U.S. Coast Guard History Program Disasters Finding
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
OCEMOD Inundation Hawaii 2
(This is a sample cover image for this issue. The actual cover is not yet available at this time.) This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Ocean Modelling 52-53 (2012) 54–68 Contents lists available at SciVerse ScienceDirect Ocean Modelling journal homepage: www.elsevier.com/locate/ocemod Tropical cyclone inundation potential on the Hawaiian Islands of Oahu and Kauai ⇑ Andrew B. Kennedy a, , Joannes J. Westerink a, Jane M. Smith b, Mark E. Hope a, Michael Hartman a, Alexandros A. Taflanidis a, Seizo Tanaka a,e, Hans Westerink a, Kwok Fai Cheung c, Tom Smith d, Madeleine Hamann a, Masashi Minamide e, Aina Ota e, Clint Dawson f a Department of Civil Engineering and Geological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA b Coastal and Hydraulics Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA c Department of Ocean and Resources Engineering, University of Hawaii at Manoa, 2540 Dole Street, Holmes Hall 402, Honolulu, HI 96822, USA d US Army Corps of Engineers, Honolulu District, Bldg. -
Jeff Donnelly [[email protected]] Sent: Friday, April 28, 2006 4:55 PM To: [email protected] Subject: Re: Martha's Vineyard and Hurricanes
From: Jeff Donnelly [[email protected]] Sent: Friday, April 28, 2006 4:55 PM To: [email protected] Subject: Re: Martha's Vineyard and Hurricanes Hi Paul... The current hospital location is relatively safe from hurricanes making landfall to the west of Martha's Vineyard. For example storm surge from the 1938 hurricane at that location was between 4 and 6 feet. The location is much more susceptible to nor'easters. You might get 6 feet of surge associated with an intense nor'easter potentially with some large waves on top of that. However, my biggest concern is if an intense hurricane were to slowly pass to the east of the island. This would result in strong north and northeast winds that could pile significant storm surge and waves into Vineyard Haven Harbor. The October 3, 1841 hurricane was just such a storm. One of the key factors is the forward motion of the storm. If the storm track is to the east of the island and it is moving rapidly the speed of forward motion would be subtracted from the rotary winds of the west side of the storm and the duration of strong winds would be less (a couple of hours or less). If the storm moves slowly the duration of onshore hurricane force winds could be more like 6 to 10 hours. In this scenario the hospital might be in peril. You could get between 10 and 15 feet of storm surge in Vineyard Haven Harbor during such an event. From my read of the topographic map it looks like the hospital is between 10 and 20 feet above sea level. -
My Personal Callsign List This List Was Not Designed for Publication However Due to Several Requests I Have Decided to Make It Downloadable
- www.egxwinfogroup.co.uk - The EGXWinfo Group of Twitter Accounts - @EGXWinfoGroup on Twitter - My Personal Callsign List This list was not designed for publication however due to several requests I have decided to make it downloadable. It is a mixture of listed callsigns and logged callsigns so some have numbers after the callsign as they were heard. Use CTL+F in Adobe Reader to search for your callsign Callsign ICAO/PRI IATA Unit Type Based Country Type ABG AAB W9 Abelag Aviation Belgium Civil ARMYAIR AAC Army Air Corps United Kingdom Civil AgustaWestland Lynx AH.9A/AW159 Wildcat ARMYAIR 200# AAC 2Regt | AAC AH.1 AAC Middle Wallop United Kingdom Military ARMYAIR 300# AAC 3Regt | AAC AgustaWestland AH-64 Apache AH.1 RAF Wattisham United Kingdom Military ARMYAIR 400# AAC 4Regt | AAC AgustaWestland AH-64 Apache AH.1 RAF Wattisham United Kingdom Military ARMYAIR 500# AAC 5Regt AAC/RAF Britten-Norman Islander/Defender JHCFS Aldergrove United Kingdom Military ARMYAIR 600# AAC 657Sqn | JSFAW | AAC Various RAF Odiham United Kingdom Military Ambassador AAD Mann Air Ltd United Kingdom Civil AIGLE AZUR AAF ZI Aigle Azur France Civil ATLANTIC AAG KI Air Atlantique United Kingdom Civil ATLANTIC AAG Atlantic Flight Training United Kingdom Civil ALOHA AAH KH Aloha Air Cargo United States Civil BOREALIS AAI Air Aurora United States Civil ALFA SUDAN AAJ Alfa Airlines Sudan Civil ALASKA ISLAND AAK Alaska Island Air United States Civil AMERICAN AAL AA American Airlines United States Civil AM CORP AAM Aviation Management Corporation United States Civil -
Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific Ab Sins Nicholas S
Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School March 2019 Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific aB sins Nicholas S. Grondin Louisiana State University, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Climate Commons, Meteorology Commons, and the Physical and Environmental Geography Commons Recommended Citation Grondin, Nicholas S., "Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific asinB s" (2019). LSU Master's Theses. 4864. https://digitalcommons.lsu.edu/gradschool_theses/4864 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. CLIMATOLOGY, VARIABILITY, AND RETURN PERIODS OF TROPICAL CYCLONE STRIKES IN THE NORTHEASTERN AND CENTRAL PACIFIC BASINS A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Geography and Anthropology by Nicholas S. Grondin B.S. Meteorology, University of South Alabama, 2016 May 2019 Dedication This thesis is dedicated to my family, especially mom, Mim and Pop, for their love and encouragement every step of the way. This thesis is dedicated to my friends and fraternity brothers, especially Dillon, Sarah, Clay, and Courtney, for their friendship and support. This thesis is dedicated to all of my teachers and college professors, especially Mrs. -
Hurricane and Tropical Storm
State of New Jersey 2014 Hazard Mitigation Plan Section 5. Risk Assessment 5.8 Hurricane and Tropical Storm 2014 Plan Update Changes The 2014 Plan Update includes tropical storms, hurricanes and storm surge in this hazard profile. In the 2011 HMP, storm surge was included in the flood hazard. The hazard profile has been significantly enhanced to include a detailed hazard description, location, extent, previous occurrences, probability of future occurrence, severity, warning time and secondary impacts. New and updated data and figures from ONJSC are incorporated. New and updated figures from other federal and state agencies are incorporated. Potential change in climate and its impacts on the flood hazard are discussed. The vulnerability assessment now directly follows the hazard profile. An exposure analysis of the population, general building stock, State-owned and leased buildings, critical facilities and infrastructure was conducted using best available SLOSH and storm surge data. Environmental impacts is a new subsection. 5.8.1 Profile Hazard Description A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (National Oceanic and Atmospheric Administration [NOAA] 2013a). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. -
Status and Population Trends of Hawaii's Native
Wilson Bull., 105(l), 1993, pp. 142-158 STATUS AND POPULATION TRENDS OF HAWAIIS’ NATIVE WATERBIRDS, 1977-1987 ANDREW ENGILIS, JR. ’ AND THANE K. PRATT* ABSTRACT.- Status and population trends of Hawaiis’ native waterbirds were examined from 1977 through 1987. Waterbird population fluctuations were analyzed in relation to rainfall and land use dynamics. Numbers of Hawaiian Duck (Koloa) (Anus wyvilliana) and Hawaiian Common Moorhen (Gallinula chloropussandvicensis) appeared stable over time; however, surveys were limited. Increase in Black-crowned Night-Heron (Nycticoruxnyctic- orux) abundance appeared linked to expansion of aquaculture, particularly on Oahu, and not to climatic events. Annual rainfall patterns help explain and predict population fluc- tuations and anomalous distribution patterns involving Hawaiian American Coots (Fulica americana alai), moorhens, and Hawaiian Black-necked Stilts (Himantopus mexicanus knudseni).Coot, stilt, and moorhen populations fluctuated with climatic events, and intra- island dispersal to ephemeral wetlands occurred. Stilts exhibited regular inter-island migra- tory behavior, but coots dispersed in relation to major rainfall events. Seasonal fluctuation recorded for coots by past observers is the result of survey techniques not accounting for seasonal dispersal patterns. Received10 Jan. 1992, accepted28 Sept. 1992. The Hawaiian Islands probably have lost, as a result of human activity, more species of birds than any other locality in the world. Extinctions during the first 2000 years of human habitation (Olson and James 1982a) resulted in the loss of 50% of native avian species. Unfortunately this process has accelerated during the past 200 years, and of the remaining 40 endemic species, 70% currently are endangered. Recognizing these trends, resource managers and conservation organizations have attempted to develop and implement essential habitat inventories and management programs. -
Hurricane & Tropical Storm
5.8 HURRICANE & TROPICAL STORM SECTION 5.8 HURRICANE AND TROPICAL STORM 5.8.1 HAZARD DESCRIPTION A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (NOAA, 2013). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. The average wind speeds for tropical storms and hurricanes are listed below: . A tropical depression has a maximum sustained wind speeds of 38 miles per hour (mph) or less . A tropical storm has maximum sustained wind speeds of 39 to 73 mph . A hurricane has maximum sustained wind speeds of 74 mph or higher. In the western North Pacific, hurricanes are called typhoons; similar storms in the Indian Ocean and South Pacific Ocean are called cyclones. A major hurricane has maximum sustained wind speeds of 111 mph or higher (NOAA, 2013). Over a two-year period, the United States coastline is struck by an average of three hurricanes, one of which is classified as a major hurricane. Hurricanes, tropical storms, and tropical depressions may pose a threat to life and property. These storms bring heavy rain, storm surge and flooding (NOAA, 2013). The cooler waters off the coast of New Jersey can serve to diminish the energy of storms that have traveled up the eastern seaboard. -
NASA's HS3 Mission Thoroughly Investigates Long-Lived Hurricane Nadine 6 October 2012
NASA's HS3 mission thoroughly investigates long-lived Hurricane Nadine 6 October 2012 hurricane season. Longest-lived Tropical Cyclones As of Oct. 2, Nadine has been alive in the north Atlantic for 21 days. According to NOAA, in the Atlantic Ocean, Hurricane Ginger lasted 28 days in 1971. The Pacific Ocean holds the record, though as Hurricane/Typhoon John lasted 31 days. John was "born" in the Eastern North Pacific, crossed the International Dateline and moved through the Western North Pacific over 31 days during August and September 1994. Nadine, however, is in the top 50 longest-lasting tropical cyclones in either ocean basin. NASA's Global Hawk flew five science missions into Tropical Storm/Hurricane Nadine, plus the transit flight circling around the east side of Hurricane Leslie. This is First Flight into Nadine a composite of the ground tracks of the transit flight to NASA Wallops plus the five science flights. TD means On Sept. 11, as part of NASA's HS3 mission, the Tropical Depression; TS means Tropical Storm. Credit: Global Hawk aircraft took off from NASA Wallops at NASA 7:06 a.m. EDT and headed for Tropical Depression 14, which at the time of take-off, was still a developing low pressure area called System 91L. NASA's Hurricane and Severe Storm Sentinel or At 11 a.m. EDT that day, Tropical Depression 14 HS3 scientists had a fascinating tropical cyclone to was located near 16.3 North latitude and 43.1 West study in long-lived Hurricane Nadine. NASA's longitude, about 1,210 miles (1,950 km) east of the Global Hawk aircraft has investigated Nadine five Lesser Antilles. -
2012-AIR-00014 in the Matter Of: ROBERT STEVEN MAWHINNEY
U.S. Department of Labor Office of Administrative Law Judges 11870 Merchants Walk - Suite 204 Newport News, VA 23606 (757) 591-5140 (757) 591-5150 (FAX) Issue Date: 27 December 2018 CASE NO.: 2012-AIR-00014 In the Matter of: ROBERT STEVEN MAWHINNEY, Complainant, v. TRANSPORT WORKERS UNION LOCAL 591, Respondent. ORDER GRANTING RESPONDENT’S MOTION FOR DISPOSITIVE ACTION AND ORDER GRANTING RESPONDENT’S MOTION FOR SUMMARY DECISION This case arises under the employee protection provisions of the Wendell H. Ford Aviation and Investment Reform Act for the 21st Century (AIR21), 49 U.S.C. § 42121 et seq. and its implementing regulations found at 29 C.F.R. § 1979. The purpose of AIR 21 is to protect employees who report alleged violations of air safety from discrimination and retaliation by their employer. Complainant, Mr. Robert Mawhinney, filed a complaint against American Airlines and Respondent, the Transportation Workers Union Local 591 (TWU). Complainant alleges he was “threatened, ignored, abandoned, and subjected to a hostile work environment” and ultimately terminated from employment on September 23, 2011, by American Airlines acting in concert with TWU.1 To prevail in an AIR 21 claim, a complainant2 must prove by a preponderance of the evidence that he engaged in protected activity, and the respondent subjected him to the unfavorable personnel action alleged in the complaint because he engaged in protected activity. Palmer v. Canadian National Railway/Illinois Central Railroad Co., ARB No. 16-035, 2016 WL 6024269, ALJ No. 2014-FRS-00154 (ARB Sep. 30, 2016); §42121(b)(2)(B)(iii). 1 Mawhinney Complaint filed October 5, 2011 (2011 Complaint). -
ANNUAL SUMMARY Atlantic Hurricane Season of 2005
MARCH 2008 ANNUAL SUMMARY 1109 ANNUAL SUMMARY Atlantic Hurricane Season of 2005 JOHN L. BEVEN II, LIXION A. AVILA,ERIC S. BLAKE,DANIEL P. BROWN,JAMES L. FRANKLIN, RICHARD D. KNABB,RICHARD J. PASCH,JAMIE R. RHOME, AND STACY R. STEWART Tropical Prediction Center, NOAA/NWS/National Hurricane Center, Miami, Florida (Manuscript received 2 November 2006, in final form 30 April 2007) ABSTRACT The 2005 Atlantic hurricane season was the most active of record. Twenty-eight storms occurred, includ- ing 27 tropical storms and one subtropical storm. Fifteen of the storms became hurricanes, and seven of these became major hurricanes. Additionally, there were two tropical depressions and one subtropical depression. Numerous records for single-season activity were set, including most storms, most hurricanes, and highest accumulated cyclone energy index. Five hurricanes and two tropical storms made landfall in the United States, including four major hurricanes. Eight other cyclones made landfall elsewhere in the basin, and five systems that did not make landfall nonetheless impacted land areas. The 2005 storms directly caused nearly 1700 deaths. This includes approximately 1500 in the United States from Hurricane Katrina— the deadliest U.S. hurricane since 1928. The storms also caused well over $100 billion in damages in the United States alone, making 2005 the costliest hurricane season of record. 1. Introduction intervals for all tropical and subtropical cyclones with intensities of 34 kt or greater; Bell et al. 2000), the 2005 By almost all standards of measure, the 2005 Atlantic season had a record value of about 256% of the long- hurricane season was the most active of record. -
Florida Hurricanes and Tropical Storms
FLORIDA HURRICANES AND TROPICAL STORMS 1871-1995: An Historical Survey Fred Doehring, Iver W. Duedall, and John M. Williams '+wcCopy~~ I~BN 0-912747-08-0 Florida SeaGrant College is supported by award of the Office of Sea Grant, NationalOceanic and Atmospheric Administration, U.S. Department of Commerce,grant number NA 36RG-0070, under provisions of the NationalSea Grant College and Programs Act of 1966. This information is published by the Sea Grant Extension Program which functionsas a coinponentof the Florida Cooperative Extension Service, John T. Woeste, Dean, in conducting Cooperative Extensionwork in Agriculture, Home Economics, and Marine Sciences,State of Florida, U.S. Departmentof Agriculture, U.S. Departmentof Commerce, and Boards of County Commissioners, cooperating.Printed and distributed in furtherance af the Actsof Congressof May 8 andJune 14, 1914.The Florida Sea Grant Collegeis an Equal Opportunity-AffirmativeAction employer authorizedto provide research, educational information and other servicesonly to individuals and institutions that function without regardto race,color, sex, age,handicap or nationalorigin. Coverphoto: Hank Brandli & Rob Downey LOANCOPY ONLY Florida Hurricanes and Tropical Storms 1871-1995: An Historical survey Fred Doehring, Iver W. Duedall, and John M. Williams Division of Marine and Environmental Systems, Florida Institute of Technology Melbourne, FL 32901 Technical Paper - 71 June 1994 $5.00 Copies may be obtained from: Florida Sea Grant College Program University of Florida Building 803 P.O. Box 110409 Gainesville, FL 32611-0409 904-392-2801 II Our friend andcolleague, Fred Doehringpictured below, died on January 5, 1993, before this manuscript was completed. Until his death, Fred had spent the last 18 months painstakingly researchingdata for this book. -
Annual Weather/Climate Data Summary 2010 Pacific Island Network
National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Annual Weather/Climate Data Summary 2010 Pacific Island Network Natural Resource Data Series NPS/PACN/NRDS—2012/273 ON THE COVER Sunset at American Memorial Park (AMME), Saipan, Commonwealth of the Northern Mariana Islands. Photograph courtesy of National Park Service staff. Annual Weather/Climate Data Summary 2010 Pacific Island Network Natural Resource Data Series NPS/PACN/NRDS—2012/273 Tonnie L. C. Casey National Park Service Inventory and Monitoring P.O. Box 52 Hawaii National Park, HI 96718 April 2012 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Data Series is intended for the timely release of basic data sets and data summaries. Care has been taken to assure accuracy of raw data values, but a thorough analysis and interpretation of the data has not been completed. Consequently, the initial analyses of data in this report are provisional and subject to change. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. Data in this report were collected and analyzed using methods based on established, peer- reviewed protocols and were analyzed and interpreted within the guidelines of the protocols.