Summary of 2002 Atlantic Tropical Cyclone Activity And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GAO-08-1120 Disaster Recovery: Past Experiences Offer Insights For
United States Government Accountability Office Report to the Committee on Homeland GAO Security and Governmental Affairs, U.S. Senate September 2008 DISASTER RECOVERY Past Experiences Offer Insights for Recovering from Hurricanes Ike and Gustav and Other Recent Natural Disasters GAO-08-1120 September 2008 DISASTER RECOVERY Accountability Integrity Reliability Past Experiences Offer Insights for Recovering from Highlights Hurricanes Ike and Gustav and Other Recent Natural Highlights of GAO-08-1120, a report to the Disasters Committee on Homeland Security and Governmental Affairs, U.S. Senate Why GAO Did This Study What GAO Found This month, Hurricanes Ike and While the federal government provides significant financial assistance after Gustav struck the Gulf Coast major disasters, state and local governments play the lead role in disaster producing widespread damage and recovery. As affected jurisdictions recover from the recent hurricanes and leading to federal major disaster floods, experiences from past disasters can provide insights into potential declarations. Earlier this year, good practices. Drawing on experiences from six major disasters that heavy flooding resulted in similar declarations in seven Midwest occurred from 1989 to 2005, GAO identified the following selected insights: states. In response, federal agencies have provided millions of • Create a clear, implementable, and timely recovery plan. Effective dollars in assistance to help with recovery plans provide a road map for recovery. For example, within short- and long-term recovery. 6 months of the 1995 earthquake in Japan, the city of Kobe created a State and local governments bear recovery plan that identified detailed goals which facilitated coordination the primary responsibility for among recovery stakeholders. -
An Informed System Development Approach to Tropical Cyclone Track and Intensity Forecasting
Linköping Studies in Science and Technology Dissertations. No. 1734 An Informed System Development Approach to Tropical Cyclone Track and Intensity Forecasting by Chandan Roy Department of Computer and Information Science Linköping University SE-581 83 Linköping, Sweden Linköping 2016 Cover image: Hurricane Isabel (2003), NASA, image in public domain. Copyright © 2016 Chandan Roy ISBN: 978-91-7685-854-7 ISSN 0345-7524 Printed by LiU Tryck, Linköping 2015 URL: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-123198 ii Abstract Introduction: Tropical Cyclones (TCs) inflict considerable damage to life and property every year. A major problem is that residents often hesitate to follow evacuation orders when the early warning messages are perceived as inaccurate or uninformative. The root problem is that providing accurate early forecasts can be difficult, especially in countries with less economic and technical means. Aim: The aim of the thesis is to investigate how cyclone early warning systems can be technically improved. This means, first, identifying problems associated with the current cyclone early warning systems, and second, investigating if biologically based Artificial Neural Networks (ANNs) are feasible to solve some of the identified problems. Method: First, for evaluating the efficiency of cyclone early warning systems, Bangladesh was selected as study area, where a questionnaire survey and an in-depth interview were administered. Second, a review of currently operational TC track forecasting techniques was conducted to gain a better understanding of various techniques’ prediction performance, data requirements, and computational resource requirements. Third, a technique using biologically based ANNs was developed to produce TC track and intensity forecasts. -
The Influences of the North Atlantic Subtropical High and the African Easterly Jet on Hurricane Tracks During Strong and Weak Seasons
Meteorology Senior Theses Undergraduate Theses and Capstone Projects 2018 The nflueI nces of the North Atlantic Subtropical High and the African Easterly Jet on Hurricane Tracks During Strong and Weak Seasons Hannah Messier Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/mteor_stheses Part of the Meteorology Commons Recommended Citation Messier, Hannah, "The nflueI nces of the North Atlantic Subtropical High and the African Easterly Jet on Hurricane Tracks During Strong and Weak Seasons" (2018). Meteorology Senior Theses. 40. https://lib.dr.iastate.edu/mteor_stheses/40 This Dissertation/Thesis is brought to you for free and open access by the Undergraduate Theses and Capstone Projects at Iowa State University Digital Repository. It has been accepted for inclusion in Meteorology Senior Theses by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. The Influences of the North Atlantic Subtropical High and the African Easterly Jet on Hurricane Tracks During Strong and Weak Seasons Hannah Messier Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa Alex Gonzalez — Mentor Department of Geological and Atmospheric Sciences, Iowa State University, Ames Iowa Joshua J. Alland — Mentor Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York ABSTRACT The summertime behavior of the North Atlantic Subtropical High (NASH), African Easterly Jet (AEJ), and the Saharan Air Layer (SAL) can provide clues about key physical aspects of a particular hurricane season. More accurate tropical weather forecasts are imperative to those living in coastal areas around the United States to prevent loss of life and property. -
Hurricane and Tropical Storm
State of New Jersey 2014 Hazard Mitigation Plan Section 5. Risk Assessment 5.8 Hurricane and Tropical Storm 2014 Plan Update Changes The 2014 Plan Update includes tropical storms, hurricanes and storm surge in this hazard profile. In the 2011 HMP, storm surge was included in the flood hazard. The hazard profile has been significantly enhanced to include a detailed hazard description, location, extent, previous occurrences, probability of future occurrence, severity, warning time and secondary impacts. New and updated data and figures from ONJSC are incorporated. New and updated figures from other federal and state agencies are incorporated. Potential change in climate and its impacts on the flood hazard are discussed. The vulnerability assessment now directly follows the hazard profile. An exposure analysis of the population, general building stock, State-owned and leased buildings, critical facilities and infrastructure was conducted using best available SLOSH and storm surge data. Environmental impacts is a new subsection. 5.8.1 Profile Hazard Description A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (National Oceanic and Atmospheric Administration [NOAA] 2013a). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. -
US Energy Industry Response to Recent Hurricane Seasons
Hardening and Resiliency U.S. Energy Industry Response to Recent Hurricane Seasons Infrastructure Security and Energy Restoration Office of Electricity Delivery and Energy Reliability U.S. Department of Energy August 2010 For Further Information This report was prepared by the Office of Electricity Delivery and Energy Reliability under the direction of Patricia Hoffman, Assistant Secretary, and William Bryan, Deputy Assistant Secretary. Specific questions about information in this report may be directed to Alice Lippert, Senior Technical Advisor ([email protected]). Contributors include Mindi Farber-DeAnda, Matthew Cleaver, Carleen Lewandowski, and Kateri Young. Cover photo sources: Lineman photo: David H. Lewis/istockphoto.com Pipeline photo: Christian Lagereek/istockphoto.com Refinery photo: Erik de Graaf/istockphoto.com Mobile transformer photo: Deltastar, reproduced with permission. OE/ISER Final Report 8/16/10 i Table of Contents Executive Summary ........................................................................................................................ v Background ..................................................................................................................................... 1 Focus of the Study .......................................................................................................................... 3 Aging Infrastructure and Hurricane Hazards .............................................................................. 5 Storm Surge and Flood Damage ............................................................................................ -
Lessons Learned: Evacuations Management of Hurricane Gustav
4th Symposium on Policy and Socio-Economic Research, American Meteorological Society, Phoenix, AZ, 2009. 2.5 LESSONS LEARNED: EVACUATIONS MANAGEMENT OF HURRICANE GUSTAV Gina M. Eosco1, Mark A. Shafer2, and Barry Keim3 1Department of Communications, University of Oklahoma 2Oklahoma Climatological Survey, University of Oklahoma 3 Department of Geography and Anthropology, Louisiana State University Experience is what you get when you don’t get what you want. The experience of Hurricane Katrina was not what anyone in New Orleans wanted, yet three years after New Orleans was struck by Hurricane Katrina, the city proved they were ready for the next big one. As the National Hurricane Center forecasts started indicating a possible category 3 or stronger hurricane heading towards Louisiana, the city began preparations for evacuation. Gulf coast residents responded with the largest evacuation in U.S. history. Given the contrast with Katrina, why was the response to Gustav so much better? It is true that government officials learned from Katrina, but Katrina was just one milestone along the way toward making New Orleans safer. This paper examines prior recent experience with hurricanes in Louisiana, events surrounding Hurricane Gustav, and Figure 1. Track of Hurricane Georges, September how we have learned from other disasters. Not only 20-27, 1998 (Image source: Unisys did Louisiana officials learn from prior hurricanes, http://weather.unisys.com/hurricane/). but those far-removed from the area of impact learned from their own disaster experiences to hurricane Georges was uncoordinated and chaotic. manage the influx of evacuees. The progression of Each parish had its own separate response plan. -
Federal Disaster Assistance After Hurricanes Katrina, Rita, Wilma, Gustav, and Ike
Federal Disaster Assistance After Hurricanes Katrina, Rita, Wilma, Gustav, and Ike Updated February 26, 2019 Congressional Research Service https://crsreports.congress.gov R43139 Federal Disaster Assistance After Hurricanes Katrina, Rita, Wilma, Gustav, and Ike Summary This report provides information on federal financial assistance provided to the Gulf States after major disasters were declared in Alabama, Florida, Louisiana, Mississippi, and Texas in response to the widespread destruction that resulted from Hurricanes Katrina, Rita, and Wilma in 2005 and Hurricanes Gustav and Ike in 2008. Though the storms happened over a decade ago, Congress has remained interested in the types and amounts of federal assistance that were provided to the Gulf Coast for several reasons. This includes how the money has been spent, what resources have been provided to the region, and whether the money has reached the intended people and entities. The financial information is also useful for congressional oversight of the federal programs provided in response to the storms. It gives Congress a general idea of the federal assets that are needed and can be brought to bear when catastrophic disasters take place in the United States. Finally, the financial information from the storms can help frame the congressional debate concerning federal assistance for current and future disasters. The financial information for the 2005 and 2008 Gulf Coast storms is provided in two sections of this report: 1. Table 1 of Section I summarizes disaster assistance supplemental appropriations enacted into public law primarily for the needs associated with the five hurricanes, with the information categorized by federal department and agency; and 2. -
Hurricane & Tropical Storm
5.8 HURRICANE & TROPICAL STORM SECTION 5.8 HURRICANE AND TROPICAL STORM 5.8.1 HAZARD DESCRIPTION A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (NOAA, 2013). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. The average wind speeds for tropical storms and hurricanes are listed below: . A tropical depression has a maximum sustained wind speeds of 38 miles per hour (mph) or less . A tropical storm has maximum sustained wind speeds of 39 to 73 mph . A hurricane has maximum sustained wind speeds of 74 mph or higher. In the western North Pacific, hurricanes are called typhoons; similar storms in the Indian Ocean and South Pacific Ocean are called cyclones. A major hurricane has maximum sustained wind speeds of 111 mph or higher (NOAA, 2013). Over a two-year period, the United States coastline is struck by an average of three hurricanes, one of which is classified as a major hurricane. Hurricanes, tropical storms, and tropical depressions may pose a threat to life and property. These storms bring heavy rain, storm surge and flooding (NOAA, 2013). The cooler waters off the coast of New Jersey can serve to diminish the energy of storms that have traveled up the eastern seaboard. -
NASA's HS3 Mission Thoroughly Investigates Long-Lived Hurricane Nadine 6 October 2012
NASA's HS3 mission thoroughly investigates long-lived Hurricane Nadine 6 October 2012 hurricane season. Longest-lived Tropical Cyclones As of Oct. 2, Nadine has been alive in the north Atlantic for 21 days. According to NOAA, in the Atlantic Ocean, Hurricane Ginger lasted 28 days in 1971. The Pacific Ocean holds the record, though as Hurricane/Typhoon John lasted 31 days. John was "born" in the Eastern North Pacific, crossed the International Dateline and moved through the Western North Pacific over 31 days during August and September 1994. Nadine, however, is in the top 50 longest-lasting tropical cyclones in either ocean basin. NASA's Global Hawk flew five science missions into Tropical Storm/Hurricane Nadine, plus the transit flight circling around the east side of Hurricane Leslie. This is First Flight into Nadine a composite of the ground tracks of the transit flight to NASA Wallops plus the five science flights. TD means On Sept. 11, as part of NASA's HS3 mission, the Tropical Depression; TS means Tropical Storm. Credit: Global Hawk aircraft took off from NASA Wallops at NASA 7:06 a.m. EDT and headed for Tropical Depression 14, which at the time of take-off, was still a developing low pressure area called System 91L. NASA's Hurricane and Severe Storm Sentinel or At 11 a.m. EDT that day, Tropical Depression 14 HS3 scientists had a fascinating tropical cyclone to was located near 16.3 North latitude and 43.1 West study in long-lived Hurricane Nadine. NASA's longitude, about 1,210 miles (1,950 km) east of the Global Hawk aircraft has investigated Nadine five Lesser Antilles. -
National Weather Service Southeast River Forecast Center
National Weather Service Southeast River Forecast Center Critical Issue: Tropical Season Review 2008 Impact on Southeast U.S. Water Resources Issued: December 18, 2008 Summary: • A normal number of inland-moving tropical systems impacted the region. • T.S. Fay brought record rain and floods to parts of Florida. • Tropical rainfall resulted in significant hydrologic recharge over much of Florida, Alabama, southern Georgia, and central sections of North and South Carolina. • Some severely drought-impacted areas, including North Georgia, western North and South Carolina, and west central Florida, near Tampa, saw limited or no significant hydrologic recharge this season. 1 Southeast River Forecast Center There are several distinct times of the year when “typical” rainfall patterns provide an opportunity for the recharge of key water resources. The primary climatologically-based recharge period (with the exception of the Florida peninsula) is the winter and early spring months. Secondary periods include the tropical season and a small secondary window of severe weather in the fall. Tropical season, from June 1st through November 30th, is potentially a time for soil and reservoir recharge. Most tropical systems arrive in the late summer and early fall, which otherwise tends to be a relatively dry time of the year. Recharge from tropical systems can be “hit or miss.” While some areas may receive extensive rainfall, other nearby areas can remain completely dry. Rainfall will also vary between tropical seasons. Some seasons have been extremely wet (2004 and 2005), while other seasons had little if any tropical activity moving across the Southeast U.S. (2006 and 2007). This reduction of inland-moving tropical activity in 2006 and 2007 aggravated overall drought conditions. -
Tropical Cyclone Report Hurricane Kyle (AL11008) 25-29 September 2008
Tropical Cyclone Report Hurricane Kyle (AL11008) 25-29 September 2008 Lixion A. Avila National Hurricane Center 5 December 2008 Kyle was a category one hurricane on the Saffir-Simpson Hurricane Scale that made landfall in southwestern Nova Scotia. a. Synoptic History The development of Kyle was associated with a tropical wave that moved off the coast of Africa with some convective organization on 12 September. There was a weak low pressure area associated with the wave and the system moved westward and west-southwestward for a few days. As the tropical wave was approaching the Lesser Antilles, it began to interact with a strong upper-level trough over the eastern Caribbean Sea, resulting in an increase in cloudiness and thunderstorms. The surface area of low pressure became better defined as it crossed the Windward Islands and began to develop a larger surface circulation on 19 September. The low pressure area turned toward the northwest and became separated from the wave, which continued its westward track across the Caribbean Sea. The upper-level trough moved westward and weakened, causing small relaxation of westerly shear and allowing the convection associated with the low to become a little more concentrated. The low was near Puerto Rico on 21 September, and continued drifting northwestward. It then spent two days crossing Hispaniola, producing disorganized thunderstorms and a large area of squalls within a convective band over the adjacent Caribbean Sea. During this period, the system lacked a well-defined circulation center as indicated by reconnaissance and local surface data. The low moved northeastward away from Hispaniola, and finally developed a well- defined surface circulation center. -
Atlantic Hurricane Season of 1997
2012 MONTHLY WEATHER REVIEW VOLUME 127 Atlantic Hurricane Season of 1997 EDWARD N. RAPPAPORT Tropical Prediction Center, National Hurricane Center, NOAA/NWS, Miami, Florida (Manuscript received 12 June 1998, in ®nal form 5 October 1998) ABSTRACT The 1997 Atlantic hurricane season is summarized and the year's tropical storms, hurricanes, and one sub- tropical storm are described. The tropical cyclones were relatively few in number, short lived, and weak compared to long-term climatology. Most systems originated outside the deep Tropics. Hurricane Danny was the only system to make landfall. It produced rainfall totals to near 1 m in southern Alabama and is blamed for ®ve deaths. Hurricane Erika was responsible for the season's two other fatalities, in the coastal waters of Puerto Rico. 1. Introduction This is one of the smallest contributions (by percentage) on record by tropical waves. On average, about 60% of A sharp drop in tropical cyclone activity occurred in tropical cyclones originate from tropical waves (Pasch the Atlantic hurricane basin from 1995±96 to 1997 (Ta- et al. 1998). ble 1). Only seven tropical storms formed in 1997, and Historically, many of the strongest Atlantic tropical just three of those reached hurricane strength (Table 2). cyclones develop from tropical waves between the coast This also represents a considerable reduction from the of Africa and the Lesser Antilles in the August±Sep- long-term averages of ten tropical storms and six hur- tember period. Such tropical cyclone formation appears ricanes. The months of August and September were par- to be related to 1) the wave's ``intrinsic'' potential for ticularly quiet.