Ultraviolet Variable Sources in the Kepler Field

Total Page:16

File Type:pdf, Size:1020Kb

Ultraviolet Variable Sources in the Kepler Field Ultraviolet Variable Sources in the Kepler Field by Nestor´ Daniel Olmedo Aguilar Thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN ASTROPHYSICS at the Instituto Nacional de Astrof´ısica, Optica´ y Electronica´ February 2017 Tonantzintla, Puebla Under the supervision of: Ph.D. Miguel Chavez´ INAOE Ph.D. Emanuele Bertone INAOE c INAOE 2017 The author hereby grants to INAOE permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part. Abstract This work presents the UV flux catalog Multi-visit GALEX CAUSE Kepler (MGCK), created from the observations conducted over a period of about 45 days by the Galaxy Evolution Explorer (GALEX) space telescope within the Complete All-Sky Ultravio- let Survey Extension (CAUSE) in August-September 2012. The construction of the catalog was made with the Source Extraction software (SExtractor) in a dual mode us- ing GALEX CAUSE Kepler (GCK) coadded catalog as input to perform the sources detections and their photometric measurements in each tile for each visit. MGCK contains the light curves of 660,490 point sources in the near ultraviolet (NUV) de- tected in the 104 square degrees field observed by the Kepler space telescope. MGCK has 475,164 sources in common with the Kepler Input Catalog (KIC). Approximately 31,000 sources from MGCK present significant variability. The MGCK catalog should enable the UV variability study in the Kepler field of astronomical sources like variable stars, eclipsing stars, UV flares detection, and extragalactic objects, if detected, like AGNs and Quasars, as well the complementary characterization of the Visible variabil- ity. Acknowledgments I express my gratitude to: My thesis directors, Ph.D. Miguel Chavez´ and Ph.D. Emanuele Bertone, for their guidance, teachings, and patience. M.Sc. Manuel Olmedo, fellow group colleague who guided me through the creation of the MGCK catalog. M.Sc. Ricardo Lopez,´ fellow group colleague who guided me through the spectroscopic data reduction process. To my thesis reviewers, for reading it and make useful suggestions. CONACyT, for the financial support it granted me to study my Masters degree. And thus, the opportunity to do science! CONCyTEP, for the scholarship granted in the last months of this thesis. To my mother, father, and brothers, Luis and Manuel, for the encourage- ment they gave me every day. To Alejandra Jurado, Xiomara Garc´ıa and my friends, for all the support. To my generation colleagues, with whom I shared classes and many study hours. v Dedico esta tesis a mi madre, a mi padre, y a mis dos hermanos. Contents Abstract iii 1 The Kepler field in the UV 1 1.1 UV phenomena . .2 1.1.1 Thermal emission in the UV . .2 1.1.2 Stellar activity . .2 1.1.3 Non-thermal processes . .2 1.2 Variable sources in the UV . .2 1.2.1 Cepheids . .3 1.2.2 β Cephei .............................4 1.2.3 Flare Stars . .4 1.2.4 Cataclysmic Variables . .5 1.2.5 Eclipsing binaries and rotational variables . .5 1.3 Contents . .6 2 The GALEX and Kepler missions 7 2.1 Kepler Mission . .7 2.1.1 Kepler telescope . .8 2.1.2 Kepler Field of View . 10 2.1.3 Kepler Input Catalog, Kepler Objects of Interest and other cat- alogs . 10 2.1.4 Kepler ligthcurves and discoveries so far . 11 2.1.5 Kepler K2............................. 12 2.2 Galaxy Evolution Explorer ........................ 14 2.2.1 GALEX telescope . 15 2.2.2 GALEX Complete All-Sky UV Survey Extension (CAUSE) . 15 2.3 The GCK Catalog . 16 2.3.1 GALEX CAUSE proposal on the Kepler Field . 16 2.3.2 Observations . 17 2.3.3 Assembly of a catalog of NUV sources . 18 Image Co-adding . 18 Background and threshold estimations . 19 Source extraction and photometry . 19 ix Artifact Identification . 19 2.3.4 The GCK UV source catalog . 20 3 Multi-visit GALEX CAUSE Kepler Catalog (MGCK) 23 3.1 Detection and photometry . 23 3.1.1 Weighting . 26 3.1.2 Artifact flags . 26 3.1.3 Cross-identification: Association . 27 3.1.4 Photometry . 27 3.1.5 Input files . 28 3.1.6 Extra processing . 28 3.2 Catalog description . 29 3.2.1 Output files . 30 3.3 Catalog quality . 32 4 Sources with Significant Variability 37 4.1 Variability detection algorithm . 37 4.1.1 Discrimination of artifacts and systematic errors . 38 4.1.2 False positives . 40 4.2 Examples of UV variable sources . 44 4.2.1 Eclipsing binary system . 44 4.2.2 Cepheid stars . 44 4.2.3 Cataclysmic variable . 45 4.2.4 Flare events . 46 4.3 Examples of UV variable sources of unidentified nature . 52 4.3.1 One visit event source . 52 4.3.2 Outburst variable . 53 4.3.3 Sources showing flare-like events . 54 4.3.4 Sources showing transit-like events . 55 4.3.5 UV variable - Visible stable source . 57 5 Optical spectroscopic follow-up of MGCK sources of unknown nature 59 5.1 Spectroscopic data reduction . 59 5.2 Spectrum and object’s nature inference . 60 6 Conclusions 63 List of Figures 65 List of Tables 67 A MGCK’s DataFrame 69 Bibliography 75 x Chapter 1 The Kepler field in the UV To study the nature and evolution of astrophysical objects and phenomena, the multi- wavelength observations are a fundamental tool. In the particular case for stars, the observations in the space Ultraviolet (UV) range are an important complement to the optical data, infrared, X-ray, etc. The UV is particularly useful to the study of the stellar emission variability because it is more sensible to the external layers of stellar atmospheres in the case of solar-type stars. This variability is studied through light curves, this is the brightness fluctuations as a function of time. The data obtained by Kepler has revolutionized the study of exoplanets and astro- physics by providing high-precision, high-cadence, continuous lightcurves of tens of thousands of stars (Howell et al. 2014). The Kepler space telescope observed approximately 150,000 stars in the visible range between May 2009 and June 2013 searching for planets through planetary transits (see section 2.1). GALEX space telescope observed the same field in the UV range between August and September 2012, as part of the private fund Complete All-Sky Ultraviolet Survey Extension (CAUSE), in this case by the Cornell University (see subsection 2.3.1). The data were used to create the GALEX CAUSE Kepler (GCK) catalog of Ultraviolet point sources in the Kepler field. The catalog is published in Olmedo et al. (2015). The goal of this work is to create a NUV light curve catalog (multi-visit catalog) of the sources observed by GALEX in the Kepler Field, and to produce a sample of vari- able objects. This catalog will allow the UV study of variable phenomena, described below; in the case of stars and sources also observed by Kepler, a comparison between the visible and the UV ligth curves can be made. Having simultaneous observations offers an exceptional opportunity to study UV-Visible variability and study different phenomena. GALEX observations have approximately 17 visits throughout its month of observations and we expect to find a correlation between the two wavelenght ranges. To illustrate the richness of the information that this catalog can contribute, we show some examples of sources with significant variability. 1 1.1 UV phenomena Before we analyze the GALEX data it is worth to recall some of the potential sources of UV radiation and its variability. In this subsection, we briefly describe some of the physical phenomena that produce UV light in stars and galaxies. They are summarized below: 1.1.1 Thermal emission in the UV Stars radiate energy at all electromagnetic wavelengths with a flux peak defined by its temperature according to the Planck function through the Wien law. Thus, all stars radiate in the UV, but especially the spectral types O and B whose peak is in those wave- lengths. This radiation is affected when stars change their Teff , either in short periods as in the case of pulsating stars or in long timescales as a result of stellar evolution. Thermal Bremsstrahlung emission is generated by the deceleration of an electron after it passes nearly a nucleus or ion field without being captured. The interaction can change the kinetic energy of the electron producing free-free radiation. This also applies for very hot gases with T > 106 K, where hydrogen is fully ionized. 1.1.2 Stellar activity The presence of photospheric features such as spots, faculae and flares (Hall 2008) are associated with chromosphere activity that may produce variations in the UV flux. These phenomena are associated with magnetic fields and are closely related to stellar rotation. 1.1.3 Non-thermal processes This is electromagnetic radiation produced by particles due to physical processes other than their thermal energy. Synchrotron emission occurs when a magnetic field affects a free charge forcing it to accelerate in a spiral orbit. The electron is thus constantly accelerated and will emit electromagnetic radiation in the direction of its velocity vector. Depending on the energy of the electron and the strength of the magnetic field, synchrotron emission can also occur at visible, ultraviolet and X-ray wavelengths1. 1.2 Variable sources in the UV The UV variable sources we expect to find in the GALEX Kepler survey are mostly stellar. Extragalactic transients sources may be found if they undergo significant en- 1http://astronomy:swin:edu:au/cosmos/S/Synchrotron+Emission 2 hancement of UV emission.
Recommended publications
  • BRAS Newsletter August 2013
    www.brastro.org August 2013 Next meeting Aug 12th 7:00PM at the HRPO Dark Site Observing Dates: Primary on Aug. 3rd, Secondary on Aug. 10th Photo credit: Saturn taken on 20” OGS + Orion Starshoot - Ben Toman 1 What's in this issue: PRESIDENT'S MESSAGE....................................................................................................................3 NOTES FROM THE VICE PRESIDENT ............................................................................................4 MESSAGE FROM THE HRPO …....................................................................................................5 MONTHLY OBSERVING NOTES ....................................................................................................6 OUTREACH CHAIRPERSON’S NOTES .........................................................................................13 MEMBERSHIP APPLICATION .......................................................................................................14 2 PRESIDENT'S MESSAGE Hi Everyone, I hope you’ve been having a great Summer so far and had luck beating the heat as much as possible. The weather sure hasn’t been cooperative for observing, though! First I have a pretty cool announcement. Thanks to the efforts of club member Walt Cooney, there are 5 newly named asteroids in the sky. (53256) Sinitiere - Named for former BRAS Treasurer Bob Sinitiere (74439) Brenden - Named for founding member Craig Brenden (85878) Guzik - Named for LSU professor T. Greg Guzik (101722) Pursell - Named for founding member Wally Pursell
    [Show full text]
  • Multiple Star Systems Observed with Corot and Kepler
    Multiple star systems observed with CoRoT and Kepler John Southworth Astrophysics Group, Keele University, Staffordshire, ST5 5BG, UK Abstract. The CoRoT and Kepler satellites were the first space platforms designed to perform high-precision photometry for a large number of stars. Multiple systems dis- play a wide variety of photometric variability, making them natural benefactors of these missions. I review the work arising from CoRoT and Kepler observations of multiple sys- tems, with particular emphasis on eclipsing binaries containing giant stars, pulsators, triple eclipses and/or low-mass stars. Many more results remain untapped in the data archives of these missions, and the future holds the promise of K2, TESS and PLATO. 1 Introduction The CoRoT and Kepler satellites represent the first generation of astronomical space missions capable of large-scale photometric surveys. The large quantity – and exquisite quality – of the data they pro- vided is in the process of revolutionising stellar and planetary astrophysics. In this review I highlight the immense variety of the scientific results from these concurrent missions, as well as the context provided by their precursors and implications for their successors. CoRoT was led by CNES and ESA, launched on 2006/12/27,and retired in June 2013 after an irre- trievable computer failure in November 2012. It performed 24 observing runs, each lasting between 21 and 152days, with a field of viewof 2×1.3◦ ×1.3◦, obtaining light curves of 163000 stars [42]. Kepler was a NASA mission, launched on 2009/03/07and suffering a critical pointing failure on 2013/05/11. It observed the same 105deg2 sky area for its full mission duration, obtaining high-precision light curves of approximately 191000 stars.
    [Show full text]
  • 2014 Observers Challenge List
    2014 TMSP Observer's Challenge Atlas page #s # Object Object Type Common Name RA, DEC Const Mag Mag.2 Size Sep. U2000 PSA 18h31m25s 1 IC 1287 Bright Nebula Scutum 20'.0 295 67 -10°47'45" 18h31m25s SAO 161569 Double Star 5.77 9.31 12.3” -10°47'45" Near center of IC 1287 18h33m28s NGC 6649 Open Cluster 8.9m Integrated 5' -10°24'10" Can be seen in 3/4d FOV with above. Brightest star is 13.2m. Approx 50 stars visible in Binos 18h28m 2 NGC 6633 Open Cluster Ophiuchus 4.6m integrated 27' 205 65 Visible in Binos and is about the size of a full Moon, brightest star is 7.6m +06°34' 17h46m18s 2x diameter of a full Moon. Try to view this cluster with your naked eye, binos, and a small scope. 3 IC 4665 Open Cluster Ophiuchus 4.2m Integrated 60' 203 65 +05º 43' Also check out “Tweedle-dee and Tweedle-dum to the east (IC 4756 and NGC 6633) A loose open cluster with a faint concentration of stars in a rich field, contains about 15-20 stars. 19h53m27s Brightest star is 9.8m, 5 stars 9-11m, remainder about 12-13m. This is a challenge obJect to 4 Harvard 20 Open Cluster Sagitta 7.7m integrated 6' 162 64 +18°19'12" improve your observation skills. Can you locate the miniature coathanger close by at 19h 37m 27s +19d? Constellation star Corona 5 Corona Borealis 55 Trace the 7 stars making up this constellation, observe and list the colors of each star asterism Borealis 15H 32' 55” Theta Corona Borealis Double Star 4.2m 6.6m .97” 55 Theta requires about 200x +31° 21' 32” The direction our Sun travels in our galaxy.
    [Show full text]
  • Photographs Written Historical and Descriptive
    CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY HAER FL-8-B BUILDING AE HAER FL-8-B (John F. Kennedy Space Center, Hanger AE) Cape Canaveral Brevard County Florida PHOTOGRAPHS WRITTEN HISTORICAL AND DESCRIPTIVE DATA HISTORIC AMERICAN ENGINEERING RECORD SOUTHEAST REGIONAL OFFICE National Park Service U.S. Department of the Interior 100 Alabama St. NW Atlanta, GA 30303 HISTORIC AMERICAN ENGINEERING RECORD CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY BUILDING AE (Hangar AE) HAER NO. FL-8-B Location: Hangar Road, Cape Canaveral Air Force Station (CCAFS), Industrial Area, Brevard County, Florida. USGS Cape Canaveral, Florida, Quadrangle. Universal Transverse Mercator Coordinates: E 540610 N 3151547, Zone 17, NAD 1983. Date of Construction: 1959 Present Owner: National Aeronautics and Space Administration (NASA) Present Use: Home to NASA’s Launch Services Program (LSP) and the Launch Vehicle Data Center (LVDC). The LVDC allows engineers to monitor telemetry data during unmanned rocket launches. Significance: Missile Assembly Building AE, commonly called Hangar AE, is nationally significant as the telemetry station for NASA KSC’s unmanned Expendable Launch Vehicle (ELV) program. Since 1961, the building has been the principal facility for monitoring telemetry communications data during ELV launches and until 1995 it processed scientifically significant ELV satellite payloads. Still in operation, Hangar AE is essential to the continuing mission and success of NASA’s unmanned rocket launch program at KSC. It is eligible for listing on the National Register of Historic Places (NRHP) under Criterion A in the area of Space Exploration as Kennedy Space Center’s (KSC) original Mission Control Center for its program of unmanned launch missions and under Criterion C as a contributing resource in the CCAFS Industrial Area Historic District.
    [Show full text]
  • Binocular Double Star Logbook
    Astronomical League Binocular Double Star Club Logbook 1 Table of Contents Alpha Cassiopeiae 3 14 Canis Minoris Sh 251 (Oph) Psi 1 Piscium* F Hydrae Psi 1 & 2 Draconis* 37 Ceti Iota Cancri* 10 Σ2273 (Dra) Phi Cassiopeiae 27 Hydrae 40 & 41 Draconis* 93 (Rho) & 94 Piscium Tau 1 Hydrae 67 Ophiuchi 17 Chi Ceti 35 & 36 (Zeta) Leonis 39 Draconis 56 Andromedae 4 42 Leonis Minoris Epsilon 1 & 2 Lyrae* (U) 14 Arietis Σ1474 (Hya) Zeta 1 & 2 Lyrae* 59 Andromedae Alpha Ursae Majoris 11 Beta Lyrae* 15 Trianguli Delta Leonis Delta 1 & 2 Lyrae 33 Arietis 83 Leonis Theta Serpentis* 18 19 Tauri Tau Leonis 15 Aquilae 21 & 22 Tauri 5 93 Leonis OΣΣ178 (Aql) Eta Tauri 65 Ursae Majoris 28 Aquilae Phi Tauri 67 Ursae Majoris 12 6 (Alpha) & 8 Vul 62 Tauri 12 Comae Berenices Beta Cygni* Kappa 1 & 2 Tauri 17 Comae Berenices Epsilon Sagittae 19 Theta 1 & 2 Tauri 5 (Kappa) & 6 Draconis 54 Sagittarii 57 Persei 6 32 Camelopardalis* 16 Cygni 88 Tauri Σ1740 (Vir) 57 Aquilae Sigma 1 & 2 Tauri 79 (Zeta) & 80 Ursae Maj* 13 15 Sagittae Tau Tauri 70 Virginis Theta Sagittae 62 Eridani Iota Bootis* O1 (30 & 31) Cyg* 20 Beta Camelopardalis Σ1850 (Boo) 29 Cygni 11 & 12 Camelopardalis 7 Alpha Librae* Alpha 1 & 2 Capricorni* Delta Orionis* Delta Bootis* Beta 1 & 2 Capricorni* 42 & 45 Orionis Mu 1 & 2 Bootis* 14 75 Draconis Theta 2 Orionis* Omega 1 & 2 Scorpii Rho Capricorni Gamma Leporis* Kappa Herculis Omicron Capricorni 21 35 Camelopardalis ?? Nu Scorpii S 752 (Delphinus) 5 Lyncis 8 Nu 1 & 2 Coronae Borealis 48 Cygni Nu Geminorum Rho Ophiuchi 61 Cygni* 20 Geminorum 16 & 17 Draconis* 15 5 (Gamma) & 6 Equulei Zeta Geminorum 36 & 37 Herculis 79 Cygni h 3945 (CMa) Mu 1 & 2 Scorpii Mu Cygni 22 19 Lyncis* Zeta 1 & 2 Scorpii Epsilon Pegasi* Eta Canis Majoris 9 Σ133 (Her) Pi 1 & 2 Pegasi Δ 47 (CMa) 36 Ophiuchi* 33 Pegasi 64 & 65 Geminorum Nu 1 & 2 Draconis* 16 35 Pegasi Knt 4 (Pup) 53 Ophiuchi Delta Cephei* (U) The 28 stars with asterisks are also required for the regular AL Double Star Club.
    [Show full text]
  • Lick Observatory Records: Photographs UA.036.Ser.07
    http://oac.cdlib.org/findaid/ark:/13030/c81z4932 Online items available Lick Observatory Records: Photographs UA.036.Ser.07 Kate Dundon, Alix Norton, Maureen Carey, Christine Turk, Alex Moore University of California, Santa Cruz 2016 1156 High Street Santa Cruz 95064 [email protected] URL: http://guides.library.ucsc.edu/speccoll Lick Observatory Records: UA.036.Ser.07 1 Photographs UA.036.Ser.07 Contributing Institution: University of California, Santa Cruz Title: Lick Observatory Records: Photographs Creator: Lick Observatory Identifier/Call Number: UA.036.Ser.07 Physical Description: 101.62 Linear Feet127 boxes Date (inclusive): circa 1870-2002 Language of Material: English . https://n2t.net/ark:/38305/f19c6wg4 Conditions Governing Access Collection is open for research. Conditions Governing Use Property rights for this collection reside with the University of California. Literary rights, including copyright, are retained by the creators and their heirs. The publication or use of any work protected by copyright beyond that allowed by fair use for research or educational purposes requires written permission from the copyright owner. Responsibility for obtaining permissions, and for any use rests exclusively with the user. Preferred Citation Lick Observatory Records: Photographs. UA36 Ser.7. Special Collections and Archives, University Library, University of California, Santa Cruz. Alternative Format Available Images from this collection are available through UCSC Library Digital Collections. Historical note These photographs were produced or collected by Lick observatory staff and faculty, as well as UCSC Library personnel. Many of the early photographs of the major instruments and Observatory buildings were taken by Henry E. Matthews, who served as secretary to the Lick Trust during the planning and construction of the Observatory.
    [Show full text]
  • Onze Melkweg , Door Willy Acke ON4AW
    Sterrenkunde 1 door Willy Acke, ON4AW We bekijken nu gedetailleerder enkele sterren en sterrenbeelden, waarnaar in de reeks weerstanden een inleidende beschrijving te lezen was. 1) Het Sterrenstelsel Perseus Hierboven werd reeds vermeld dat de Zon in de Orionarm of in een vertakking van de Perseusarm ligt. De plaats waar de vertakking zich afsplitst, ligt in het sterrenbeeld Cygnus. De Perseusarm zelf loopt door aan de buitenkant van de vertakking, op ongeveer 2600 lichtjaren van de Zon (de Zon ligt op 22000 tot 30000 lichtjaren van het centrum van de Melkweg). In dit sterrenbeeld ligt de dubbele open sterrenhoop h + χ Persei (NGC 869 en 884), met het blote oog vanop de Aarde zichtbaar. Persei is de tweede helderste ster in het sterrenbeeld Perseus en is een variabele ster. De open sterrenhoop h + χ Perseus bestaat uit een zeer jonge populatie sterren (106 tot 107 jaren), terwijl NGC 188 in het kader van de sterrenevolutie ongeveer tot de oudste sterren (=1010 jaren) van ons melkwegstelsel behoort. De dubbele cluster van Perseus is zichtbaar met het blote oog als een sterke concentratie in de Melkweg. Gevestigd in de noordelijke sterrenhemelhemisfeer ligt ze dichtbij verscheidene andere constellaties of aangrenzende sterrenbeelden uit de legende van Perseus, met inbegrip van Andromeda (het meisje dat hij heeft gered), Cetus (het zeemonster dat hij overwonnen heeft), Cepheus en Cassiopeia (de koninklijke ouders van Andromeda), Driehoek (Triangulum), Ram (Aries), Stier (Taurus), Voerman (Auriga), Giraffe (Camelopardalis). 1 - - In het wintersterrenbeeld Perseus is er een ster die knipoogt. Gedurende 2 dagen aan een stuk blijft ze op een bijna constante helderheid, maar de daaropvolgende 5 uren dempt deze met meer dan 1 magnitude.
    [Show full text]
  • Using Asteroseismology to Characterise Exoplanet Host Stars
    Using asteroseismology to characterise exoplanet host stars Mia S. Lundkvist, Daniel Huber, Victor Silva Aguirre, and William J. Chaplin Abstract The last decade has seen a revolution in the field of asteroseismology – the study of stellar pulsations. It has become a powerful method to precisely characterise exoplanet host stars, and as a consequence also the exoplanets themselves. This syn- ergy between asteroseismology and exoplanet science has flourished in large part due to space missions such as Kepler, which have provided high-quality data that can be used for both types of studies. Perhaps the primary contribution from aster- oseismology to the research on transiting exoplanets is the determination of very precise stellar radii that translate into precise planetary radii, but asteroseismology has also proven useful in constraining eccentricities of exoplanets as well as the dy- namical architecture of planetary systems. In this chapter, we introduce some basic principles of asteroseismology and review current synergies between the two fields. Mia S. Lundkvist Zentrum fur¨ Astronomie der Universitat¨ Heidelberg, Landessternwarte, Konigstuhl¨ 12, 69117 Hei- delberg, DE, and Stellar Astrophysics Centre, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, DK, e-mail: [email protected] Daniel Huber Institute for Astronomy, University of Hawai‘i, 2680 Woodlawn Drive, Honolulu, HI 96822, US and Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006, Aus- tralia, e-mail: [email protected] Victor Silva Aguirre arXiv:1804.02214v2 [astro-ph.SR] 9 Apr 2018 Stellar Astrophysics Centre, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, DK, e-mail: [email protected] William J.
    [Show full text]
  • Arxiv:2006.10868V2 [Astro-Ph.SR] 9 Apr 2021 Spain and Institut D’Estudis Espacials De Catalunya (IEEC), C/Gran Capit`A2-4, E-08034 2 Serenelli, Weiss, Aerts Et Al
    Noname manuscript No. (will be inserted by the editor) Weighing stars from birth to death: mass determination methods across the HRD Aldo Serenelli · Achim Weiss · Conny Aerts · George C. Angelou · David Baroch · Nate Bastian · Paul G. Beck · Maria Bergemann · Joachim M. Bestenlehner · Ian Czekala · Nancy Elias-Rosa · Ana Escorza · Vincent Van Eylen · Diane K. Feuillet · Davide Gandolfi · Mark Gieles · L´eoGirardi · Yveline Lebreton · Nicolas Lodieu · Marie Martig · Marcelo M. Miller Bertolami · Joey S.G. Mombarg · Juan Carlos Morales · Andr´esMoya · Benard Nsamba · KreˇsimirPavlovski · May G. Pedersen · Ignasi Ribas · Fabian R.N. Schneider · Victor Silva Aguirre · Keivan G. Stassun · Eline Tolstoy · Pier-Emmanuel Tremblay · Konstanze Zwintz Received: date / Accepted: date A. Serenelli Institute of Space Sciences (ICE, CSIC), Carrer de Can Magrans S/N, Bellaterra, E- 08193, Spain and Institut d'Estudis Espacials de Catalunya (IEEC), Carrer Gran Capita 2, Barcelona, E-08034, Spain E-mail: [email protected] A. Weiss Max Planck Institute for Astrophysics, Karl Schwarzschild Str. 1, Garching bei M¨unchen, D-85741, Germany C. Aerts Institute of Astronomy, Department of Physics & Astronomy, KU Leuven, Celestijnenlaan 200 D, 3001 Leuven, Belgium and Department of Astrophysics, IMAPP, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands G.C. Angelou Max Planck Institute for Astrophysics, Karl Schwarzschild Str. 1, Garching bei M¨unchen, D-85741, Germany D. Baroch J. C. Morales I. Ribas Institute of· Space Sciences· (ICE, CSIC), Carrer de Can Magrans S/N, Bellaterra, E-08193, arXiv:2006.10868v2 [astro-ph.SR] 9 Apr 2021 Spain and Institut d'Estudis Espacials de Catalunya (IEEC), C/Gran Capit`a2-4, E-08034 2 Serenelli, Weiss, Aerts et al.
    [Show full text]
  • CREATING and USING METADATA SERVICES Increasing the Arcims Time-Out for Arcsde 110 Getting the Best Performance from the Database 110
    Copyright © 2002, 2004 ESRI All rights reserved. Printed in the United States of America. The information contained in this document is the exclusive property of ESRI. This work is protected under United States copyright law and other international treaties and conventions. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage or retrieval system, except as expressly permitted in writing by ESRI. All requests should be sent to Attention: Contracts Manager, ESRI, 380 New York Street, Redlands, CA 92373-8100, USA. The information contained in this document is subject to change without notice. U. S. GOVERNMENT RESTRICTED/LIMITED RIGHTS Any software, documentation, and/or data delivered hereunder is subject to the terms of the License Agreement. In no event shall the U.S. Government acquire greater than RESTRICTED/LIMITED RIGHTS. At a minimum, use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in FAR §52.227-14 Alternates I, II, and III (JUN 1987); FAR §52.227-19 (JUN 1987) and/ or FAR §12.211/12.212 (Commercial Technical Data/Computer Software); and DFARS §252.227-7015 (NOV 1995) (Technical Data) and/or DFARS §227.7202 (Computer Software), as applicable. Contractor/Manufacturer is ESRI, 380 New York Street, Redlands, CA 92373-8100, USA. ESRI, ArcCatalog, ArcExplorer, ArcObjects, ArcGIS, ArcIMS, ArcMap, GIS by ESRI, ArcReader, Spatial Database Engine, SDE, ArcSDE, Geography Network, the ArcGIS logo, the Geography Network logo, www.esri.com, and www.geographynetwork.com are trademarks, registered trademarks, or service marks of ESRI in the United States, the European Community, or certain other jurisdictions.
    [Show full text]
  • <> CRONOLOGIA DE LOS SATÉLITES ARTIFICIALES DE LA
    1 SATELITES ARTIFICIALES. Capítulo 5º Subcap. 10 <> CRONOLOGIA DE LOS SATÉLITES ARTIFICIALES DE LA TIERRA. Esta es una relación cronológica de todos los lanzamientos de satélites artificiales de nuestro planeta, con independencia de su éxito o fracaso, tanto en el disparo como en órbita. Significa pues que muchos de ellos no han alcanzado el espacio y fueron destruidos. Se señala en primer lugar (a la izquierda) su nombre, seguido de la fecha del lanzamiento, el país al que pertenece el satélite (que puede ser otro distinto al que lo lanza) y el tipo de satélite; este último aspecto podría no corresponderse en exactitud dado que algunos son de finalidad múltiple. En los lanzamientos múltiples, cada satélite figura separado (salvo en los casos de fracaso, en que no llegan a separarse) pero naturalmente en la misma fecha y juntos. NO ESTÁN incluidos los llevados en vuelos tripulados, si bien se citan en el programa de satélites correspondiente y en el capítulo de “Cronología general de lanzamientos”. .SATÉLITE Fecha País Tipo SPUTNIK F1 15.05.1957 URSS Experimental o tecnológico SPUTNIK F2 21.08.1957 URSS Experimental o tecnológico SPUTNIK 01 04.10.1957 URSS Experimental o tecnológico SPUTNIK 02 03.11.1957 URSS Científico VANGUARD-1A 06.12.1957 USA Experimental o tecnológico EXPLORER 01 31.01.1958 USA Científico VANGUARD-1B 05.02.1958 USA Experimental o tecnológico EXPLORER 02 05.03.1958 USA Científico VANGUARD-1 17.03.1958 USA Experimental o tecnológico EXPLORER 03 26.03.1958 USA Científico SPUTNIK D1 27.04.1958 URSS Geodésico VANGUARD-2A
    [Show full text]
  • Tabetha Boyajian's CV
    Dr. Tabetha Boyajian Yale University, Department of Astronomy, 52 Hillhouse Ave., New Haven, CT 06520 USA [email protected] • +1 (404) 849-4848 • http://www.astro.yale.edu/tabetha PROFESSIONAL Yale University, Department of Astronomy, New Haven, Connecticut, USA EXPERIENCE Postdoctoral Fellow 2012 – present • Supervisor: Dr. Debra Fischer Center for high Angular Resolution Astronomy (CHARA), Georgia State University Hubble Fellow 2009 – 2012 • Supervisor: Dr. Harold McAlister EDUCATION Georgia State University, Department of Physics and Astronomy, Atlanta, Georgia, USA Doctor of Philosophy (Ph.D.) in Astronomy 2005 – 2009 • Adviser: Dr. Harold McAlister Master of Science (M.S.) in Physics 2003 – 2005 • Adviser: Dr. Douglas Gies College of Charleston, Charleston, South Carolina, USA Bachelor of Science (B.S.) in Physics with concentration in astronomy 1998 – 2003 • Graduated with Departmental Honors PROFESSIONAL Secretary, International Astronomical Union, Division G 2015 – 2018 SERVICE Steering Committee, International Astronomical Union, Division G 2015 – 2018 Review panel member NASA Kepler Guest Observer program, NASA K2 Guest Observer program, NSF-AAG program Referee The Astronomical Journal, Astronomy & Astrophysics, PASA Telescope time allocation committee member CHARA, OPTICON (external) AREAS OF Fundamental properties of stars: diameters, temperatures, exoplanet detection and characterization, SPECIALIZATION Optical/IR interferometry, stellar spectroscopy (radial velocities, abundances, activity), absolute AND INTEREST
    [Show full text]