ARCHAEOLOGICAL INVENTORY SURVEY of an APPROXIMATELY 90 ACRE PARCEL LĀWA`I AHUPUA`A, KŌLOA DISTRICT, KAUA`I ISLAND, HAWAI`I [TMK: (4) 2-6-002: 001, 004 to 006]

Total Page:16

File Type:pdf, Size:1020Kb

ARCHAEOLOGICAL INVENTORY SURVEY of an APPROXIMATELY 90 ACRE PARCEL LĀWA`I AHUPUA`A, KŌLOA DISTRICT, KAUA`I ISLAND, HAWAI`I [TMK: (4) 2-6-002: 001, 004 to 006] SCS Project Number 799-2 AN ARCHAEOLOGICAL INVENTORY SURVEY OF AN APPROXIMATELY 90 ACRE PARCEL LĀWA`I AHUPUA`A, KŌLOA DISTRICT, KAUA`I ISLAND, HAWAI`I [TMK: (4) 2-6-002: 001, 004 to 006] Prepared By: Rachel Hoerman B.A. and Robert L. Spear, Ph.D. Revised January 2009 Prepared For: The National Tropical Botanical Gardens 3530 Papalina Road, Kalaheo, HI 96741 ACKNOWLEDGEMENTS SCS would like to thank the staff of the National Tropical Botanical Garden, and in particular, Director Chipper Wichman. ii ABSTRACT At the request of Charles “Chipper” Wichman, Director of the National Tropical Botanical Garden (NTBG), Scientific Consultant Services, Inc. (SCS), conducted an Archaeological Reconnaissance Survey, from April 28 to May 11, and an Archaeological Inventory Survey, from May 12 to June 15, 2007, at Allerton Gardens. The project area was comprised of an approximately 90 acre area located in Lāwa`i Ahupua`a, Kōloa District, Kauai Island [TMK: (4) 2-6-002:001,004-006]. During the Archaeological Reconnaissance Survey and Archaeological Inventory Survey six sites were newly identified. The newly identified sites include: Site 50-30-10-893, (SCS Site TS-1), agricultural terraces on the slope along the east side of the Allerton’s house); State Site 50-30-10-894 (SCS Site TS-2), multi-feature Habitation Site at the southeast corner of the property. State Site 50-30-10- 895 (SCS Site TS-3), two terraces located west of the stream; State Site 50-30-10-896 (SCS Site TS-4), a lo`i complex in a hau patch just west of the stream); State Site 50-30-10-897, (SCS Site TS-5), a habitation terrace located behind the Diana’s Fountain; State Site 50-30-10-898, a wall which was part of the Allerton Modifications. In addition, one site previously identified by Kikuchi (1963), State Site 50-30-10-3069 (Kikuchi’s Site 53), and one feature (Feature C of Site 50-30-10-3067, Kikuchi’s 50c), also previously identified by Kikuchi, were relocated and documented. State Site 50-30-10-3069 (Kikuchi’s Site 53) consists of a stone wall located at the southwest end of the project area (Kikuchi 1963:40, 42). Site 50-30-10-3067, Feature C (Kikuchi’s Site 50c) consists of a series of lo`i terraces located along the east and west sides of the stream which were initially identified by Kikuchi (1963: 39, 40). Sites 50-30-10-893 through 50-30-10-898, 50-30-10-3067, Feature C, and 50-30-10-3069 -, have been evaluated for significance according to the established criteria for the Hawai`i State Register of Historic Places §13-275-6. All of these sites have been found to be significant under Criterion D, information content. Due to the wealth of prehistoric and historic archaeological resources in the area, SCS recommends the entire project area be preserved under its current use as a portion of the existing Allerton Gardens. iii TABLE OF CONTENTS ACKNOWLEDGEMENTS............................................................................................................ ii TABLE OF CONTENTS............................................................................................................... iv LIST OF FIGURES ....................................................................................................................... vi INTRODUCTION .......................................................................................................................... 1 SCOPE OF WORK............................................................................................................. 1 PROJECT AREA DESCRIPTION................................................................................................. 4 CLIMATE........................................................................................................................... 4 SOIL DESCRIPTIONS ...................................................................................................... 4 VEGETATION................................................................................................................... 5 CULTURAL HISTORICAL CONTEXT....................................................................................... 7 TRADITIONAL SETTLEMENT PATTERNS ................................................................. 7 THE HISTORIC PERIOD.................................................................................................. 7 1778 to 1840 ........................................................................................................... 7 THE MĀHELE ................................................................................................................... 8 1840’s...................................................................................................................... 8 1850 to 1886 ......................................................................................................... 10 1886 to 1935 McBryde Period.............................................................................. 11 MCBRYDE SUGAR COMPANY ................................................................................... 13 MCBRYDE SETTLEMENT AND AGRICULTURE ..................................................... 14 FISHPOND....................................................................................................................... 19 BEACH............................................................................................................................. 20 CAVE BURIALS.............................................................................................................. 22 PREVIOUS ARCHAEOLOGY.................................................................................................... 23 KŌLOA DISTRICT AND AHUPUA`A SITES .............................................................. 23 LĀWA`I AHUPUA`A SITES .......................................................................................... 24 STATE SITE 50-30-10-893 (SCS TS-1).......................................................................... 29 Feature Description............................................................................................... 30 STATE SITE 50-30-10-894 (SCS TS-2).......................................................................... 32 Feature Description............................................................................................... 34 Excavation Descriptions ....................................................................................... 36 STATE SITE 50-30-10-895 (SCS TS-3).......................................................................... 39 Feature Description............................................................................................... 39 STATE SITE 50-30-10-896 (SCS TS-4).......................................................................... 41 Feature Descriptions ............................................................................................. 41 Excavation Descriptions ....................................................................................... 43 Subsurface Feature Descriptions........................................................................... 44 STATE SITE 50-30-10-897 (SCS TS-5).......................................................................... 46 iv Feature Descriptions ............................................................................................. 49 STATE SITE 50-30-10-898.............................................................................................. 49 Excavation Description......................................................................................... 51 STATE SITE 50-30-10-3067, FEATURE C (KIKUCHI’S SITE 50C)........................... 54 Feature Descriptions ............................................................................................. 54 Excavation Descriptions ....................................................................................... 56 Site -3067 Subsurface Feature Descriptions......................................................... 58 SUMMARY AND DISCUSSION................................................................................................ 60 SITE SIGNIFICANCE ASSESSMENTS AND RECOMMENDATIONS ................................. 61 REFERENCES ............................................................................................................................. 63 APPENDIX A: PROJECT MATERIALS ANALYSIS ................................................................ A APPENDIX B: RADIOCARBON DATA.....................................................................................B v LIST OF FIGURES Figure 1: USGS Koloa Quadrangle Showing the Project Area. .................................................... 2 Figure 2: Tax Map Key (TMK) Showing the Project Area............................................................ 3 Figure 3: Overview of Lāwa`i Valley, View from the South West................................................ 6 Figure 4: Previously Unknown Photo of McBryde’s House on the Beach at Lāwa`i Kai (1938). View to the North. Photo from the Kauai Museum, Palama Album, Picture #2019.608.14. ............................................................................................................... 12 Figure 5: Lāwa`i Valley, View to the Northeast Prior to 1934, from the Kauai Museum Palama Album. .......................................................................................................................... 15 Figure 6: 1927 Photo of Lāwa`i Beach from the Northeast Showing Queen Emma’s Cottage. From the Kauai Museum Palama
Recommended publications
  • Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific Ab Sins Nicholas S
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School March 2019 Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific aB sins Nicholas S. Grondin Louisiana State University, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Climate Commons, Meteorology Commons, and the Physical and Environmental Geography Commons Recommended Citation Grondin, Nicholas S., "Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific asinB s" (2019). LSU Master's Theses. 4864. https://digitalcommons.lsu.edu/gradschool_theses/4864 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. CLIMATOLOGY, VARIABILITY, AND RETURN PERIODS OF TROPICAL CYCLONE STRIKES IN THE NORTHEASTERN AND CENTRAL PACIFIC BASINS A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Geography and Anthropology by Nicholas S. Grondin B.S. Meteorology, University of South Alabama, 2016 May 2019 Dedication This thesis is dedicated to my family, especially mom, Mim and Pop, for their love and encouragement every step of the way. This thesis is dedicated to my friends and fraternity brothers, especially Dillon, Sarah, Clay, and Courtney, for their friendship and support. This thesis is dedicated to all of my teachers and college professors, especially Mrs.
    [Show full text]
  • Status and Population Trends of Hawaii's Native
    Wilson Bull., 105(l), 1993, pp. 142-158 STATUS AND POPULATION TRENDS OF HAWAIIS’ NATIVE WATERBIRDS, 1977-1987 ANDREW ENGILIS, JR. ’ AND THANE K. PRATT* ABSTRACT.- Status and population trends of Hawaiis’ native waterbirds were examined from 1977 through 1987. Waterbird population fluctuations were analyzed in relation to rainfall and land use dynamics. Numbers of Hawaiian Duck (Koloa) (Anus wyvilliana) and Hawaiian Common Moorhen (Gallinula chloropussandvicensis) appeared stable over time; however, surveys were limited. Increase in Black-crowned Night-Heron (Nycticoruxnyctic- orux) abundance appeared linked to expansion of aquaculture, particularly on Oahu, and not to climatic events. Annual rainfall patterns help explain and predict population fluc- tuations and anomalous distribution patterns involving Hawaiian American Coots (Fulica americana alai), moorhens, and Hawaiian Black-necked Stilts (Himantopus mexicanus knudseni).Coot, stilt, and moorhen populations fluctuated with climatic events, and intra- island dispersal to ephemeral wetlands occurred. Stilts exhibited regular inter-island migra- tory behavior, but coots dispersed in relation to major rainfall events. Seasonal fluctuation recorded for coots by past observers is the result of survey techniques not accounting for seasonal dispersal patterns. Received10 Jan. 1992, accepted28 Sept. 1992. The Hawaiian Islands probably have lost, as a result of human activity, more species of birds than any other locality in the world. Extinctions during the first 2000 years of human habitation (Olson and James 1982a) resulted in the loss of 50% of native avian species. Unfortunately this process has accelerated during the past 200 years, and of the remaining 40 endemic species, 70% currently are endangered. Recognizing these trends, resource managers and conservation organizations have attempted to develop and implement essential habitat inventories and management programs.
    [Show full text]
  • Life History, Mating Behavior, and Multiple Paternity in Octopus
    LIFE HISTORY, MATING BEHAVIOR, AND MULTIPLE PATERNITY IN OCTOPUS OLIVERI (BERRY, 1914) (CEPHALOPODA: OCTOPODIDAE) A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI´I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ZOOLOGY DECEMBER 2014 By Heather Anne Ylitalo-Ward Dissertation Committee: Les Watling, Chairperson Rob Toonen James Wood Tom Oliver Jeff Drazen Chuck Birkeland Keywords: Cephalopod, Octopus, Sexual Selection, Multiple Paternity, Mating DEDICATION To my family, I would not have been able to do this without your unending support and love. Thank you for always believing in me. ii ACKNOWLEDGMENTS I would like to thank all of the people who helped me collect the specimens for this study, braving the rocks and the waves in the middle of the night: Leigh Ann Boswell, Shannon Evers, and Steffiny Nelson, you were the hard core tako hunters. I am eternally grateful that you sacrificed your evenings to the octopus gods. Also, thank you to David Harrington (best bucket boy), Bert Tanigutchi, Melanie Hutchinson, Christine Ambrosino, Mark Royer, Chelsea Szydlowski, Ily Iglesias, Katherine Livins, James Wood, Seth Ylitalo-Ward, Jessica Watts, and Steven Zubler. This dissertation would not have happened without the support of my wonderful advisor, Dr. Les Watling. Even though I know he wanted me to study a different kind of “octo” (octocoral), I am so thankful he let me follow my foolish passion for cephalopod sexual selection. Also, he provided me with the opportunity to ride in a submersible, which was one of the most magical moments of my graduate career.
    [Show full text]
  • REEF RUNWAY WAVE PROTECTIVE STRUCTURE, HONOLULU INTERNATIONAL AIRPORT, OAHU, HAWAII, STABILITY PERFORMANCE EVALUATION Robert S
    CHAPTER ONE HUNDRED EIGHTY ONE REEF RUNWAY WAVE PROTECTIVE STRUCTURE, HONOLULU INTERNATIONAL AIRPORT, OAHU, HAWAII, STABILITY PERFORMANCE EVALUATION Robert S. Chun*, Edward K. Noda", Elaine E. Tamaye" Abstract An inspection survey of the Reef Runway Wave Protective Structure at the Honolulu International Airport was accomplished in 1982 to access the performance of the dolos and rock armored structure to date. The inspection showed the structure to be performing adequately considering that the design wave conditions were experienced. Introduction In 1972, the State of Hawaii began construction of an offshore runway at the Honolulu International Airport. This, project, called the Reef Runway, was undertaken to alleviate aircraft noise and safety concerns over metropolitan Honolulu, provide more flexibility for aircraft takeoff and landings, and increase airfield capacity. The project encompasses dredged fill on 1,240 acres of offshore coral reef with a 16,100 foot-long wave protective structure, a 12,000 foot-long by 200 foot-wide runway, 1,350 feet of apron and clear zone bordering the runway, and taxi ways and service roads which connect the runway to shore. The protective structure is of rubblemound construction and armored with 4 and 6 ton dolos concrete units along the deepwater sections. Figure 1 shows a General Plan view of the Reef Runway at the Honolulu International Airport. The project was the subject of environmental controversy, and was held up for approximately one year due to various court actions. Finally, the U.S. Supreme Court, allowed the project to proceed after declining to hear appeals from environmental groups on the adequacy of the Environmental Impact Statement.
    [Show full text]
  • DOCUMENT RESUME ED 262 131 UD 024 468 TITLE Hawaiian
    DOCUMENT RESUME ED 262 131 UD 024 468 TITLE Hawaiian Studies Curriculum Guide. Grade 3. INSTITUTION Hawaii State Dept. of Education, Honolulu. Office of Instructional Services. PUB DATE Jan 85 NOTE 517p.; For the Curriculum Guides for Grades K-1, 2, and 4, see UD 024 466-467, and ED 255 597. PUB TYPE Guides - Classroom Use - Guides (For Teachers) (052) EDRS PRICE MF02/PC21 Plus Postage. DESCRIPTORS *Cultural Awareness; *Cultural Education; Elementary Education; *Environmental Education; Geography; *Grade 3; *Hawaiian; Hawaiians; Instructional Materials; *Learning Activities; Pacific Americans IDENTIFIERS *Hawaii ABSTRACT This curriculum guide suggests activities and educational experiences within a Hawaiian cultural context for Grade 3 students in Hawaiian schools. First, an introduction discussesthe contents of the guide; the relationship of classroom teacher and the kupuna (Hawaiian-speaking elder); the identification and scheduling of Kupunas; and how to use the guide. The remainder of thetext is divided into two major units. Each is preceded byan overview which outlines the subject areas into which Hawaiian Studies instructionis integrated; the emphases or major lesson topics takenup within each subject area; the learning objectives addressed by the instructional activities; and a key to the unit's appendices, which provide cultural information to supplement the activities. Unit I focuseson the location of Hawaii as one of the many groups of islands in the Pacific Ocean. The learning activities suggestedare intended to teach children about place names, flora and fauna,songs, and historical facts about their community, so that they learnto formulate generalizations about location, adaptation, utilization, and conservation of their Hawaiian environment. Unit II presents activities which immerse children in the study of diverse urban and rural communities in Hawaii.
    [Show full text]
  • Opihi Cellana Talcosa (Ko`Ele)
    Aquaculture of the giant opihi Cellana talcosa (ko`ele). Development of an artificial diet. Harry Ako with technical assistance of Nhan Hua Department of Molecular Biosciences and Bioengineering (MBBE), College of Agricultural Sciences and Human Resources University of Hawaii, Manoa Introduction and Background Honolulu Advertiser, Wed, June 1, 2005 •Scientists fear that the largest and most prized species of the hardy 'opihi a uniquely Hawaiian delicacy may be essentially extinct on O'ahu, and the population of other limpets statewide is also on the decline. •“Pupu” in Hawaiian means “snail” and in modern times it is used to mean hors d’oeuvres. Opihi were the most favored pupu traditionally. Opihi • High value potential aquacultured product in Hawaii, $150/gallon with shell on. A century ago, 'opihi pickers were selling 140,000 pounds of the limpets annually. In recent years the number has been less than 10 percent of that, around 13,000 pounds. • They dubbed ‘opihi “the fish of death” because so many people were swept away while prying it off the rocks. www.nature.org Three main species of opihi in Hawaii • Cellana sandwicensis - opihi alinalina – yellow foot – most common – preferred • Cellana exarata - opihi makaiauli – black foot – not preferred • Cellana talcosa - opihi ko`ele – giant opihi – grows fast –lives in calm, deep water – we targeted this http://www2.hawaii.edu/~cbird/Opihi/frames.htm Other views Cellana exarata (opihi makaiauli) Cellana sandwicensis (opihi alinalina) Cellana talcosa (opihi ko`ele) Outline of this talk • To talk story about optimization of capture and holding strategies. Problem: 75% mortality in early days of holding and transferring.
    [Show full text]
  • Hurricane Iniki Make a Plan Now in September 1992 (Photo: FEMA) Below: Plywood Spears a Palm Tree During Hurricane Andrew in Know Your Hazards August 1992
    President’s Message Summer is just around the corner. Kauai is expecting an increase of visitors over 2014. What that means is Nihilani will also experience an increase in vacation renters. Our goal, as well for Owners who operate vacation rentals, is for those visitors to enjoy their trip to Paradise. One of the key objectives for Nihilani is to prevent problems before they occur. In order to achieve that objective, the Board has directed our Site Managers to be proactive with visitors. When the Site Manager(s) are at work and they see people they do not know, they will go over to them and introduce themselves. The Manager will ask if they have had a chance to read the “Short List” of rules. If they do not have a copy, the Manager will provide one. They will point out to them the key rules which visitors often violate. The Managers will also tell the visitor(s), if they have any questions to please contact them. This approach will ensure that the first (and hopefully the last) contact with the Site Manager is a positive one. What the Board expects Owners, who rent their units out for vacation rentals, is to make sure each renter gets a copy of the “Short List” of rules and ask each renter to read them before they arrive. The Board also expects that you to work with your property manager to ensure they are not telling the renters anything that conflicts with the rules. As you know, we have had problems with property managers telling renters they can park anywhere.
    [Show full text]
  • Turbidity Currents Generated by Hurricane Iwa
    Geo-Marine Letters, Vol. 4:5-11 (1984) GEO-MARINE Letters ( 1~;4 Sprlnger-Verlag New York lnc Turbidity Currents Generated by Hurricane Iwa A. T. Dengler, 2 p. Wilde, z E. K. Noda, 3 and W. R. Normark 4 :Marine Sciences Group, Department of Paleontology, University of California, Berkeley, CA 94720, 3E. K. Noda & Associates, 615 Piikoi Street, Suite 1000, Honolulu, HI 96814, and 4United States Geological Survey. 345 Middlefield Road, Menlo Park, CA 94025 Abstract to surface waves [8,101, winds 14,111, and storm surges in rivers [9,12] that resuspend or destabilize accumulated sed- Off southwest Oahu, Hawaii, an array of current sensors recorded four iment. The sediment and water then form a suspension that successive episodes of downslope displacement associated with high-speed cascades down the canyon slopes. In all the above cases, the near-bottom currents of up to 200 cm/s and elevated water temperatures. sediment is terrigenous. This paper presents observations of These episodes coincided with the maximum stonn effects of hurricane several episodes of downslope flow off Kahe Point, Oahu, lwa. Sensors from four moorings recorded increases in depth of as much as 220 m, implying downslope movement of as much as 2.4 km at speeds Hawaii (Fig, 1). The bathymetry at Kahe Point 113] indicates up to 300 cm/s. A succession of slope failures at or above the 110-m shelf a broad (4-kin-wide) reentrant unrelated to a river mouth. break, each resulting in a turbidity current event, is the favored explana- The sediment is a calcareous ooze rather than terrigenous.
    [Show full text]
  • U.S. Coast Guard History Program Disasters Finding
    U.S. Coast Guard History Program Disasters Finding Aid Box 1 A.W. Gill – 5 January 1980 A.W. Gill – 5 January 1980 – News Clippings A.W. Gill – 5 January 1980 – Photographs Aaron – 2 September 1971 AC33 Barge – 18 August 1976 AC33 Barge – 18 August 1976 – Photographs AC 38 – 1 August 1980 AC 38 – 1 August 1980 – Photographs Acapulco – 22 December 1961 Acapulco – 22 December 1961 – News Clippings Achille Lauro – 30 November 1994 – News Clippings Achilles – 9 January 1968 Aco 44 – 9 November 1975 Adlib II – 9 October 1971 Adlib II – 9 October 1971 – News Clippings Addiction – 19 April 1995 Admiral – 5 April 1998 Admiral – 5 April 1998 – News Clippings Adriana – 28 July 1977 Adriatic – 18 January 1999 Adriatic – 18 January 1999 – News Clippings Advance – 16 May 1985 Advent – 18 February 1913 – Photographs Adventurer – 16 April 1983 Adventurer – 16 April 1983 – Photographs Aegean Sea – 10 September 1977 – Photographs Aegis Duty – 4 December 1973 – News Clippings Aegis Duty – 4 December 1973 – Photographs Aeolus – 24 August 1974 Aeolus – 24 August 1974 – News Clippings Aeolus – 24 August 1974 – Photographs Afala – 24 January 1976 1 Afala – 24 January 1976 – News Clippings Affair – 4 November 1985 Afghanistan – 20 January 1979 Afghanistan – 20 January 1979 – News Clippings Agnes – 27 October 1985 Box 2 African Dawn – 5 January 1959 – News Clippings African Dawn – 5 January 1959 – Photographs African Neptune – 7 November 1972 African Queen – 30 December 1958 African Queen – 30 December 1958 – News Clippings African Queen – 30 December 1958 – Photographs African Star-Midwest Cities Collision – 16 March 1968 Agattu – 31 December 1979 Agattu – 31 December 1979 Box 3 Agda – 8 November 1956 – Photographs Ahad – n.d.
    [Show full text]
  • Aspects of Community Ecology on Wave-Exposed
    ASPECTS OF COMMUNITY ECOLOGY ON WAVE-EXPOSED ROCKY HAWAI‘IAN COASTS A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BOTANY (ECOLOGY, EVOLUTION AND CONSERVATION BIOLOGY) DECEMBER 2006 By Christopher Everett Bird Dissertation Committee: Celia M. Smith, Chairperson Kent W. Bridges David C. Duffy Leonard A. Freed E. Alison Kay Halina M. Zaleski We certify that we have read this dissertation and that, in our opinion, it is satisfactory in scope and quality as a dissertation for the degree of Doctor of Philosophy in Botany (Ecology, Evolution and Conservation Biology). DISSERTATION COMMITTEE ________________________________ Chairperson ________________________________ ________________________________ ________________________________ ________________________________ ________________________________ ii Copyright 2006 Christopher Everett Bird All Rights Reserved iii DEDICATION This one goes out to my mom Betsy Bird; my dad George Bird; my grandmother Ethel Bird; my sisters and their families Gwendolyn, Scott, Alex, Mitchell, and Nicholas Bottomley, Evelyn, Mike, Andrew, and Ian Kirner; my best friend John Swistak; my boyz in NL1; my girlz in tha 808; and all the rest of my friends. You are the people who stood by my side, no matter what. Thank you for the good times, the support, and the love. I owe it all to you. iv ACKNOWLEDGMENTS I would like to thank the University of Hawaii Sea Grant College (this is publication XD- 02-02), University of Hawaii Ecology, Evolution and Conservation Biology Program, National Parks Service, and Northwestern Hawaiian Islands National Monument for funding the research presented in this dissertation. This dissertation would not have happened without the inspiration of a few special people.
    [Show full text]
  • Report on the Feasibility of a Wind Resistive Device Grant Program
    Report on the Feasibility of a Wind Resistive Device Grant Program In Accordance with Act 153 Enacted by the Twentieth Legislature of the State of Hawaii Regular Session of 2000 Prepared by the HAWAII HURRICANE RELIEF FUND’S TECHNICAL ADVISORY COMMITTEE ON HAZARD MITIGATION STATE OF HAWAII December 2001 Members of the Technical Advisory Committee on Hazard Mitigation Gary Y.K. Chock Douglas M. Goto Michael P. Hamnett Carolee C. Kubo Ronald K. Migita Lorna A. Nishimitsu Martin M. Simons Gerald H. Takeuchi James Weyman Table of Contents Page No. Executive Summary 1 I. Introduction 2 II. Findings and Recommendations 2 III. Summary of the Results of the Feasibility Study 7 IV. Summary of the Results of the Marketing Study 8 V. Summary of the Results of the Legal Analysis 9 VI. Answers to Additional Questions Raised by Act 153, SLH 2002, and the Related Conference Committee Report No. 138 10 Exhibit A: Proposed Legislation Exhibit B: Report of Applied Research Associates, Inc. Exhibit C: Market Survey Report of QMark Research and Polling** Exhibit D: Marketing Plan of Starr Seigle Communications, Inc.** **The report contained in this Exhibit was prepared prior to the completion of the final report of Applied Research Associates, Inc. dated December 7, 2001 (the “ARA Report”). As a result, certain information contained therein may be superseded by updated information contained in the ARA Report. Report to the Legislature On the Feasibility of a Wind Resistive Device Grant Program Executive Summary Act 153, SLH 2000, requested that the Hawaii Hurricane Relief Fund’s Technical Advisory Committee on Hazard Mitigation study the issue of hazard mitigation and the feasibility of a matching grant program to provide incentives for homeowners to install wind resistive devices to reduce future hurricane losses.
    [Show full text]
  • Air Tropical Cyclone Model for Hawaii
    On September 11, 1992, the most AIR Tropical powerful tropical cyclone to strike the Hawaiian Islands in recorded Cyclone Model history made landfall on Kauai. Packing sustained winds of 140 mph, Hurricane Iniki pummeled Kauai and for Hawaii nearby Oahu, damaging or destroying more than 14,000 homes. AIR TROPICAL CYCLONE MODEL FOR HAWAII Tropical cyclones are rare events in the Hawaiian Islands. During the past 50 years, just eight hurricanes have affected Hawaii, and useful observational and damage data are available for only two of these storms, Hurricane Iwa (1982) and Hurricane Iniki (1992). However, the scope of the damage caused by Iwa and Iniki The Eastern and Central Pacific spawn many tropical cyclones underscores the need for proactive (historical storm tracks are shown here), but only a few reach the Hawaiian Islands. The potential losses, however, can be large. risk management. If Iniki were to strike (Source: AIR) today, AIR estimates that insured losses would exceed USD 3 billion. DON’T BE FOOLED... Because the two most recent storms—Hurricanes Iwa If a storm as powerful as Hurricane and Iniki—have struck Kauai, there is a misperception Iniki were to strike near Honolulu, it that hurricane risk is limited to the western part of the island chain. However, AIR research into earlier would inflict insured losses 11 times Hawaiian cyclones that predate official record-keeping higher than those that would result found that all of the islands are at equal risk. from a recurrence of Iniki. The AIR Overall the AIR model is a Tropical Cyclone Model for Hawaii is comprehensive approach to estimating wind damage with a an essential tool for catastrophe risk remarkable level of information ..
    [Show full text]