Our Wildlife Fact Sheet

Total Page:16

File Type:pdf, Size:1020Kb

Our Wildlife Fact Sheet Our Wildlife Fact Sheet Emu One of the most interesting and The Emu has greatly reduced wings, but long and powerful reptilian-like legs with large feet and sharp recognisable birds found in the claws. Victorian bush is the Emu. With its Their feet have three toes that all face forward, which long reptilian legs, bushy looking enables them to run fast. feathers and sheer size, it’s unmistakable. Scientific name Dromaius novaehollandiae Did you know? The Emu is Australia’s tallest native bird. Emus can’t fly! Australia is the only country in the world where you will find an Emu in the wild. The nest of an Emu can be up to 1.5 metres wide. Figure 1. Emu © I. McCann DSE 2009 An Emu egg can weigh up to 680 grams, which is the equivalent of about 12 chicken eggs. Diet Emus are omnivorous, which means they eat a variety Emus can run at speeds of up to 48 km per hour. of plants and animals. Emus swallow large pebbles to help their stomach grind Their food choice depends on what is available; it can up food. include leaves, grasses, fruits, native plants and The Emu and Kangaroo are on Australia’s Coat of insects. Arms. It is thought they were chosen as they are the Emus seek out the most nutritious part of the plant to only two Australian animals that can’t move backwards. eat in order to help maintain their huge body weight. The Coat of Arms therefore symbolises a nation moving forward. Habitat Description Emus live in a variety of habitats from open arid plains to tropical woodlands. They avoid thickly forested The Emu is a large bird, standing up to 2 m tall and areas. weighing up to 55 kg. It is covered in primitive feathers that are dusky brown Distribution to grey-brown with black tips. Emus occur in all Australian states except Tasmania. The Emu’s neck is bluish black and mostly free of They are found across most of Victoria, although they feathers. Their eyes are yellowish brown to black and avoid densely populated areas and are generally their beak is brown to black. absent from the central district. They move around their home range according to climatic conditions, although will stay in one area if food and water are readily available. wildlife.vic.gov.au Our Wildlife Fact Sheet They can move large distances, travelling at rates of 15 What you can do to help! – 25 km per day. Join a local conservation group. Many groups work on improving habitat for Emus. For more information on how you can improve native habitat on your property, visit the Department of Environment, Land, Water and Planning website at: www.wildlife.vic.gov.au. Be aware of road signs indicating Emus are in an area and slow down when driving. Take caution particularly at dawn and dusk, when Emus are most active. If you do see wildlife when you are driving, be careful and give them plenty of time and space to move off the road. Control your dog, dogs can harass and injure Emus and other wildlife. Figure 2. Recorded occurrences in Victoria Source: Victorian Biodiversity Atlas (records post 1979), version 15/5/2017 Breeding Emus usually pair up in summer and autumn, and mate in winter. Pairs remain together for about five months. Their nest is a scraped area on the ground lined with grass or leaves. The female lays between five and fifteen eggs. The eggs are about the length of a human hand and are dark bluish-green when first laid. Once the eggs are laid, the female leaves the nest and the male takes over the incubation process, by sitting on the eggs to keep them warm. Figure 3. Emu chick. © I. McCann DSE 2009 For eight weeks, the male sits continuously on the eggs. The male rarely eats during this time and as a Further reading result can lose a lot of weight. Simpson, K. and Day, N., (2010), Field guide to the Newly hatched Emu chicks weigh just over 500 g. They birds of Australia, (8th ed), Penguin Books, Australia. are cream-coloured with dark brown stripes. The Morcombe, M., (2004), Field guide to Australian birds, colouration helps to camouflage them from predators. Steve Parish Publishing, Australia. Wild Emus can live for 5 to 10 years. © The State of Victoria Department of Environment, Land, Water and Planning 2017 Accessibility This work is licensed under a Creative Commons Attribution 4.0 International licence. You are free to re-use the work under that If you would like to receive this publication in licence, an alternative format, please telephone the on the condition that you credit the State of Victoria as author. The licence does not apply to any images, photographs or branding, including the Victorian Coat of Arms, DELWP Customer Service Centre on 136186, the Victorian Government logo and the Department of Environment, Land, Water and Planning (DELWP) logo. To view a copy of this licence, visit email [email protected], or http://creativecommons.org/licenses/by/4.0/ via the National Relay Service on 133 677 Disclaimer www.relayservice.com.au. This document is This publication may be of assistance to you but the State of Victoria and its employees do not guarantee that the publication is without flaw of any kind or is wholly appropriate also available on the internet at for your particular purposes and therefore disclaims all liability for any error, loss or other consequence which may arise from you relying on any information in this publication. www.wildlife.vic.gov.au. .
Recommended publications
  • Convergent Regulatory Evolution and the Origin of Flightlessness in Palaeognathous Birds
    bioRxiv preprint doi: https://doi.org/10.1101/262584; this version posted February 8, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Convergent regulatory evolution and the origin of flightlessness in palaeognathous birds Timothy B. Sackton* (1,2), Phil Grayson (2,3), Alison Cloutier (2,3), Zhirui Hu (4), Jun S. Liu (4), Nicole E. Wheeler (5,6), Paul P. Gardner (5,7), Julia A. Clarke (8), Allan J. Baker (9,10), Michele Clamp (1), Scott V. Edwards* (2,3) Affiliations: 1) Informatics Group, Harvard University, Cambridge, USA 2) Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, USA 3) Museum of Comparative Zoology, Harvard University, Cambridge, USA 4) Department of Statistics, Harvard University, Cambridge, USA 5) School of Biological Sciences, University of Canterbury, New Zealand 6) Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK 7) Department of Biochemistry, University of Otago, New Zealand 8) Jackson School of Geosciences, The University of Texas at Austin, Austin, USA 9) Department of Natural History, Royal Ontario Museum, Toronto, Canada 10) Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada *correspondence to: TBS ([email protected]) or SVE ([email protected]) bioRxiv preprint doi: https://doi.org/10.1101/262584; this version posted February 8, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The relative roles of regulatory and protein evolution in the origin and loss of convergent phenotypic traits is a core question in evolutionary biology.
    [Show full text]
  • Ancient DNA Suggests Dwarf and 'Giant' Emu Are Conspecific
    Ancient DNA Suggests Dwarf and ‘Giant’ Emu Are Conspecific Tim H. Heupink, Leon Huynen, David M. Lambert* Griffith School of Environment and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Australia Abstract Background: The King Island Emu (Dromaius ater) of Australia is one of several extinct emu taxa whose taxonomic relationship to the modern Emu (D. novaehollandiae) is unclear. King Island Emu were mainly distinguished by their much smaller size and a reported darker colour compared to modern Emu. Methodology and Results: We investigated the evolutionary relationships between the King Island and modern Emu by the recovery of both nuclear and mitochondrial DNA sequences from sub-fossil remains. The complete mitochondrial control (1,094 bp) and cytochrome c oxidase subunit I (COI) region (1,544 bp), as well as a region of the melanocortin 1 receptor gene (57 bp) were sequenced using a multiplex PCR approach. The results show that haplotypes for King Island Emu fall within the diversity of modern Emu. Conclusions: These data show the close relationship of these emu when compared to other congeneric bird species and indicate that the King Island and modern Emu share a recent common ancestor. King Island emu possibly underwent insular dwarfism as a result of phenotypic plasticity. The close relationship between the King Island and the modern Emu suggests it is most appropriate that the former should be considered a subspecies of the latter. Although both taxa show a close genetic relationship they differ drastically in size. This study also suggests that rates of morphological and neutral molecular evolution are decoupled.
    [Show full text]
  • The Endangered Kiwi: a Review
    REVIEW ARTICLE Folia Zool. – 54(1–2): 1–20 (2005) The endangered kiwi: a review James SALES Bosman street 39, Stellenbosch 7600, South Africa; e-mail: [email protected] Received 13 December 2004; Accepted 1 May 2005 A b s t r a c t . Interest in ratites has necessitated a review of available information on the unique endangered kiwi (Apteryx spp.). Five different species of kiwis, endemic to the three islands of New Zealand, are recognized by the Department of Conservation, New Zealand, according to genetic and biological differences: the North Island Brown Kiwi (Apteryx mantelli), Okarito Brown Kiwi/Rowi (A. rowi), Tokoeka (A. australis), Great Spotted Kiwi/Roroa (A. haastii), and Little Spotted Kiwi (A owenii). As predators were found to be the main reason for declining kiwi numbers, predator control is a main objective of management techniques to prevent kiwis becoming extinct in New Zealand. Further considerations include captive breeding and release, and establishment of kiwi sanctuaries. Body size and bill measurements are different between species and genders within species. Kiwis have the lowest basal rates of metabolism compared with all avian standards. A relative low body temperature (38 ºC), burrowing, a highly developed sense of smell, paired ovaries in females, and a low growth rate, separate kiwis from other avian species. Kiwis have long-term partnerships. Females lay an egg that is approximately 400 % above the allometrically expected value, with an incubation period of 75–85 days. Kiwis mainly feed on soil invertebrate, with the main constituent being earthworms, and are prone to parasites and diseases found in other avian species.
    [Show full text]
  • First Nuclear Genome Assembly of an Extinct Moa Species, the Little Bush
    bioRxiv preprint doi: https://doi.org/10.1101/262816; this version posted July 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. First nuclear genome assembly of an extinct moa species, the little bush moa (Anomalopteryx didiformis) Alison Cloutier1,2*, Timothy B. Sackton3, Phil Grayson1,2, Scott V. Edwards1,2, Allan J. Baker4,5¶ 1Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge MA, 02138 USA 2Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge MA, 02138 USA 3Informatics Group, Harvard University, 38 Oxford Street, Cambridge MA, 02138 USA 4Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcox Street, Toronto ON, M5S 3B2 Canada 5Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto ON, M5S 2C6 Canada ¶Deceased *Corresponding author: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/262816; this version posted July 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT High throughput sequencing (HTS) has revolutionized the field of ancient DNA (aDNA) by facilitating recovery of nuclear DNA for greater inference of evolutionary processes in extinct species than is possible from mitochondrial DNA alone. We used HTS to obtain ancient DNA from the little bush moa (Anomalopteryx didiformis), one of the iconic species of large, flightless birds that became extinct following human settlement of New Zealand in the 13th century.
    [Show full text]
  • Gastrointestinal Parasites of a Population of Emus (Dromaius Novaehollandiae) in Brazil S
    Brazilian Journal of Biology https://doi.org/10.1590/1519-6984.189922 ISSN 1519-6984 (Print) Original Article ISSN 1678-4375 (Online) Gastrointestinal parasites of a population of emus (Dromaius novaehollandiae) in Brazil S. S. M. Galloa , C. S. Teixeiraa , N. B. Ederlib and F. C. R. Oliveiraa* aLaboratório de Sanidade Animal – LSA, Centro de Ciências e Tecnologias Agropecuárias – CCTA, Universidade Estadual do Norte Fluminense – UENF, CEP 28035-302, Campos dos Goytacazes, RJ, Brasil bInstituto do Noroeste Fluminense de Educação Superior – INFES, Universidade Federal Fluminense – UFF, 28470-000, Santo Antônio de Pádua, RJ, Brasil *e-mail: [email protected] Received: January 9, 2018 – Accepted: June 19, 2018 – Distributed: February 28, 2020 (With 2 figures) Abstract Emus are large flightless birds in the ratite group and are native to Australia. Since the mid-1980s, there has been increased interest in the captive breeding of emus for the production of leather, meat and oil. The aim of this study was to identify gastrointestinal parasites in the feces of emus Dromaius novaehollandiae from a South American scientific breeding. Fecal samples collected from 13 birds were examined by direct smears, both with and without centrifugation, as well as by the fecal flotation technique using Sheather’s sugar solution. Trophozoites, cysts and oocysts of protozoa and nematode eggs were morphologically and morphometrically evaluated. Molecular analysis using PCR assays with specific primers for the genera Entamoeba, Giardia and Cryptosporidium were performed. Trophozoites and cysts of Entamoeba spp. and Giardia spp., oocysts of Eimeria spp. and Isospora dromaii, as well as eggs belonging to the Ascaridida order were found in the feces.
    [Show full text]
  • Phylogeny, Transposable Element and Sex Chromosome Evolution of The
    bioRxiv preprint doi: https://doi.org/10.1101/750109; this version posted August 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Phylogeny, transposable element and sex chromosome evolution of the basal lineage of birds Zongji Wang1,2,3,* Jilin Zhang4,*, Xiaoman Xu1, Christopher Witt5, Yuan Deng3, Guangji Chen3, Guanliang Meng3, Shaohong Feng3, Tamas Szekely6,7, Guojie Zhang3,8,9,10,#, Qi Zhou1,2,11,# 1. MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China 2. Department of Molecular Evolution and Development, University of Vienna, Vienna, 1090, Austria 3. BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China 4. Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden 5. Department of Biology and the Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA 6. State Key Laboratory of Biocontrol, Department of Ecology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China 7. Milner Center for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, BA1 7AY, UK 8 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China 9. Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark 10. Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China 11. Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University * These authors contributed equally to the work.
    [Show full text]
  • Emu Production
    This article was originally published online in 1996. It was converted to a PDF file, 10/2001 EMU PRODUCTION Dr. Joan S. Jefferey Extension Veterinarian Texas Agricultural Extension Service The Texas A&M University System Emus are native to Australia. Commercial production there and in the United States is a very recent development. The first emu producer's organization started in Texas in 1989. PRODUCTS Emu products include leather, meat and oil. Leather from emu hides is thinner and finer textured than ostrich leather. Anticipated uses include clothing and accessories. Emu meat, like ostrich meat, is being promoted as a low-fat, low-cholesterol red meat. Slaughter statistics from Emu Ranchers Incorporated (ERI) report average carcass weight is 80 pounds, with a 53.75 percent dressed yield. The average meat per carcass is 26 pounds and average fat is 17 pounds. ERI anticipates the sale price of emu meat to the public will be $20.00 per pound. A private company is processing under the name brand New Breed(r). New Breed(r) meat products include sausage, hot links and summer sausage at $15.00 per pound, jerky at $5.00 per packet and steak at $20.00 per pound. Emu oil, rendered from emu fat, is being used in skin care products in Australia (Emmuman(r)). One emu will yield 4 to 5 liters of oil. Emu producers in the U.S. are developing products and have two nearing the market stage: Emuri(r) Daytime Skin Therapy with Sunscreen (spf 8)- 1.7 ounces for $36.00; and Emuri(r) Night Revitalizing Cream - 1.7 ounces for $45.00.
    [Show full text]
  • Insight Into One Health Approach: Endoparasite Infections in Captive Wildlife in Bangladesh
    pathogens Article Insight into One Health Approach: Endoparasite Infections in Captive Wildlife in Bangladesh Tilak Chandra Nath 1,2 , Keeseon S. Eom 1,3, Seongjun Choe 1 , Shahadat Hm 4, Saiful Islam 2 , Barakaeli Abdieli Ndosi 1, Yeseul Kang 5, Mohammed Mebarek Bia 5, Sunmin Kim 5, Chatanun Eamudomkarn 5, Hyeong-Kyu Jeon 1, Hansol Park 3,5,* and Dongmin Lee 3,5,* 1 Department of Parasitology, School of Medicine, Chungbuk National University, Cheongju 28644, Korea; [email protected] (T.C.N.); [email protected] (K.S.E.); [email protected] (S.C.); [email protected] (B.A.N.); [email protected] (H.-K.J.) 2 Department of Parasitology, Sylhet Agricultural University, Sylhet 3100, Bangladesh; [email protected] 3 International Parasite Resource Bank, Cheongju 28644, Korea 4 Rangpur Zoological and Recreational Garden, Rangpur 5404, Bangladesh; [email protected] 5 Parasite Research Center, Chungbuk National University, Cheongju 28644, Korea; [email protected] (Y.K.); [email protected] (M.M.B.); [email protected] (S.K.); [email protected] (C.E.) * Correspondence: [email protected] (H.P.); [email protected] (D.L.) Abstract: Introduction: Endoparasites in captive wildlife might pose a threat to public health; however, very few studies have been conducted on this issue, and much remains to be learned, especially in limited-resource settings. This study aimed to investigate endoparasites of captive wildlife in Citation: Nath, T.C.; Eom, K.S.; Choe, S.; Hm, S.; Islam, S.; Ndosi, B.A.; Bangladesh. Perception and understanding of veterinarians regarding one health and zoonoses were Kang, Y.; Bia, M.M.; Kim, S.; also assessed.
    [Show full text]
  • Husbandry Guidelines For
    Kelly Swarbrick 1068 Certificate III in Captive Animals 16/11/09 RUV30204 Husbandry Guidelines for Kelly Swarbrick 2008 Emus Dromaius novaehollandiae Aves: Casuariidae Compiler: Kelly Swarbrick th Date of Preparation: 16 November 2009 Western Sydney Institute of TAFE, Richmond Course Name: Certificate III in Captive Animals Course Number: 1068 Lecturers: Graeme Phipps, Jacki Salkeld, and Brad Walker 1 Kelly Swarbrick 1068 Certificate III in Captive Animals 16/11/09 RUV30204 DISCLAIMER This Emu Husbandry Manual is intended to present the current scientific, experiential and practical understanding of the captive care of Emus. Some contributions lend themselves to scientific rigor, where material presented is supported by peer-reviewed literature. Other contributions are based, out of necessity, on the collective experience of professional keepers, because relevant scientific literature is scant or non-existent. The author cannot be, and is not, legally, financially or in any other way, responsible for the application of techniques described within the Manual. When undertaking any procedures or techniques outlined in the Manual, it is up to individual workers to assess the unique circumstances of their situation, apply common sense, and subsequently apply any procedures or techniques at their own risk. In all cases, the reader of this Manual is cautioned not to use this manual as an exact step-by-step guide, but rather as a starting reference point for further case-specific studies. 2 Kelly Swarbrick 1068 Certificate III in Captive Animals 16/11/09 RUV30204 OCCUPATIONAL HEALTH AND SAFETY RISKS Exhibiting Emus falls under the medium risk category (hazardous). This is due to their powerful legs that could deliver a nasty kick.
    [Show full text]
  • Thylacine Conspiracy
    Thylacine Conspiracy Bill Cromer \ 2 The thylacine (pronounced 'thigh-la-seen'), also known as the Tasmanian Tiger or Tasmanian Wolf, is – or was – the world's largest marsupial carnivore ( marsupial : a mammal with a pouch for carrying young; carnivore : a meat-eater). Bill Cromer Thylacine Conspiracy 3 Acknowledgments I am delighted and grateful that Eric Guiler read the manuscript, and has checked the scientific details of the thylacine - as far as they are known. Dr. Guiler is the recognized world expert on the thylacine, the author of Thylacine: The tragedy of the Tasmanian Tiger and related scientific articles, the organizer of and participant in several searches for the elusive animal, and until recently a firm believer in its continued existence. Chris MacGeorge of the Bureau of Meteorology in Hobart went out of his way to help me with weather patterns and rainfall figures for northeastern Tasmania. For an insight into how trustees operate, and especially how they handle hard-to-find beneficiaries, I am indebted to Ken Lord. Veterinarian Barry Springfield kindly answered my curious-sounding questions about how someone could keep a 'dog-like animal' sedated for several days. Rob Usher talked on my behalf to two private Cessna Citation pilots and discussed with them - hypothetically, of course - a realistic flight plan for smuggling a Tasmanian Tiger across the Pacific Ocean. Janet Terry, an Internet-met fellow writer in the United States, kindly critiqued the manuscript and helped iron out the wrinkles in my narrative. My wife Hilary was, as always, encouraging, and uncomplaining about my early-morning forays with the word processor.
    [Show full text]
  • Marsupial Carnivore Feeding Ecology and Extinction Risk
    WHO'S ON THE MENU: MARSUPIAL CARNIVORE FEEDING ECOLOGY AND EXTINCTION RISK Thesis submitted by ARIE TTARD M A For the Degree of Doctor of Philosophy in the School of Biological, Earth & Environmental Sciences Faculty of Science March 2013 THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Attard First name: Marie Other name/s: Rosanna Gabrielle Abbreviation for degree as given in the University calendar: PhD School: School of Biological, Earth and Environmental Sciences Faculty: Faculty of Science Title: Who's on the menu: marsupial carnivore feeding ecology and extinction risk Abstract The aim of this thesis is to assess the role of diet in the extinction of Australia's iconic marsupial carnivore, the thylacine (Thylacinus cynocephalus) in Tasmania. Herein, we present two novel techniques to address fundamental questions regarding their maximum prey size and potential competition with sympatric predators. Three-dimensional computer models of the thylacine skull were used to assess their biomechanical limitations in prey size within a comparative context. This included living relatives from the family Dasyuiridae as well as a recently recovered fossil, Nimbacinus dickoni, from the family Thylacindae. Stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) of tissues from thylacine and potential prey species were used to assess the thylacine’s dietary composition. Furthermore, we integrate historical and recent marsupial carnivore stable isotope data to assess long-term changes in the ecosystem in response to multiple human impacts following European settlement. Our biomechanical findings support the notion that solitary thylacines were limited to hunting prey weighing less than their body mass.
    [Show full text]
  • Rheiformes ~ Tinamiformes ~ Apterygiformes ~ Casuariiformes
    Birds of the World part 1 Paleognaths PALAEOGNATHAE • ORDER STRUTHIONIFORMES – Family Struthionidae – ostriches (2 species) • ORDER RHEIFORMES – Family Rheidae – rheas (2 species) • ORDER TINAMIFORMES – Family Tinamidae – tinamous (47 species) • ORDER APTERYGIFORMES – Family Apterygidae – kiwis (5 species) • ORDER CASUARIIFORMES – Family Casuariidae – cassowaries (3 species) – Family Dromaiidae – emu (1 species) PALAEOGNATHAE • ORDER STRUTHIONIFORMES – Family Struthionidae – ostriches (2 species) • ORDER RHEIFORMES – Family Rheidae – rheas (2 species) • ORDER TINAMIFORMES – Family Tinamidae – tinamous (47 species) • ORDER APTERYGIFORMES – Family Apterygidae – kiwis (5 species) • ORDER CASUARIIFORMES – Family Casuariidae – cassowaries (3 species) – Family Dromaiidae – emu (1 species) ostrich (Struthioniformes) PALAEOGNATHAE • ORDER STRUTHIONIFORMES – Family Struthionidae – ostriches (2 species) • ORDER RHEIFORMES – Family Rheidae – rheas (2 species) • ORDER TINAMIFORMES – Family Tinamidae – tinamous (47 species) • ORDER APTERYGIFORMES – Family Apterygidae – kiwis (5 species) • ORDER CASUARIIFORMES – Family Casuariidae – cassowaries (3 species) – Family Dromaiidae – emu (1 species) greater rhea (Rheiformes) PALAEOGNATHAE • ORDER STRUTHIONIFORMES – Family Struthionidae – ostriches (2 species) • ORDER RHEIFORMES – Family Rheidae – rheas (2 species) • ORDER TINAMIFORMES – Family Tinamidae – tinamous (47 species) • ORDER APTERYGIFORMES – Family Apterygidae – kiwis (5 species) • ORDER CASUARIIFORMES – Family Casuariidae – cassowaries (3 species)
    [Show full text]