Biosystematics of Angiosperms, Plant Development and Reproduction

Total Page:16

File Type:pdf, Size:1020Kb

Biosystematics of Angiosperms, Plant Development and Reproduction MBO-06 Vardhman Mahaveer Open University, Kota Biosystematics of Angiosperms, Plant Development and Reproduction MBO-06 Vardhman Mahaveer Open University, Kota Biosystematics of Angiosperms, Plant Development and Reproduction Course Development Committee Chair Person Prof. Ashok Sharma Vice-Chancellor Vardhman Mahaveer Open University, Kota Coordinator and Members Convener Dr. Anuradha Dubey Department of Botany School of Science & Technology Vardhman Mahaveer Open University, Kota Members Prof. L.R.Gurjar Prof. T.N. Bhardwaj Director (Academic) (Special Invite) Vardhman Mahaveer Open University, Former Vice-Chancellor, Kota VMOU, Kota Dr. Arvind Pareek Dr. P.K. Sharma Director (Regional Centre) Department of Botany Vardhman Mahaveer Open University, MSJ College, Kota Bharatpur Prof. B.L. Choudhary Dr. P.P. Paliwal Former Vice-Chancellor, Department of Botany MohanLal Sukhadia University, Udaipur Govt. PG College, Banswara Prof. S.L. Kothari Dr. Ekta Menghani Department of Botany Department of Botany University of Rajasthan, Jaipur JECRC University, Jaipur Dr. G.P. Singh Dr. Neerja Srivastava Department of Botany Department of Botany University of Rajasthan, Jaipur Govt. PG College, Kota Dr. Vandana Sharma Department of Botany Govt. PG College, Kota Editing and Course Writing Editor Dr. G.P. Singh Department of Botany University of Rajasthan, Jaipur Writers: Dr. Amit Kotia 1,2,3,4 Dr. Praveen Soni 9,15, Department of Botany Department of Botany 17 University of Rajasthan, University of Rajasthan, Jaipur Jaipur Dr. Praveen Mohil 5,6,7,8 Dr. Sulekha Joshi 18,19 Department of Botany Department of Botany University of Rajasthan, Govt. College, Kota Jaipur Dr. Jitendra Kumar Verma 10,11,12 Dr. Anuradha Dubey 20 Department of Botany Department of Botany J.D.B. Govt. Girls College, Vardhman Mahaveer Open Kota University, Kota Dr. Subhash C. Verma 13,14,16 Department of Botany P.S. B. Government P. G. College, Shahpura, Bhilwara Academic and Administrative Management Prof. (Dr.) Ashok Sharma Prof. (Dr.) L.R. Gurjar Dr. Arvind Pareek Vice-Chancellor Director Director Vardhman Mahaveer Open Academic & Planning Material Production & Distributio n University, Vardhman Mahaveer Open Department Rawat Bhata Road, Kota University, Kota Vardhman Mahaveer Open University, Kota Production: 2017 ISBN No: All Right reserved. No part of this Book may be reproduced in any form by mimeograph or any other means without permission in writing from V.M. Open University, Kota. Printed and Published on behalf of the Registrar, V.M. Open University, Kota. Printed By: Rajasthan State Cooperative Press Ltd. , Jaipur MBO-06 Vardhman Mahaveer Open University, Kota Index Biosystematics of Angiosperms, Plant Development and Reproduction Unit No. Unit Name Page No. Unit - 1 Origin of Intrapopulation Variation and Phylogeny of 1 Angiosperms Unit - 2 The Species Concept & Plant Nomenclature 19 Unit - 3 Biosystematics 40 Unit - 4 (Part-A) Taxonomic Evidence and Taxonomic Tools – I 58 (Part-B) Taxonomic Evidence and Taxonomic Tools - II 78 Unit - 5 Classification System of Angiosperms 97 Unit - 6 Phytogeography 120 Unit - 7 General Account of Families: I 139 (Ranales, Centrospermae and Amentiferae) Unit - 8 General Account of Families: II 148 (Tubiflorae, Helobiales and Poales) Unit - 9 Introduction to Plant Development and 159 Seed Germination & Growth Unit - 10 Shoot Development 175 Unit - 11 Root Development 237 Unit - 12 Leaf Growth and Differentiation 260 Unit - 13 Introduction to Plant Reproduction 289 Unit - 14 Structure and Development of Male Gametophyte 326 Unit - 15 Structure and Development of Female Gametophyte 358 Unit - 16 Pollination, Pollen- Pistil Interaction and Fertilization 374 Unit - 17 Seed Development and Fruit Growth 413 Unit - 18 Apomixis, Polyembryony and Parthenocarpy 441 Unit - 19 Latent Life-Dormancy 464 Unit - 20 Plant Senescence and Programmed Cell Death 484 MBO-06 Vardhman Mahaveer Open University, Kota Preface The present book entitled “Biosystematics of Angiosperms, Plant Development and Reproduction” has been designed so as to cover the unit-wise syllabus of MBO-06 course for M.Sc. Botany (Final) students of Vardhman Mahaveer Open University, Kota. The basic principles and theory have been explained in simple, concise and lucid manner. Adequate examples, diagrammes, photographs and self- learning exercises have also been included to enable the students to grasp the subject easily. The unit writers have consulted various standard books on the subject and they are thankful to the authors of these reference books. ---------------- MBO-06 Unit - 1 Origin of Intrapopulation Variation and Phylogeny of Angiosperms Structure of the Unit: 1.0 Objectives 1.1 Introduction 1.2 Origin of Intrapopulation Variation 1.2.1 Population and Environment 1.2.2 Ecads and Ecotypes 1.2.3 Evolution and Differentiation of species-various models 1.3 Phylogeny of Angiosperms 1.3. 1 Ancestors of Angiosperms 1.3.2 Time and Place of Origin of Angiosperm 1.3. 3 Primitive Living Angiosperm 1.3. 4 Inter-relationship among the major groups of Angiosperms 1.4 Summary 1. 5 Glossary 1.6 Self-Learning Exercise 1.7 References 1.0 Objectives After going through this unit, you will be understood about: the relationship between the population and environment Ecads and Ecotypes Evolution and Differentiation of species-various models Ancestors of Angiosperms with their Time and Place of Origin Primitive Living Angiosperm Inter-relationship of Angiosperm with other existing groups 1 MBO-06 1.1 Introduction The origin of species is based on the population study as we have to first learn about what kind of population exists in the habitat as they may be of same gene pool and may be some isolation has occured in their gene pool. After the study, the terminology viz. Ecads and Ecotype came, and the difference is that the morphological variation disappear in Ecads when they grow in same habitat which means that these variations are not coded genetically (Euphorbia hirta) where as in Ecotype, the variations do not disappear as the characters are coded genetically (Potentilla glandulosa). This population isolation mechanism resulted in development of new species as the characters have been genetically modified and the speciation process is initiated. There are two methods of speciation viz. Allopatric and Sympatric patterns. Scientists described different models and concepts of species which help in underatanding the species at different levels like- The Biological Species Concept is the concept of species reflecting about the species that a population or series of populations those freely interbreeding here organisms reproductively isolated from other such population. The origin of Angiospems is a massive subject to study and there are some lacunas to correlate the origin of Angiosperm because the fossil record has not provided conclusive information about the origin of angiosperms. But modern science has some how concluded the relation of the major groups and their phylogeny and where they have arisen. Some fossil records show their origin or relation with Pteridospermales, Bennettitales, Cycadales and Pentoxylanean group whereas some botanist show the affinities and origin of Angiosperms with lower group and primitive Angiospems like Ephedrales, Gnetales, Amentiferae, Ranalesccc, and Isoetalean members. The time of origin of Angiosperm is not clear as they suddenly appeared in the Cretaceous period and since this age, angiosperms have became dominant vegetation on the earth. Even the place of origin is also described by different botanist like according to Seward (1931) the Arctic region, Smith (1970) located in South-East Asia, Retallack and Dilcher (1981) believed origin in the Rift valley system adjoining Africa and South America. The primitive living Angiospers are belong to some families this includes Winteraceae, Magnoliaceae, Degeneriaceae, Himantandraceae, Eupomatiaceae, Annonaceae, Canellaceae, and Myristaceae belongs to the orders Magnoliales. Austrobaileyaceae, Amborellaceae, Monimiaceae and Calycanthaceae belong to the order Laurales and in the order Trochodendrales with the famalis Trochodendraceae and Tetracentraceae. Some other like orders Piperales, Nymphaeales, Illiciales and Ranunculales also reported primitive members. 2 MBO-06 1.2 Origin of Intrapopulation Variation 1.2.1 Population and Environment Generally, the population is defined in different ways for different purposes. Population is the group of individuals which are common to appear. The definition which is used largely by taxonomists is “The group of individuals considered to gene-pool together at any one time because of the features they share in common.” It means that the group of plants, growing together, which look similar or a series of such plants which grow in a particular area. Usually in population genetics, the co-habitation of the particular group of individual allows them to exchange their genes. Therefore a breeding population can be defined as “a group of individuals less degree with of crossing and with consequent gene flow”. Two points should be noted here (i) Possibility of inter breeding (ii) Genetic similarity The population is not defined on the basis of morphological characteristics especially at gene level. Population is that in which the individual members share gene and become inbreeding there by sharing a common gene pool. Sirels (1951) categorized population in two distinguished group as Plurispecific and Unispecific population. The Plurispecific
Recommended publications
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • A Checklist of the Vascular Flora of the Mary K. Oxley Nature Center, Tulsa County, Oklahoma
    Oklahoma Native Plant Record 29 Volume 13, December 2013 A CHECKLIST OF THE VASCULAR FLORA OF THE MARY K. OXLEY NATURE CENTER, TULSA COUNTY, OKLAHOMA Amy K. Buthod Oklahoma Biological Survey Oklahoma Natural Heritage Inventory Robert Bebb Herbarium University of Oklahoma Norman, OK 73019-0575 (405) 325-4034 Email: [email protected] Keywords: flora, exotics, inventory ABSTRACT This paper reports the results of an inventory of the vascular flora of the Mary K. Oxley Nature Center in Tulsa, Oklahoma. A total of 342 taxa from 75 families and 237 genera were collected from four main vegetation types. The families Asteraceae and Poaceae were the largest, with 49 and 42 taxa, respectively. Fifty-eight exotic taxa were found, representing 17% of the total flora. Twelve taxa tracked by the Oklahoma Natural Heritage Inventory were present. INTRODUCTION clayey sediment (USDA Soil Conservation Service 1977). Climate is Subtropical The objective of this study was to Humid, and summers are humid and warm inventory the vascular plants of the Mary K. with a mean July temperature of 27.5° C Oxley Nature Center (ONC) and to prepare (81.5° F). Winters are mild and short with a a list and voucher specimens for Oxley mean January temperature of 1.5° C personnel to use in education and outreach. (34.7° F) (Trewartha 1968). Mean annual Located within the 1,165.0 ha (2878 ac) precipitation is 106.5 cm (41.929 in), with Mohawk Park in northwestern Tulsa most occurring in the spring and fall County (ONC headquarters located at (Oklahoma Climatological Survey 2013).
    [Show full text]
  • Grass Genera in Townsville
    Grass Genera in Townsville Nanette B. Hooker Photographs by Chris Gardiner SCHOOL OF MARINE and TROPICAL BIOLOGY JAMES COOK UNIVERSITY TOWNSVILLE QUEENSLAND James Cook University 2012 GRASSES OF THE TOWNSVILLE AREA Welcome to the grasses of the Townsville area. The genera covered in this treatment are those found in the lowland areas around Townsville as far north as Bluewater, south to Alligator Creek and west to the base of Hervey’s Range. Most of these genera will also be found in neighbouring areas although some genera not included may occur in specific habitats. The aim of this book is to provide a description of the grass genera as well as a list of species. The grasses belong to a very widespread and large family called the Poaceae. The original family name Gramineae is used in some publications, in Australia the preferred family name is Poaceae. It is one of the largest flowering plant families of the world, comprising more than 700 genera, and more than 10,000 species. In Australia there are over 1300 species including non-native grasses. In the Townsville area there are more than 220 grass species. The grasses have highly modified flowers arranged in a variety of ways. Because they are highly modified and specialized, there are also many new terms used to describe the various features. Hence there is a lot of terminology that chiefly applies to grasses, but some terms are used also in the sedge family. The basic unit of the grass inflorescence (The flowering part) is the spikelet. The spikelet consists of 1-2 basal glumes (bracts at the base) that subtend 1-many florets or flowers.
    [Show full text]
  • A Visual Guide to Collecting Plant Tissues for DNA
    A visual guide to collecting plant tissues for DNA Collecting kit checklist Silica gel1 Permanent marker and pencil Resealable bags, airtight plastic container Razor blade / Surgical scissors Empty tea bags or coffee filters Ethanol and paper tissue or ethanol wipes Tags or jewellers tags Plant press and collecting book 1. Selection and preparation of fresh plant tissue: Sampling avoided. Breaking up leaf material will bruise the plant tissue, which will result in enzymes being released From a single plant, harvest 3 – 5 mature leaves, or that cause DNA degradation. Ideally, leaf material sample a piece of a leaf, if large (Picture A). Ideally should be cut into smaller fragments with thick a leaf area of 5 – 10 cm2 should be enough, but this midribs being removed (Picture C). If sampling robust amount should be adjusted if the plant material is leaf tissue (e.g. cycads, palms), use a razor blade or rich in water (e.g. a succulent plant). If leaves are surgical scissors (Picture D). small (e.g. ericoid leaves), sample enough material to equate a leaf area of 5 – 10 cm2. If no leaves are Succulent plants available, other parts can be sampled such as leaf buds, flowers, bracts, seeds or even fresh bark. If the If the leaves are succulent, use a razor blade to plant is small, select the biggest specimen, but never remove epidermal slices or scoop out parenchyma combine tissues from different individuals. tissue (Picture E). Cleaning Ideally, collect clean fresh tissues, however if the leaf or plant material is dirty or shows potential contamination (e.g.
    [Show full text]
  • Phylogenetic Reconstruction Prompts Taxonomic Changes in Sauropus, Synostemon and Breynia (Phyllanthaceae Tribe Phyllantheae)
    Blumea 59, 2014: 77–94 www.ingentaconnect.com/content/nhn/blumea RESEARCH ARTICLE http://dx.doi.org/10.3767/000651914X684484 Phylogenetic reconstruction prompts taxonomic changes in Sauropus, Synostemon and Breynia (Phyllanthaceae tribe Phyllantheae) P.C. van Welzen1,2, K. Pruesapan3, I.R.H. Telford4, H.-J. Esser 5, J.J. Bruhl4 Key words Abstract Previous molecular phylogenetic studies indicated expansion of Breynia with inclusion of Sauropus s.str. (excluding Synostemon). The present study adds qualitative and quantitative morphological characters to molecular Breynia data to find more resolution and/or higher support for the subgroups within Breynia s.lat. However, the results show molecular phylogeny that combined molecular and morphological characters provide limited synergy. Morphology confirms and makes the morphology infrageneric groups recognisable within Breynia s.lat. The status of the Sauropus androgynus complex is discussed. Phyllanthaceae Nomenclatural changes of Sauropus species to Breynia are formalised. The genus Synostemon is reinstated. Sauropus Synostemon Published on 1 September 2014 INTRODUCTION Sauropus in the strict sense (excluding Synostemon; Pruesapan et al. 2008, 2012) and Breynia are two closely related tropical A phylogenetic analysis of tribe Phyllantheae (Phyllanthaceae) Asian-Australian genera with up to 52 and 35 species, respec- using DNA sequence data by Kathriarachchi et al. (2006) pro- tively (Webster 1994, Govaerts et al. 2000a, b, Radcliffe-Smith vided a backbone phylogeny for Phyllanthus L. and related 2001). Sauropus comprises mainly herbs and shrubs, whereas genera. Their study recommended subsuming Breynia L. (in- species of Breynia are always shrubs. Both genera share bifid cluding Sauropus Blume), Glochidion J.R.Forst. & G.Forst., or emarginate styles, non-apiculate anthers, smooth seeds and and Synostemon F.Muell.
    [Show full text]
  • Eriachne Triseta Nees Ex Steud
    Grasses of Cape Yorkork - Quinkan Country Eriachne triseta Nees ex Steud. This species is very widespread and common across northern Australia. It is an erect to sometimes drooping, tufted perennial between 60 cm and 120 cm high (Fig. 1). Plants are mostly glabrous with the base of the plant slightly thickened or knotty, and pubescent (softly hairy). Leaf blades are thin and bristle like to 25 cm long, with the flowering branch sparse and often drooping. Eriachne triseta has two bisexual florets (modified flowers) per spikelet (the basic flowering unit), each floret is distinctly, although shortly, three awned, a rare occurrence in the genus (Figs. 2a & b). Fig. 1. Habit of Eriachne triseta FACT SHEET: GRASSES OF CAPE YORK - QUINKAN COUNTRY - Eriachne triseta | PAGE 1 of 3 > BOTANICAL DESCRIPTION Spikelets are few per branch, each spikelet is defined A perennial species 60-120 cm high. The leaves and by two glumes 8-15 mm long, and contains two culms are mostly glabrous with the base of plant bisexual florets, the florets are shorter than the slightly thickened or knotty, pubescent. The leaf glumes. The lemma of each floret is awned, the lemma sheaths are usually half as long as the culm internode, awn is 8-14 mm long, with the palea of each floret and the blades are up to 25 cm long, are convolute, splitting to form two awns slightly shorter than the setaceous (bristle like), finely pointed and often lemma awn, between 6-11.5 mm long (Fig. 2a & b). flexuose (bent from side to side or curved).
    [Show full text]
  • Southern Gulf, Queensland
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • BIODIVERSITY CONSERVATION on the TIWI ISLANDS, NORTHERN TERRITORY: Part 1. Environments and Plants
    BIODIVERSITY CONSERVATION ON THE TIWI ISLANDS, NORTHERN TERRITORY: Part 1. Environments and plants Report prepared by John Woinarski, Kym Brennan, Ian Cowie, Raelee Kerrigan and Craig Hempel. Darwin, August 2003 Cover photo: Tall forests dominated by Darwin stringybark Eucalyptus tetrodonta, Darwin woollybutt E. miniata and Melville Island Bloodwood Corymbia nesophila are the principal landscape element across the Tiwi islands (photo: Craig Hempel). i SUMMARY The Tiwi Islands comprise two of Australia’s largest offshore islands - Bathurst (with an area of 1693 km 2) and Melville (5788 km 2) Islands. These are Aboriginal lands lying about 20 km to the north of Darwin, Northern Territory. The islands are of generally low relief with relatively simple geological patterning. They have the highest rainfall in the Northern Territory (to about 2000 mm annual average rainfall in the far north-west of Melville and north of Bathurst). The human population of about 2000 people lives mainly in the three towns of Nguiu, Milakapati and Pirlangimpi. Tall forests dominated by Eucalyptus miniata, E. tetrodonta, and Corymbia nesophila cover about 75% of the island area. These include the best developed eucalypt forests in the Northern Territory. The Tiwi Islands also include nearly 1300 rainforest patches, with floristic composition in many of these patches distinct from that of the Northern Territory mainland. Although the total extent of rainforest on the Tiwi Islands is small (around 160 km 2 ), at an NT level this makes up an unusually high proportion of the landscape and comprises between 6 and 15% of the total NT rainforest extent. The Tiwi Islands also include nearly 200 km 2 of “treeless plains”, a vegetation type largely restricted to these islands.
    [Show full text]
  • Vascular Plants and a Brief History of the Kiowa and Rita Blanca National Grasslands
    United States Department of Agriculture Vascular Plants and a Brief Forest Service Rocky Mountain History of the Kiowa and Rita Research Station General Technical Report Blanca National Grasslands RMRS-GTR-233 December 2009 Donald L. Hazlett, Michael H. Schiebout, and Paulette L. Ford Hazlett, Donald L.; Schiebout, Michael H.; and Ford, Paulette L. 2009. Vascular plants and a brief history of the Kiowa and Rita Blanca National Grasslands. Gen. Tech. Rep. RMRS- GTR-233. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 44 p. Abstract Administered by the USDA Forest Service, the Kiowa and Rita Blanca National Grasslands occupy 230,000 acres of public land extending from northeastern New Mexico into the panhandles of Oklahoma and Texas. A mosaic of topographic features including canyons, plateaus, rolling grasslands and outcrops supports a diverse flora. Eight hundred twenty six (826) species of vascular plant species representing 81 plant families are known to occur on or near these public lands. This report includes a history of the area; ethnobotanical information; an introductory overview of the area including its climate, geology, vegetation, habitats, fauna, and ecological history; and a plant survey and information about the rare, poisonous, and exotic species from the area. A vascular plant checklist of 816 vascular plant taxa in the appendix includes scientific and common names, habitat types, and general distribution data for each species. This list is based on extensive plant collections and available herbarium collections. Authors Donald L. Hazlett is an ethnobotanist, Director of New World Plants and People consulting, and a research associate at the Denver Botanic Gardens, Denver, CO.
    [Show full text]
  • Lenka Kočková
    MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV BOTANIKY A ZOOLOGIE Velikost genomu a poměr bazí v genomu v čeledi Ranunculaceae Diplomová práce Lenka Kočková Vedoucí práce: Doc. RNDr. Petr Bureš, Ph. D. Brno 2012 Bibliografický záznam Autor: Bc. Lenka Kočková Přírodovědecká fakulta, Masarykova univerzita, Ústav botaniky a zoologie Název práce: Velikost genomu a poměr bazí v genomu v čeledi Ranunculaceae Studijní program: Biologie Studijní obor: Systematická biologie a ekologie (Botanika) Vedoucí práce: Doc. RNDr. Petr Bureš, Ph. D. Akademický rok: 2011/2012 Počet stran: 104 Klíčová slova: Ranunculaceae, průtoková cytometrie, PI/DAPI, DNA obsah, velikost genomu, GC obsah, zastoupení bazí, velikost průduchů, Pignattiho indikační hodnoty Bibliographic Entry Author: Bc. Lenka Kočková Faculty of Science, Masaryk University, Department of Botany and Zoology Title of Thesis: Genome size and genomic base composition in Ranunculaceae Programme: Biology Field of Study: Systematic Biology and Ecology (Botany) Supervisor: Doc. RNDr. Petr Bureš, Ph. D. Academic Year: 2011/2012 Number of Pages: 104 Keywords: Ranunculaceae, flow cytometry, PI/DAPI, DNA content, genome size, GC content, base composition, stomatal size, Pignatti‘s indicator values Abstrakt Pomocí průtokové cytometrie byla změřena velikost genomu a AT/GC genomový poměr u 135 druhů z čeledi Ranunculaceae. U druhů byla naměřena délka a šířka průduchů a z literatury byly získány údaje o počtu chromozomů a ekologii druhů. Velikost genomu se v rámci čeledi liší 63-krát. Nejmenší genom byl naměřen u Aquilegia canadensis (2C = 0,75 pg), největší u Ranunculus lingua (2C = 47,93 pg). Mezi dvěma hlavními podčeleděmi Ranunculoideae a Thalictroideae je ve velikosti genomu markantní rozdíl (2C = 2,48 – 47,94 pg a 0,75 – 4,04 pg).
    [Show full text]
  • Chapter 6 ENUMERATION
    Chapter 6 ENUMERATION . ENUMERATION The spermatophytic plants with their accepted names as per The Plant List [http://www.theplantlist.org/ ], through proper taxonomic treatments of recorded species and infra-specific taxa, collected from Gorumara National Park has been arranged in compliance with the presently accepted APG-III (Chase & Reveal, 2009) system of classification. Further, for better convenience the presentation of each species in the enumeration the genera and species under the families are arranged in alphabetical order. In case of Gymnosperms, four families with their genera and species also arranged in alphabetical order. The following sequence of enumeration is taken into consideration while enumerating each identified plants. (a) Accepted name, (b) Basionym if any, (c) Synonyms if any, (d) Homonym if any, (e) Vernacular name if any, (f) Description, (g) Flowering and fruiting periods, (h) Specimen cited, (i) Local distribution, and (j) General distribution. Each individual taxon is being treated here with the protologue at first along with the author citation and then referring the available important references for overall and/or adjacent floras and taxonomic treatments. Mentioned below is the list of important books, selected scientific journals, papers, newsletters and periodicals those have been referred during the citation of references. Chronicles of literature of reference: Names of the important books referred: Beng. Pl. : Bengal Plants En. Fl .Pl. Nepal : An Enumeration of the Flowering Plants of Nepal Fasc.Fl.India : Fascicles of Flora of India Fl.Brit.India : The Flora of British India Fl.Bhutan : Flora of Bhutan Fl.E.Him. : Flora of Eastern Himalaya Fl.India : Flora of India Fl Indi.
    [Show full text]
  • Reproductive Morphology of Sargentodoxa Cuneata (Lardizabalaceae) and Its Systematic Implications
    Reproductive morphology of Sargentodoxa cuneata (Lardizabalaceae) and its systematic implications. By: Hua-Feng Wang, Bruce K. Kirchoff and Zhi-Xin Zhu Wang, H.-F., Kirchoff, B. K., Qin, H.-N., Zhu, Z.-X. 2009. Reproductive morphology of Sargentodoxa cuneata (Lardizabalaceae) and its systematic implications. Plant Systematics and Evolution 280: 207–217. Made available courtesy of Springer-Verlag. The original publication is available at http://link.springer.com/article/10.1007%2Fs00606-009-0179-3. ***Reprinted with permission. No further reproduction is authorized without written permission from Springer-Verlag. This version of the document is not the version of record. Figures and/or pictures may be missing from this format of the document. *** Abstract: The reproductive morphology of Sargentodoxa cuneata (Oliv) Rehd. et Wils. is investigated through field, herbarium, and laboratory observations. Sargentodoxa may be either dioecious or monoecious. The functionally unisexual flowers are morphologically bisexual, at least developmentally. The anther is tetrasporangiate, and its wall, of which the development follows the basic type, is composed of an epidermis, endothecium, two middle layers, and a tapetum. The tapetum is of the glandular type. Microspore cytokinesis is simultaneous, and the microspore tetrads are tetrahedral. Pollen grains are two-celled when shed. The mature ovule is crassinucellate and bitegmic, and the micropyle is formed only by the inner integument. Megasporocytes undergo meiosis resulting in the formation of four megaspores in a linear tetrad. The functional megaspore develops into an eight-nucleate embryo sac after three rounds of mitosis. The mature embryo sac consists of an egg apparatus (an egg and two synergids), a central cell, and three antipodal cells.
    [Show full text]