al. 2008 2008 Mollusk 0.0 0.00 16 58.5 Microsatellites 5 NA 0.80 0.0500 ‐1.3010 52 IBD Astropecten aranciacus Zulliger et al. 2009 2009 Echinoderm 60.0 1.78 9 28.2 Microsatellites 4 90 0.82 0.0016 ‐2.8097 53 IBD Zeacumantus subcarinatus Keeney et al. 2009 2009 Mollusk 0.0 0.00 11 33.0 MtDNA‐ CO1 1 141 0.98 0.3120 ‐0.5058 54 IBD Balanophylia elegans Hellberg 1996 1996 Coral 1.5 0.18 26 108.7 Allozymes 7 17.5 0.33 0.2000 ‐0.6990 55 IBD Stylophora pistillata Nishikawa et al. 2003 2003 Coral 2.0 0.30 6 29.8 Allozymes 6 19 0.23 0.1890 ‐0.7235 56 noIBD Acanthurus coeruleus Rocha et al. 2002 2002 Fish 52.3 1.72 4 20.5 MtDNA‐ cyt b 1 30 0.83 0.3560 ‐0.4486 57 noIBD Bembicium vittatum Johnson and Black 1995 1995 Mollusk 0.0 0.00 19 73.9 Allozymes 13 NA NA 0.1000 ‐1.0000 58 noIBD Weetman et al. 2007 2007 Mollusk 0.0 0.00 16 72.6 Microsatellites 5 NA 0.73 0.0140 ‐1.8539 59 noIBD Carcinus maenas Domingues et al. 2010 2010 Crustacean 140.0 2.15 18 78.0 Microsatellites 10 198 0.69 0.0010 ‐3.0000 60 noIBD Centrostephanus rodgersii Banks et al. 2007 2007 Echinoderm 112.0 2.05 16 25.0 Microsatellites 6 NA 0.61 0.0080 ‐2.0969 61 noIBD Cittarium pica Diaz‐Gerguson et al. 2010 2010 Mollusk 4.0 0.60 8 13.3 MtDNA‐ CO1 1 37 0.94 0.1930 ‐0.7144 62 noIBD Corallium rubrum Constantini et al. 2007 2007 Coral 4.5 0.65 11 31.0 ITS1 1 51 0.92 0.3000 ‐0.5229 63 noIBD Corallium rubrum Constantini et al. 2007 2007 Coral 4.5 0.65 11 31.0 Microsatellites 5 31 0.70 0.1660 ‐0.7799 64 noIBD Crassostrea virginica Galindo‐Sanchez 2008 2008 Mollusk 17.5 1.24 6 45.0 Microsatellites 5 90 0.82 0.0190 ‐1.7212 65 noIBD Gadus morhua Knutsen et al. 2003 2003 Fish 110.0 2.04 6 101.8 Microsatellites 10 135 0.69 0.0023 ‐2.6383 66 noIBD Haliotis coccoradiata Piggot et al. 2008 2008 Mollusk 6.0 0.78 11 20.5 Microsatellites 5 99 0.63 0.0090 ‐2.0458 67 noIBD Haliotis cracherodii Gruenthal and Burton 2008 2008 Mollusk 6.5 0.81 11 21.6 MtDNA‐ CO1 1 32 0.63 0.0140 ‐1.8539 68 noIBD Hippoglossus stenolepis Nielsen et al. 2010 2010 Fish 210.0 2.32 6 38.0 Microsatellites 9 130 0.69 0.0040 ‐2.3979 69 noIBD Homarus americanus Kenchington et al. 2009 2009 Crustacean 31.5 1.50 27 98.0 Microsatellites 13 218 0.76 0.0060 ‐2.2218 70 noIBD Selkoe et al. 2010 2010 Mollusk 60.0 1.78 31 57.9 Microsatellites 9 100 0.57 0.0009 ‐3.0458 71 noIBD Kelletia kelletii White et al. 2010 2010 Mollusk 50.0 1.70 10 70.9 Microsatellites 9 91 0.58 0.0014 ‐2.8601 72 noIBD Lutjanus synagris Karlsson et al. 2009 2009 Fish 32.0 1.51 9 27.6 Microsatellites 13 95 612.00 0.0120 ‐1.9208 73 noIBD Marthasterias glacialis Perez‐Portela et al. 2010 2010 Echinoderm 90.0 1.95 10 22.5 MtDNA‐ CO1 1 73 0.91 0.0336 ‐1.4731 74 noIBD Membranipora membranacea Watts et al. 2006 2006 Bryozoan 224.0 2.35 8 50.0 Allozymes 7 23 0.30 0.0840 ‐1.0757 75 noIBD Monitpora capitata Conception et al. unpubl. 2010 Coral 3.0 0.48 12 44.3 Microsatellites 8 99 0.60 0.0790 ‐1.1024 76 noIBD Myripristis berndti Craig et al. 2007 2007 Fish 55.0 1.74 21 13.2 MtDNA‐ cyt b 1 37 0.63 0.2110 ‐0.6757 77 noIBD Nephrops norvegicus Stamatis et al. 2004 2004 Crustacean 50.0 1.70 12 31.6 MtDNA‐ RFLP 1 95 0.93 0.0180 ‐1.7447 78 noIBD Nucella ostrina Marko 2004 2004 Mollusk 0.0 0.00 10 8.9 MtDNA‐ CO1 1 7 NA 0.2003 ‐0.6983 79 noIBD Panulirus interruptus Selkoe et al. 2010 2010 Crustacean 266.0 2.42 17 58.0 Microsatellites 7 156 0.88 0.0037 ‐2.4318 80 noIBD Paralabrax clathratus Selkoe et al. 2010 2010 Fish 32.0 1.51 20 104.5 Microsatellites 7 191 0.73 0.0008 ‐3.0969 81 noIBD Parma microlepis Curly and Gillings 2009 2009 Fish 21.0 1.32 11 30.5 Microsatellites 7 137 0.80 0.0040 ‐2.3979 82 noIBD Phallusia nigra Nobrega et al. 2004 2004 Ascidian 0.8 0.01 5 31.4 Allozymes 7 17 0.28 0.1092 ‐0.9617 83 noIBD Rapana venosa Yang et al. 2008 2008 Mollusk 27.5 1.44 7 15.7 Allozymes 10 22 0.12 0.0160 ‐1.7959 84 noIBD Tridacna crocea Ravago‐Gotanco et al. 2007 2007 Mollusk 8.5 0.93 7 40.0 Allozymes 7 26 0.22 0.0770 ‐1.1135 85 noIBD Tripneustes spp. Lessios et al. 2003 2003 Echinoderm 18.0 1.26 24 7.8 MtDNA‐ CO1 1 74 NA 0.1768 ‐0.7525 * also used by Siegel et al. 2003 82 70 62 61 60 46 23 80 74 72 67 57 40 33 22 19 85 84 81 79 78 77 76 75 73 71 69 68 66 65 64 63 59 58 55 54 52 51 50 49 48 47 45 44 43 42 41 37 36 34 32 31 30 29 28 27 26 25 24 21 20 18 17 16 15 14 13 12 11 10 53 39 38 35 83 56 3 1 9 8 7 6 5 4 2 Row sampling Max. (km) 00 4.021 10500 60 4.415 26000 4.398 25000 4.230 17000 10 4.045 11100 203.857 7200 003.703 5050 3.036 1087 3.340 3.332 2186 3.491 2150 3100 3.049 1119 283.082 1208 3.176 1500 3.301 2000 3.380 2400 3.079 1200 343.135 3.447 1364 3.778 2800 5993 3.365 2320 3.473 2974 3.266 3.391 1844 2462 3.000 1000 3.340 2186 3.623 3.255 4200 1800 3.079 1200 3.67 4725 3.415 2600 3.000 3.342 1000 3.230 2200 3.365 1700 2318 3.477 3.061 3000 1150 3.691 3.062 4911 1154 3.101 3.101 1261 1261 3.946 3.95 8827 3.580 9000 3.415 3800 3.447 2600 3.255 2800 3.71 1800 3.71 5172 3.712 5172 3.459 5150 3.531 2878 3.079 3400 1200 3.32 2109 3.079 1200 013.303 2011 3.535 3425 703.230 1700 003.903 8000 8 2.768 586 5 2.875 750 2.740 550 2.398 250 0 2.699 500 2.556 360 2.097 125 2.410 2.752 257 565 2.702 504 2.176 2.538 150 345 2.991 980 2.146 140 2.903 800 2.800 631 2.760 576 2.778 600 2.196 157 2.716 520 2 2.721 526 . 0.875 7.5

01.301 20 1.875 75 1.415 26 1.95 90

(max Log

km)

4 4 4 4 4 4 (F ST m IBD km) L ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ /max og .5 0.00003 4.558 .6 .00 A0.02 NA 0.00001 4.665 ln Mantel 0.136 NA 0.00001 6.082 NA NA NA 3.863 0.00002 4.047 0.0000 5.588 0.0097 4.572 0.0007 3.465 .2 AN A003>.5Mne km, 0.0000 6.179 Mantel >0.05 0.003 0.0310 NA 4.252 0.0056 5.222 NA NA 4.729 0.0004 6.484 0.0000 5.477 0.00003 5.138 Spearman's 0.050 km, 0.281 NA 0.00019 5.382 Mantel 0.010 NA 0.00001 0.348 5.429 0.14 NA km, NA NA 5.030 NA NA Mantel 0.039 NA 0.139 NA NA 3.883 4.435 NA NA 0.0010 2.875 6.324 0.00051 3.171 .7 AN AN 00 Abinned NA >0.05 NA NA NA NA 1.875 .6 AN A001030Mne km, km, Mantel 0.380 Mantel 0.001 >0.05 0.000 NA km, NA log NA NA NA 0.200 Mantel 0.673 NA log NA Mantel NA >0.05 NA NA 5.167 NA NA log 3.812 NA km, Mantel 0.123 0.0000 0.002 NA km, 4.954 MostlyNA NA 0.0004 0.00 Mantel 1D 0.826 NA 5.567 0.0001 Mantel NA >0.05 NA km, NA ln 4.145 NA NA 5.522 Mantel 0.205 NA 5.074 0.0000 NA NA NA NA 4.468 Mantel Mantel >0.05 NA 0.273 NA NA km, 4.946 0.123 NA NA na NA NA na 4.957 NA NA NA 5.488 Mantel NA 0.076 NA 5.789 NA NA NA NA NA 5.046 0.0000 NA NA NA NA 5.048 NA 4.473 NA ln 4.120 NA km, NA NA NA 0.0106 NA Mantel 6.623 0.001 NA Mantel 5.109 0.220 0.007 NA 0.527 NA NA NA 3.426 3.778 NA NA 0.0028 NA 3.477 0.0007 NA 5.538 0.08 5.374 NA 5.000 0.01875 2.352 0.00001 NA 5.514 0.00003 6.000 0.00001 NA 5.719 0.0000 5.753 3.888 0.0011 3.022 0.0003 3.533 0.00007 4.433 0.00002 5.198 0.00001 5.477 0.0002 3.930 0.0000 4.719 0.00009 4.448 0.0012 3.708 0.0011 3.295 0.0000 4.209 0.0000 4.544 km, 0.0419 2.071 0.0010 km, 3.175 0.0020 Mantel 4.073 0.00021 0.31 0.019 4.753 0.137 NA Mantel 0.0000 0.010 NA 4.741 0.00013 0.090 3.968 0.00005 NA NA 4.286 0.00002 NA 7.141 NA NA NA 3.834 NA 3.510 0.0000 6.054 5.176 0.0000 5.022 .2 0.01129 3.227 0.0000 5.767 0.00002 4.815 0.0001 5.793 .2 AN A002043Mne km, Mantel 0.483 0.002 NA NA NA 5.026 .5 AN A036>.5Mne km, Mantel >0.05 0.396 NA NA NA 4.352

slope 0 0 0 4 0 0 0 0 0 4 8 0 0 0 0 0 0 0 0 0 4 4 0 4 6 4 0 0 0 0 8 0 0 6 Log slope ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ .0 .0 .3 .0 atlkm, Mantel 0.000 0.533 0.008 4.509 .9 .9 .0 AMne km, 5.046 Mantel NA 0.002 0.193 4.699 .5 .3 .2 .0 atlln 1.973 km, Mantel 0.005 0.120 0.030 3.319 Mantel 0.047 2.553 km, 0.221 3.155 km, NA km, Mantel 0.001 2.013 km, 0.575 Mantel km, 0.050 0.001 Mantel 0.205 0.003 0.583 5.502 0.003 Mantel <.005 0.010 0.341 Mantel 5.495 <0.001 0.325 5.463 0.030 km, 0.012 km, 2.959 0.81 3.523 km, 4.000 0.000 Mantel 0.016 km, Mantel 0.467 0.000 4.576 0.456 0.050 0.001 3.620 OLS <.05 4.398 OLS <.05 0.369 0.327 2.921 0.001 km, 2.942 0.009 4.203 0.00 4.359 0.841 3.155 Mantel 0.001 3.724 0.045 0.025 1.378 3.000 5.646 4.970 2.699 km, 4.108 km, Mantel 0.001 0.210 km, Mantel 0.000 0.001 0.560 6.000 0.012 Mantel 0.001 3.000 0.593 0.410 4.222 3.292 .9 .0 .1 .9 atlkm, ln Mantel 0.896 0.011 0.007 Mantel 0.059 3.398 NA 0.006 1.509 2.252 .2 .0 .1 .0 atlkm, Mantel 0.001 1.727 0.415 5.036 0.001 4.523 5.222 km, km, Mantel 0.006 0.500 Mantel 0.047 0.027 0.950 4.155 0.000 4.699 4.897 4.046 km, Mantel 0.011 3.685 0.300 0.020 3.883 4.273 4.638 .4 A041001Mne log Mantel 0.001 0.421 NA 1.947 0.70 0.003 4.699

IBD A001009053Mne km, km, 0.30 Mantel 0.006 0.563 km, 0.029 Mantel 0.280 0.005 0.070 0.001 NA NA NA Mantel >0.05 0.001 NA 0.095 log NA Mantel ns NA km, NA Mantel 0.005 NA 0.070 NA NA

intercept IBD ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ .0 .4 .5 atlkm, Mantel 0.450 0.146 0.001 .2 .0 .0 atlln Mantel 0.005 0.300 0.028 log ln Mantel 0.002 0.221 Mantel 0.009 0.010 0.093 0.003 km, Mantel 0.008 0.852 0.267 km, km, Mantel 0.006 OLS km, <.05 0.930 km, 0.502 0.265 0.082 0.04 Mantel 0.975 0.010 Mantel 0.310 0.009 0.115 0.432 0.030 km, 0.014 0.77 0.006 Mantel 0.001 0.110 0.140 km, Mantel 0.040 0.123 0.022 .2 .4 .9 atlln Mantel 0.390 0.142 0.026 .0 .9 .1 atlkm, km, km, Mantel 0.018 0.198 Mantel 0.040 0.500 Mantel 0.792 0.036 0.027 0.001 0.002 km, 0.63 0.003 Mantel 0.000 0.590 0.023 km, 0.28 0.010 0.00 0.186 Mantel 0.022 0.067 0.365 0.020

4 R IBD 2 ‐ value .0 .8 atlkm, Mantel 0.180 0.205

OLS 4 4 4 4 4 4 4 4 4

IBD 001Mne km, Mantel <0.001 au Significance value .2 atlkm, Mantel 0.320 km, km, Mantel 0.001 Mantel 0.000 km, Mantel 0.001 km, km, Mantel 0.001 Mantel 0.050 km, km, Mantel 0.015 Mantel 0.000

P ‐ 4 4 4 4 atlkm, km, Mantel Mantel km, Mantel atlkm, Mantel

akkm, Rank

etIBD test

km, km, km, km, km, km, km, km,

Km, Km, Km, km, Km, Km,

lin lin FS FS lin FS lin FS FS lin lin FS lin lin lin lin lin lin lin lin lin lin lin lin lin lin lin indiv. FS FS FS FS FS FS FS FS Nei's lin FS FS lin FS FS FS lin log lin lin lin FS FS FS lin lin lin lin lin lin FS FS FS lin FS lin lin lin lin FS

T T T T T T T T T T T T T T T T T T T T T T T T T T T FS lin lin lin lin lin FS FS

FS FS FS FS FS FS FS FS FS FS FS FS FS FS FS FS FS FS FS FS FS FS FS FS FS FS FS FS FS FS FS FS FS FS RS FS FS FS

km, S 2D FST irns2 AN ANA NA NA NA 2D migrants lin lin lin lin lin

T T T

plot T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T FS FS FS FS FS DN A003NA 0.083 NA NA 2D D T

genetic

FS FS FS FS FS

mean T T T T T T T T T T

axes

GS itne1 0.01 1D distance

(x,y) T D000002N NA 0.00 NA 0.095 0.010 0.149 0.042 0.001 0.370 0.000 0.040 2D 1D 1D Mostly 0.056 2D 0.100 1D 1D 0.201 1D 0.009 1D NA 1D NA 0.190 1D NA 0.000 NA 1D NA NA 2D NA NA 2D 0.270 NA NA NA NA NA 0.000 2D NA NA Mostly NA NA NA NA 2D NA 2D NA NA NA NA 1D 1D NA NA NA 2D 2D NA 2D 0.290 2D 0.000 2D 2D Mostly 2D 2D Mostly Mostly D005020009NA 0.018 0.079 0.020 0.220 NA 0.067 0.015 0.000 0.01 NA 0.000 2D NA NA 1D 0.061 1D 0.092 NA NA 1D 0.319 1D NA 0.400 0.006 1D 0.000 1D NA 2D 2D NA 2D 2D 0.001 NA NA Mostly 0.009 NA 0.002 2D 0.017 NA 2D 0.005 NA 1D 0.031 0.000 NA 0.305 0.005 NA 1D 0.789 0.050 1D NA 0.000 NA 1D 1D NA 1D 0.105 2D 0.000 NA 2D NA 2D 0.00 Mostly NA Mostly 2D 1D 0.120 1D 0.069 0.005 0.069 0.092 0.080 1D 0.306 NA 0.00 Mostly 0.211 0.000 1D 0.007 0.002 NA NA 2D 0.000 2D NA 0.009 1D 0.000 1D 0.018 1D 0.011 0.005 1D 0.022 1D 1D 0.049 1D 0.001 1D 1D Mostly Mostly 1D Mostly Mostly 1D sampling array

1D NA NA 0.280 0.000 1D NA NA NA 0.150 0.000 NA 1D 0.950 0.000 1D 1D 1D 0.00 0.029 0.000 1D NA 1D NA 0.031 0.000 1D NA NA NA 0.05 0.380 0.005 NA 0.030 1D 0.080 1D 0.000 1D 1D DN AN NA NA NA NA 1D

Min ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ .1 .0 .3 0.100 0.211 0.131 0.177 0.168 0.300 0.037 0.202 0.533 0.027 0.010 0.039 0.370 0.098 0.077 0.035 0.090 0.016 0.101 0.079 0.011 0.00 0.242 0.015 0.18 0.028 0.032 0.016 0.732 0.030 0.032 0.032 NA 0.131 0.001 NA 0.263 0.212 0.430 0.016 0.870 0.080 0.001 0.030 0.035 NA 0.021 NA 0.009 0.002 .0 .3 .0 0.010 0.009 0.039 0.004 0.54 0.046 .2 .4 .5 0.190 0.253 0.740 0.120 0.002 NA 0.001 0.00 NA 0.012 0.017 0.253 0.004 0.260 0.003 0.175 0.005 0.810 0.011 0.111 0.00 0.011 0.003 0.003 0.032 0.001 0.023 0.006 0.013 0.039 0.005 0.01 0.010 0.017 0.009 0.150 0.049 0.033 0.013 0.14 0.533 0.077 NA NA NA NA 0.882 NA 0.001 NA 0.007 0.032 0.005 0.002 NA NA 0.020 0.207 0.023 0.022 0.141 0.01 0.002 1.000 0.019 0.041 0.058 0.007 NA NA 0.016 0.001 .3 .7 .6 0.07 0.068 0.275 0.030 0.08 0.007 0.053 0.008 0.119 0.065 .0 .2 0.00 0.023 0.008

F ST 4 4 Max .2 .4 0.03 0.048 0.128 .6 .1 0.218 0.312 0.461

F ST 4 4 4 4 Mean ‐ .0 0.007 0.001 .2 0.013 0.026

ANA NA ANA NA NA NA F ST 4 4 4 4 4 4 4 4 SD

of 0.00 0.009 0.21 0.00 0.005 0.160 0.006 0.003

F ST 4 4 4 4 4 4 4 4 12 55 23 22 21 84 83 82 81 80 79 78 77 76 75 74 73 57 56 59 58 43 42 41 40 39 38 27 26 25 24 44 15 14 13 28 45 16 61 60 29 47 46 72 71 70 69 68 67 66 65 64 63 62 37 36 35 33 32 31 30 48 85 17 11 10 34 54 53 52 51 50 49 19 18 20 2 1 3 4 9 8 7 6 5 Row S.E. hn Deep China Great yku Some Ryukyus N. uoeIBD Europe Philippines Scotland hlpie Slight Philippines China Caribbean Australia California/Mexico California/Mexico N.E. Europe Global hawaii U.K. Europe utai Easter Australia Atlantic/Caribbean uoeIBD Europe Europe U.S. Gulf N.E. Mediterranean Europe Iberia aiba IBD Caribbean Hawaii Hawaii Hawaii U.S. noei Black Indonesia Coral N.E. Pacific uoeExcluded Europe aiba IBD Caribbean Tropical aiba IBD Caribbean Australia N. Red Mediterranean N. S.E. California California/Mexico N.W. Alaska California Australia Skagerrak Caribbean Mediterranean Mediterranean rln May IBD Ireland Recent California Europe Caribbean Nova Norway France Indo Global Pacific Coral Coral Coral Coral Caribbean N.W. N. New Mediterranean Sweden Baltic Eastern N.W. W. California Great

America rneAn France tatcUsed Atlantic France

Pacific

uoeDiversity Europe U.S.

e IBD Sea ‐ west west

Pacific Australia Pacific Mexico

Zealand

pacific

Atlantic Atlantic Atlantic

Scotia Triangle Triangle Triangle Triangle Triangle Sea Barrier Barrier

Study ca Used ca IBD Ocean

US aii Averaged Pacific

coast coast and

west

ca FST Ocean

einNotes: Region Reef efHigh Reef

B Excluded GBR

coast

invasive

values excludes at present only at only results within

have

FIS

IBD 15

clade split

ibd asexuality;

large small group

invader

values locus

in seen

shows

Cape African from

at

3 latitudinal

north

island not

one for

fig

FST since scale at largest scale,

Tenerife only;

at

set

5a Panama <1000 available, lower

Verde

subregion values

gaussian

small vs

samples chains genotypes:indivs

1940 driven only (excludes

not Pelsaert

south scale.

cline

cluster

km (may

and

scale at for

samples

(excludes

by

expressed

large only distrib

so

No

of 3 in Wadden

be

group

outlier

one (10 regions

used of allelic

4 ibd

different

sampled

km) (6 across locus

at

IBD showed ‐

between

pops. was 16) richness

Sea intermediate as showing

from under migrants

latitude

0.67 species)

populations No

IBD

north chain

IBD

clear IBD ‐

at

see

within

scales only

pairs) selection)

small

fig

(Fig

for 2 them

scale

2b)

2

sections

of

coastline Selkoe & Toonen Appendix Bibliography

Alberto F, Raimondi PT, Reed DC, Coelho NC, Leblois R, Whitmer A, Serrao EA (2010) Habitat continuity and geographic distance predict population genetic differentiation in giant kelp. Ecology 91:49‐ 56 Aurelle D, Guillemaud T, Afonso P, Morato T, Wirtz P, Santos RS, Cancela ML (2003) Genetic study of Coris julis (Osteichtyes, Perciformes, Labridae) evolutionary history and dispersal abilities. C R Biol 326:771‐785 Banks SC, Piggott MP, Williamson JE, Bove U, Holbrook NJ, Beheregaray LB (2007) Oceanic variability and coastal topography shape genetic structure in a long‐dispersing sea urchin. Ecology 88:3055‐ 3064 Bay LK, Caley MJM, Crozier RH (2008a) Meta‐population structure in a coral reef fish demonstrated by genetic data on patterns of migration, extinction and re‐colonisation. BMC Evol Biol 8:Article No.: 248 Bay LK, Caley MJM, Crozier RH (2008b) Meta‐population structure in a coral reef fish demonstrated by genetic data on patterns of migration, extinction and re‐colonisation. BMC Evol Biol 8 Bay LK, Choat JH, van Herwerden L, Robertson DR (2004) High genetic diversities and complex genetic structure in an Indo‐Pacific tropical reef fish (Chlorurus sordidus): evidence of an unstable evolutionary past? Mar Biol 144:757‐767 Beacham TD, Brattey J, Miller KM, Le KD, Withler RE (2002) Multiple stock structure of Atlantic cod (Gadus morhua) off Newfoundland and Labrador determined from genetic variation. ICES J Mar Sci 59:650‐665 Benzie JAH, Williams ST (1997) Genetic structure of giant (Tridacna maxima) populations in the west Pacific is not consistent with dispersal by present‐day ocean currents. Evolution 51:768‐ 783 Billot C, Engel CR, Rousvoal S, Kloareg B, Valero M (2003) Current patterns, habitat discontinuities and population genetic structure: the case of the kelp Laminaria digitata in the English Channel. Mar Ecol Prog Ser 253:111‐121 Bird CE, Holland BS, Bowen BW, Toonen RJ (2007) Contrasting phylogeography in three endemic Hawaiian (Cellana spp.) with similar life histories. Mol Ecol 16:3173‐3186 Cabranes C, Fernandez‐Rueda P, Martinez JL (2008) Genetic structure of Octopus vulgaris around the Iberian Peninsula and Canary Islands as indicated by microsatellite DNA variation. ICES J Mar Sci 65:12‐16 Carreras‐Carbonell J, Macpherson E, Pascual M (2006) Population structure within and between subspecies of the Mediterranean triplefin fish Tripterygion delaisi revealed by highly polymorphic microsatellite loci. Mol Ecol 15:3527‐3539 Charrier G, Durand JD, Quiniou L, Laroche J (2006) An investigation of the population genetic structure of pollack (Pollachius pollachius) based on microsatellite markers. ICES J Mar Sci 63:1705‐1709 Costantini F, Fauvelot C, Abbiati M (2007) Genetic structuring of the temperate gorgonian coral (Corallium rubrum) across the western Mediterranean Sea revealed by microsatellites and nuclear sequences. Mol Ecol 16:5168‐5182 Couceiro L, Barreiro R, Ruiz JM, Sotka EE (2007) Genetic isolation by distance among populations of the netted dog Nassarius reticulatus (L.) along the European Atlantic coastline. J Hered 98:603‐610 Craig MT, Eble JA, Bowen BW, Robertson DR (2007) High genetic connectivity across the Indian and Pacific in the reef fish Myripristis berndti (Holocentridae). Mar Ecol Prog Ser 334:245‐ 254 Curley BG, Gillings MR (2009) Population connectivity in the temperate damselfish Parma microlepis: analyses of genetic structure across multiple spatial scales. Mar Biol 156:381‐393 DeBoer TS, Subia MD, Ambariyanto, Erdmann MV, Kovitvongsa K, Barber PH (2008) Phylogeography and Limited Genetic Connectivity in the Endangered Boring Giant Clam across the Coral Triangle. Conserv Biol 22:1255‐1266 Diaz‐Ferguson E, Haney R, Wares J, Silliman B (2010) Population Genetics of a Trochid Gastropod Broadens Picture of Caribbean Sea Connectivity. Plos One 5 Domingues CP, Creer S, Taylor MI, Queiroga H, Carvalho GR (2010) Genetic structure of Carcinus maenas within its native range: larval dispersal and oceanographic variability. Mar Ecol Prog Ser 410:111‐123 Dupont L, Ellien C, Viard F (2007) Limits to gene flow in the slipper Crepidula fornicata as revealed by microsatellite data and a larval dispersal model. Mar Ecol Prog Ser 349:125‐138 Francisco SM, Castilho R, Soares M, Congiu L, Brito A, Vieira MN, Almada VC (2009) Phylogeography and demographic history of Atherina presbyter (Pisces: Atherinidae) in the North‐eastern Atlantic based on mitochondrial DNA. Mar Biol 156:1421‐1432 Galindo‐Sanchez CE, Gaffney PM, Perez‐Rostro CI, De La Rosa‐Velez J, Candela J, Cruz P (2008) Assessment of genetic diversity oh the eastern Crassostrea virginica in Veracruz, Mexico using microsatellite markers. J Res 27:721‐727 Gold JR, Turner TF (2002) Population structure of red drum (Sciaenops ocellatus) in the northern Gulf of Mexico, as inferred from variation in nuclear‐encoded microsatellites. Mar Biol 140:249‐265 Gomez‐Uchida D, Banks MA (2005) Microsatellite analyses of spatial genetic structure in darkblotched rockfish (Sebastes crameri): Is pooling samples safe? Can J Fish Aquat Sci 62:1874‐1886 Gruenthal KM, Burton RS (2008) Genetic structure of natural populations of the California black (Haliotis cracherodii Leach, 1814), a candidate for endangered species status. J Exp Mar Biol Ecol 355:47‐58 Haig JA, Connolly RM, Hughes JM (2010) Little shrimp left on the shelf: the roles that sea‐level change, ocean currents and continental shelf width play in the genetic connectivity of a seagrass‐ associated species. J Biogeogr 37:1570‐1583 Hellberg ME (1996) Dependence of gene flow on geographic distance in two solitary corals with different larval dispersal capabilities. Evolution 50:1167‐1175 Johansson ML, Banks MA, Glunt KD, Hassel‐Finnegan HM, Buonaccorsi VP (2008) Influence of habitat discontinuity, geographical distance, and oceanography on fine‐scale population genetic structure of copper rockfish (Sebastes caurinus). Mol Ecol 17:3051‐3061 Johnson MS, Black R (1995) NEIGHBORHOOD SIZE AND THE IMPORTANCE OF BARRIERS TO GENE FLOW IN AN INTERTIDAL . Heredity 75:142‐154 Karlsson S, Saillant E, Gold JR (2009) Population structure and genetic variation of lane snapper (Lutjanus synagris) in the northern Gulf of Mexico. Marine Biology (Berlin) 156:1841‐1855 Keeney DB, King TM, Rowe DL, Poulin R (2009) Contrasting mtDNA diversity and population structure in a direct‐developing marine gastropod and its trematode parasites. Mol Ecol 18:4591‐4603 Kenchington EL, Harding GC, Jones MW, Prodohl PA (2009) Pleistocene glaciation events shape genetic structure across the range of the American lobster, Homarus americanus. Mol Ecol 18:1654‐ 1667 Kenchington EL, Patwary MU, Zouros E, Bird CJ (2006) Genetic differentiation in relation to marine landscape in a broadcast‐spawning bivalve mollusc (Placopecten magellanicus). Mol Ecol 15:1781‐1796 Knutsen H, Jorde PE, Andre C, Stenseth NC (2003) Fine‐scaled geographical population structuring in a highly mobile marine species: the Atlantic cod. Mol Ecol 12:385‐394 Kochzius M, Nuryanto A (2008) Strong genetic population structure in the boring giant clam, Tridacna crocea, across the Indo‐Malay Archipelago: implications related to evolutionary processes and connectivity. Mol Ecol 17:3775‐3787 Launey S, Ledu C, Boudry P, Bonhomme F, Naciri‐Graven Y (2002) Geographic structure in the European flat oyster (Ostrea edulis L.) as revealed by microsatellite polymorphism. J Hered 93:331‐338 Lessios HA, Kane J, Robertson DR (2003) Phylogeography of the pantropical sea urchin Tripneustes: Contrasting patterns of population structure between oceans. Evolution 57:2026‐2036 Lourie SA, Green DM, Vincent ACJ (2005) Dispersal, habitat differences, and comparative phylogeography of Southeast Asian seahorses (Syngnathidae : Hippocampus). Mol Ecol 14:1073‐ 1094 Maier E, Tollrian R, Rinkevich B, Nurnberger B (2005) Isolation by distance in the scleractinian coral Seriatopora hystrix from the Red Sea. Mar Biol 147:1109‐1120 Makinen T, Panova M, Johannesson K, Tatarenkov A, Appelqvist C, Andre C (2008) Genetic differentiation on multiple spatial scales in an ecotype‐forming marine snail with limited dispersal: Littorina saxatilis. Biol J Linn Soc 94:31‐40 Marko PB (2004) 'What's larvae got to do with it?' Disparate patterns of post‐glacial population structure in two benthic marine gastropods with identical dispersal potential. Mol Ecol 13:597‐ 611 McInerney CE, Allcock AL, Johnson MP, Prodohl PA (2009) Understanding marine reserve function in a seascape genetics context: Nucella lapillus in Strangford Lough (Northern Ireland) as an example. Aquatic Biology 7:45‐58 Miller‐Sims VC, Gerlach G, Kingsford MJ, Atema J (2008) Dispersal in the spiny damselfish, Acanthochromis polyacanthus, a coral reef fish species without a larval pelagic stage. Mol Ecol 17:5036‐5048 Nielsen JL, Graziano SL, Seitz AC (2010) Fine‐scale population genetic structure in Alaskan Pacific halibut (Hippoglossus stenolepis). Conserv Genet 11:999‐1012 Nishikawa A, Katoh M, Sakai K (2003) Larval settlement rates and gene flow of broadcast‐spawning (Acropora tenuis) and planula‐brooding (Stylophora pistillata) corals. Mar Ecol Prog Ser 256:87‐ 97 Nobrega R, Sole‐Cava AM, Russo CAM (2004) High genetic homogeneity of an intertidal marine invertebrate along 8000 km of the Atlantic coast of the Americas. J Exp Mar Biol Ecol 303:173‐ 181 Perez‐Portela R, Villamor A, Almada V (2010) Phylogeography of the sea star Marthasterias glacialis (Asteroidea, Echinodermata): deep genetic divergence between mitochondrial lineages in the north‐western mediterranean. Mar Biol 157:2015‐2028 Piggott MP, Banks SC, Tung P, Beheregaray LB (2008) Genetic evidence for different scales of connectivity in a marine mollusc. Mar Ecol Prog Ser 365:127‐136 Pinsky ML, Montes HR, Palumbi SR (2010) Using isolation by distance and effective density to estimate dispersal scales in anemonefish. Evolution 64:2688‐2700 Planes S, Fauvelot C (2002) Isolation by distance and vicariance drive genetic structure of a coral reef fish in the Pacific Ocean. Evolution 56:378‐399 Pogson GH, Taggart CT, Mesa KA, Boutilier RG (2001) Isolation by distance in the Atlantic cod, Gadus morhua, at large and small geographic scales. Evolution 55:131‐146 Puebla O, Bermingham E, Guichard F (2009) Estimating dispersal from genetic isolation by distance in a coral reef fish (Hypoplectrus puella). Ecology 90:3087‐3098 Purcell JFH, Cowen RK, Hughes CR, Williams DA (2006) Weak genetic structure indicates strong dispersal limits: a tale of two coral reef fish. Proc R Soc Lond, Ser B: Biol Sci 273:1483‐1490 Purcell JFH, Cowen RK, Hughes CR, Williams DA (2009) Population structure in a common Caribbean coral‐reef fish: implications for larval dispersal and early life‐history traits. J Fish Biol 74:403‐417 Ravago‐Gotanco RG, Magsino RM, Juinio‐Menez MA (2007) Influence of the North Equatorial Current on the population genetic structure of Tridacna crocea ( : Tridacnidae) along the eastern Philippine seaboard. Mar Ecol Prog Ser 336:161‐168 Rios C, Sanz S, Saavedra C, Pena JB (2002) Allozyme variation in populations of , Pecten jacobaeus (L.) and P maximus (L.) ( : Pectinidae), across the Almeria‐Oran front. J Exp Mar Biol Ecol 267:223‐244 Rocha LA, Bass AL, Robertson DR, Bowen BW (2002) Adult habitat preferences, larval dispersal, and the comparative phylogeography of three Atlantic surgeonfishes (Teleostei : Acanthuridae). Mol Ecol 11:243‐252 Rose CG, Paynter KT, Hare MP (2006) Isolation by distance in the , Crassostrea virginica, in Chesapeake Bay. J Hered 97:158‐170 Selkoe KA, Watson JR, White C, Horin TBand others (2010) Taking the chaos out of genetic patchiness: seascape genetics reveals ecological and oceanographic drivers of genetic patterns in three temperate reef species. Mol Ecol 19:3708‐3726 Simon‐Bouhet B, Garcia‐Meunier P, Viard F (2006) Multiple introductions promote range expansion of the mollusc Cyclope neritea (Nassariidae) in France: evidence from mitochondrial sequence data. Mol Ecol 15:1699‐1711 Skarstein TH, Westgaard JI, Fevolden SE (2007) Comparing microsatellite variation in north‐east Atlantic cod (Gadus morhua L.) to genetic structuring as revealed by the pantophysin (Pan I) locus. J Fish Biol 70:271‐290 Stamatis C, Triantafyllidis A, Moutou KA, Mamuris Z (2004) Mitochondrial DNA variation in northeast atlantic and mediterranean populations of norway lobster, Nephrops norvegicus. Mol Ecol 13:1377‐1390 Tatarenkov A, Jonsson RB, Kautsky L, Johannesson K (2007) Genetic structure in populations of Fucus vesiculosus (Phaeophyceae) over spatial scales from 10 m to 800 km. J Phycol 43:675‐685 Todd CD, Lambert WJ, Thorpe JP (1998) The genetic structure of intertidal populations of two species of nudibranch molluscs with planktotrophic and pelagic lecithotrophic larval stages: are pelagic larvae "for" dispersal? J Exp Mar Biol Ecol 228:1‐28 Watts PC, Thorpe JP (2006) Influence of contrasting larval developmental types upon the population‐ genetic structure of cheilostome bryozoans. Mar Biol 149:1093‐1101 Weetman D, Hauser L, Bayes MK, Ellis JR, Shaw PW (2006) Genetic population structure across a range of geographic scales in the commercially exploited marine gastropod Buccinum undatum. Mar Ecol Prog Ser 317:157‐169 White C, Selkoe KA, Watson JR, Siegel DA, Zacherl DC, Toonen RJ (2010a) Ocean currents help explain population genetic structure. Proceedings of the Royal Society B‐Biological Sciences in press:doi: 10.1098/rspb.2009.2214 White TA, Stamford J, Hoelzel AR (2010b) Local selection and population structure in a deep‐sea fish, the roundnose grenadier (Coryphaenoides rupestris). Mol Ecol 19:216‐226 Xia JH, Huang JH, Gong JB, Jiang SG (2008) Significant population genetic structure of yellowfin seabream Acanthopagrus latus in China. J Fish Biol 73:1979‐1992 Yang J, Li Q, Kong L, Zheng X, Wang R (2008) Genetic structure of the veined rapa whelk (Rapana venosa) populations along the coast of China. Biochem Genet 46:539‐548 Yasuda N, Nagai S, Hamaguchi M, Okaji K, Gerard K, Nadaoka K (2009) Gene flow of Acanthaster planci (L.) in relation to ocean currents revealed by microsatellite analysis. Mol Ecol 18:1574‐1590 Zulliger DE, Tanner S, Ruch M, Ribi G (2009) Genetic structure of the high dispersal Atlanto‐ Mediterreanean sea star Astropecten aranciacus revealed by mitochondrial DNA sequences and microsatellite loci. Mar Biol 156:597‐610