SGI Digital Media Options Overview

Total Page:16

File Type:pdf, Size:1020Kb

SGI Digital Media Options Overview Pipeline Article This article is excerpted from the April/May/June issue of Pipeline and provided as a convenience for SGI customers. SGI Digital Media Option Board Overview This article provides an overview of the digital media each board and IRIX® operating system digital media option boards that are currently supported on SGI® software utilities or programming interfaces that are workstations and servers. These options are discussed used with this hardware. on a platform-by-platform basis. Table 1 shows the digital media hardware options that The article provides links and references to detailed are currently available and supported for SGI worksta- information for each option, including feature lists for tions and servers. Table 1 Digital Media Options Platform Video Audio API ™ ™ ® 3000 Family 2000 Series and O2+ and Option board ® ® ® SGI SGI Octane2™ Octane O2 Standard Definition (NTSC/PAL) Definition High Analog I/O Video I/O Digital Video DV IEEE 1394 Analog Audio I/O Digital Audio I/O (VL) Library Video (AL) Library Audio OpenML and dmSDK DMediaPro™ X,1, XX X X DM3 2 HD I/O (High X,1, X,3 X X,4 X Definition option) 2 X,1, X,3 X X X DIVO 2 X,1, X,3 X X 5 X DIVO-DVC 2 DMediaPro™ XXXX X DM2 Octane® Digital X X X X Video Octane® Personal XXX X Video Octane® X X X X, 9 Compression April/May/June 2002 See Pipeline in Supportfolio Online at http://support.sgi.com/irix/ Pipeline © 2002 Silicon Graphics, Inc. All rights reserved. Pipeline Article sgi Table 1 Digital Media Options (continued) Platform Video Audio API ™ ™ ™ ® 3000 Family 3000 Series 2000 and O2+ and Option board ® ® ® SGI SGI Octane2 Octane O2 Definition Standard (NTSC/PAL) Definition High I/O Video Analog Digital I/O Video IEEE 1394 DV Analog Audio I/O Digital Audio I/O LibraryVideo (VL) (AL) Library Audio dmSDK and OpenML O2® Digital Video XX X X XX (AV2) O2® Analog X X X X X X Video (AV1) PCI IEEE 1394 XX X X, 677 Option PCI Digital Audio X X X,8 X,8 X X X Option 1 – SGI 3000 family servers require an X-brick for these option 6 – Digital audio I/O capabilities are embedded in video I/O stream. boards. 7 – The IEEE option board uses the AVC programming library. 2 – XIO option boards are not supported on SGI® Onyx® or Ori- ™ 8 – This board requires the addition of a PCI card cage option for gin® 300 systems. Octane or Octane2. 3 – XIO option boards can be installed in an SGI® Origin® 200 server 9 – The SGI Compression Library (CL) is used for compression and with the addition of the GIGAchannel option. ™ decompression of image and video data. 4 – The HD I/O option board inputs and outputs digital video in paral- lel format, and it generally requires parallel/serial converters to interface with most other high-definition video peripheral devices. No video I/O option boards are available for SGI Onyx 5 – The DIVO-DVC option board can play and record the DVCPRO 300 and Origin 300 systems because the X-brick is not video format, but it is not an IEEE 1394 device. supported on those platforms. SGI 3000 Family Systems sion of this board, the DMediaPro DM2 board, is avail- able for the Silicon Graphics® Octane2™ platform. The Several digital media options are available for SGI® two boards are identical except for the mechanisms that Onyx® 3000 and Origin® 3000 series systems, as connect the boards to their respective platforms. Figure described in the following subsections. 1 shows a DM2 board with the VBOB. DMediaPro DM3 The DM3 board installs in the X-brick of SGI 3000 family systems. You can install multiple boards in a sys- The DMediaPro DM3 board is a half-height XIO option tem; however, each X-brick supports only one DM3 board that, along with the SGI video break-out box board. (VBOB), provides both standard- and high-definition serial digital video I/O in a single package. Another ver- SGI Digital Media Option Board Overview — 2 — Pipeline Article sgi board: • SGI DMediaPro DM2/DM3 Board Owner’s Guide, SGI document number 007-4317-001 • SGI DMediaPro DM2/DM3 Board OpenML Media Library Owner’s Guide, SGI document number 007- 4505-001 You can access these documents from the SGI Technical Publications Library at the following URL: http://techpubs.sgi.com Figure 1 DM2 and VBOB Drivers for the DM2/DM3 boards are available for IRIX 6.5.11 operating system (OS) and later. The current soft- The DM3 board connects to the VBOB via a pair of ware version is DMediaPro DM2/DM3 dmSDK Execu- low-voltage differential signaling (LVDS) cables. The tion Environment 1.1 for IRIX 6.5 OS. This software is VBOB has all of the physical connections for routing available on the CD (SGI CD number 812-1083-00x) video and genlock signals to and from the DMediaPro that is included with the board. board, and it includes the following video connections via BNC: The DMediaPro DM2 and DM3 boards are the first • Two standard-definition serial digital inputs (Link A boards from SGI to use the Digital Media Software and Link B) Development Kit (dmSDK) and OpenML. The Digital Media Software Development Kit Programmer’s Guide, • Four standard-definition serial digital outputs (two SGI document number 007-4280-001, provides infor- for Link A, two for Link B) mation on using dmSDK for programming. This publi- • Standard-definition genlock input cation is available from the SGI Technical Publications • Standard-definition genlock loopthrough Library. • Two high-definition serial digital inputs (Link A and High Definition I/O (HD I/O) Option Board Link B) The HD I/O board is a half-height XIO option board • Four high-definition serial digital outputs (two for that provides real-time high-definition video input and Link A, two for Link B) output in multiple formats. The board provides a paral- • High-definition genlock input lel video interface for input and output based on the SMPTE 274M standard. Figure 2 shows the HD I/O • High-definition genlock loopthrough board. For detailed information on the DM3 board and VBOB, including features, specifications, and supported for- mats, refer to the following publications: • SGI DMediaPro Datasheet (PDF) http://www.sgi.com/Products/PDF/3033.pdf • Pipeline: [Sep/Oct 2001] Introducing the SGI DMediaPro Video Option Boards http://support.sgi.com/irix/content pipeline/html/20010501dmedia.html The following documents are also available for this Figure 2 HD I/O Board SGI Digital Media Option Board Overview — 3 — Pipeline Article sgi The board installs in the X-brick of SGI 3000 family Digital Video Option Board (DIVO) systems. You can install multiple HD I/O boards in a The DIVO option board is a half-height XIO video system, but SGI supports only one per X-brick. board that provides standard-definition serial digital SGI provides two cables with this board, one each for (NTSC or PAL) video input and output (SMPTE 259M the Panasonic® and Philips® pinouts. In many cases, and ITU-R 601). Figure 3 shows the DIVO board. third- party parallel-to-serial or serial-to-parallel conver- sion equipment is needed to interface this board with other third-party high-definition video equipment that uses a serial digital interface. For more detailed information on the capabilities of this board, refer to the following information: • SGI Digital Media information for SGI 2000 and SGI 3000 Series http://www.sgi.com/peripher- als/digital_media/hardware.html • Pipeline: [Nov/Dec 99] Introducing the HD I/O Figure 3 DIVO Board Option Board The board installs in the X-brick on SGI 3000 family http://support.sgi.com/irix/content/pipe- line/html/19990601HDIO.html systems. You can install multiple DIVO boards in a sys- tem, but SGI supports only one per X-brick. The following documents are also available for this board: The DIVO board supports 8- and 10-bit signals, multi- ple packing modes, real-time color-space conversion • HD I/O Option Board Owner’s Guide, SGI document between YUV and RGB, and dual-link streaming to and number 007-3968-003 from system memory. For more details on the DIVO • Digital Media Connections, SGI document number board capabilities, refer to the following URL: 007-3525-003 http://www.sgi.com/peripherals/digital_medi You can access these documents from the SGI Technical a/hardware.html Publications Library at the following URL: Connections on the back of the board include two BNC http://techpubs.sgi.com connectors for serial digital input (Link A and Link B), two BNC connectors for output (Link A and Link B), Drivers for the HD I/O option board are available for two BNC connectors for genlock input and loopthrough, IRIX 6.5.4 OS and later. The current software version is and two 8-pin connectors for General Purpose Interface HD I/O Software 1.2. This software is available on the (GPI) in and out. CD (SGI CD number 812-0958-004) included with the board. The current software version for this board is DIVO 1.2, which is available on SGI CD number 812-0645-003. The Silicon Graphics Video Library (VL) provides a When you upgrade the system with any IRIX 6.5.x OS programming interface for the HD I/O option board. For overlays, you must install additional upgrades for the more information on programming with the Video DIVO subsystem in addition to this base software.
Recommended publications
  • Preparing for an Installation of a 33 to 256 Processor System HR-04122-0B Origin ™ Systems Last Modified: August 1999
    Preparing for an Installation of a 33 to 256 Processor System HR-04122-0B Origin ™ Systems Last Modified: August 1999 Record of Revision . 4 Overview . 5 System Components and Configurations . 6 Equipment Separation Limits . 8 Site Requirements . 10 Planning Your Access Route . 10 Environmental Requirements . 14 Facility Power Requirements . 15 Remote Support . 20 Network Connections . 20 Raised-floor Installations . 21 Securing the Cabinets . 25 Physical Specifications . 28 Origin 2000 Systems . 34 Onyx2 InfiniteReality2 Systems . 38 Onyx2 InfiniteReality2 Rack System . 38 Onyx2 InfiniteReality Multirack Systems . 38 Onyx2 InfiniteReality2 Multirack System Layout Options . 41 SCSI RAID Rack . 42 Origin Fibre Channel Rack . 43 O2 Workstation . 44 Site Planning Checklist . 46 Summary . 48 HR-04122-0B SGI Proprietary 1 Preparing for an Installation Figures Figure 1. Origin 2000 128- and 256-Processor Multirack Systems: Standard and Optional Floor Layouts Placed on 24 in. x 24 in. Floor Panels . 7 Figure 2. Distance between Racks (Standard Layout) . 8 Figure 3. Separation Limits . 9 Figure 4. Origin 2000 Rack, Onyx2 InfiniteReality2 Rack, and MetaRouter Shipping Configuration . 11 Figure 5. SCSI RAID Rack Shipping Configuration . 12 Figure 6. Origin Fibre Channel Rack Shipping Configuration . 13 Figure 7. Origin 2000 Rack and Onyx2 InfiniteReality2 Rack Floor Cutout 22 Figure 8. MetaRouter Floor Cutout . 23 Figure 9. SCSI RAID Rack Floor Cutout . 24 Figure 10. Origin Fibre Channel Rack Floor Cutout . 24 Figure 11. Securing the Origin 2000 Rack and Onyx2 Rack . 25 Figure 12. Securing the MetaRouter . 26 Figure 13. Securing the Origin Fibre Channel Rack . 27 Figure 14. Origin 2000 Rack . 35 Figure 15. MetaRouter . 36 Figure 16.
    [Show full text]
  • 10º Encontro Português De Computação Gráfica
    Actas do 10º Encontro Português de Computação Gráfica 1 – 3 de Outubro 2001 Lisboa – Portugal Patrocinadores de Honra Patrocinadores Organização 10º Encontro Português de Computação Gráfica 1-3 de Outubro 2001 PREFÁCIO A investigação, o desenvolvimento e o ensino na área da Computação Gráfica constituem, em Portugal, uma realidade positiva e de largas tradições. O Encontro Português de Computação Gráfica (EPCG), realizado no âmbito das actividades do Grupo Português de Computação Gráfica (GPCG), tem permitido reunir regularmente, desde o 1º EPCG realizado também em Lisboa, mas no já longínquo mês de Julho de 1988, todos os que trabalham nesta área abrangente e com inúmeras aplicações. Pela primeira vez no historial destes Encontros, o 10º EPCG foi organizado em ligação estreita com as comunidades do Processamento de Imagem e da Visão por Computador, através da Associação Portuguesa de Reconhecimento de Padrões (APRP), salientando-se, assim, a acrescida colaboração, e a convergência, entre essas duas áreas e a Computação Gráfica. Tal como nos Encontros anteriores, o programa está estruturado ao longo de três dias, sendo desta vez o primeiro dia dedicado a seminários por conferencistas convidados e os dois últimos à apresentação de comunicações e de "posters", decorrendo em simultâneo o Concurso para Jovens Investigadores, uma Exibição Comercial e, pela primeira vez, um Atelier Digital. Como novidade essencialmente dedicada aos jovens, realiza-se ainda em paralelo com o Encontro um torneio de jogos de computador. Em resposta ao apelo às comunicações para este 10º EPCG foram submetidos 38 trabalhos, na sua maioria de grande qualidade, tendo sido seleccionadas pela Comissão de Programa, após um cuidadoso processo de avaliação, apenas 19 comunicações; aos autores de 14 dos restantes trabalhos, considerados suficientemente promissores, foi sugerida a sua reformulação e uma nova submissão como "posters".
    [Show full text]
  • CXFSTM Administration Guide for SGI® Infinitestorage
    CXFSTM Administration Guide for SGI® InfiniteStorage 007–4016–025 CONTRIBUTORS Written by Lori Johnson Illustrated by Chrystie Danzer Engineering contributions to the book by Vladmir Apostolov, Rich Altmaier, Neil Bannister, François Barbou des Places, Ken Beck, Felix Blyakher, Laurie Costello, Mark Cruciani, Rupak Das, Alex Elder, Dave Ellis, Brian Gaffey, Philippe Gregoire, Gary Hagensen, Ryan Hankins, George Hyman, Dean Jansa, Erik Jacobson, John Keller, Dennis Kender, Bob Kierski, Chris Kirby, Ted Kline, Dan Knappe, Kent Koeninger, Linda Lait, Bob LaPreze, Jinglei Li, Yingping Lu, Steve Lord, Aaron Mantel, Troy McCorkell, LaNet Merrill, Terry Merth, Jim Nead, Nate Pearlstein, Bryce Petty, Dave Pulido, Alain Renaud, John Relph, Elaine Robinson, Dean Roehrich, Eric Sandeen, Yui Sakazume, Wesley Smith, Kerm Steffenhagen, Paddy Sreenivasan, Roger Strassburg, Andy Tran, Rebecca Underwood, Connie Woodward, Michelle Webster, Geoffrey Wehrman, Sammy Wilborn COPYRIGHT © 1999–2007 SGI. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole or in part, without the prior written permission of SGI. LIMITED RIGHTS LEGEND The software described in this document is "commercial computer software" provided with restricted rights (except as to included open/free source) as specified in the FAR 52.227-19 and/or the DFAR 227.7202, or successive sections. Use beyond
    [Show full text]
  • Imusic: Inessential Guide to Listening to Music on Athena
    iMusic: Inessential Guide to Listening to Music on Athena The Student Information Processing Board Richard Tibbetts <[email protected]> May 27, 2001 Contents 1 Introduction 3 2 Identifying Athena Platforms 3 3 Connecting Headphones and Speakers 3 3.1 Headphones . 3 3.1.1 Dell GX1 . 4 3.1.2 Dell GX110 . 4 3.1.3 SGI O2 . 5 3.1.4 SGI Indy . 5 3.1.5 Sun Sparcstation 5 . 6 3.1.6 Sun Ultra 5 . 6 3.1.7 Sun Ultra 10 . 7 3.2 Attaching Speakers . 7 4 Setting Audio Device and Volume 7 4.1 Linux . 7 4.2 SGI . 7 4.3 Sun . 7 5 Playing Music 7 5.1 Compact Disc . 8 5.2 MP3 . 8 5.3 Ogg Vorbis . 8 5.4 Real Audio . 8 6 Miscellaneous Topics 8 6.1 Accessing Files on an NFS Shared Volume . 8 6.2 Accessing Files on a Windows Shared Drive . 8 1 A Identifying Athena Machines 8 2 1 Introduction These days most Athena workstations have suitable sound hardware and are quite able to play most music formats. However, each platform has its own peculiarities in the way sound is played, the way volume is controlled, where the headphone jack is located, and various other problems. This document clarifies all of these issues. If you notice any problems with this document, or have any questions which it doesn't answer, please let us know. You can send email to [email protected], drop by the office in W20-557, or call us at x3-7788.
    [Show full text]
  • SGI® Opengl Multipipe™ User's Guide
    SGI® OpenGL Multipipe™ User’s Guide Version 2.3 007-4318-012 CONTRIBUTORS Written by Ken Jones and Jenn Byrnes Illustrated by Chrystie Danzer Production by Karen Jacobson Engineering contributions by Craig Dunwoody, Bill Feth, Alpana Kaulgud, Claude Knaus, Ravid Na’ali, Jeffrey Ungar, Christophe Winkler, Guy Zadicario, and Hansong Zhang COPYRIGHT © 2000–2003 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc. LIMITED RIGHTS LEGEND The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy 2E, Mountain View, CA 94043-1351. TRADEMARKS AND ATTRIBUTIONS Silicon Graphics, SGI, the SGI logo, InfiniteReality, IRIS, IRIX, Onyx, Onyx2, OpenGL, and Reality Center are registered trademarks and GL, InfinitePerformance, InfiniteReality2, IRIS GL, Octane2, Onyx4, Open Inventor, the OpenGL logo, OpenGL Multipipe, OpenGL Performer, Power Onyx, Tezro, and UltimateVision are trademarks of Silicon Graphics, Inc., in the United States and/or other countries worldwide. MIPS and R10000 are registered trademarks of MIPS Technologies, Inc.
    [Show full text]
  • Computing @SERC Resources,Services and Policies
    Computing @SERC Resources,Services and Policies R.Krishna Murthy SERC - An Introduction • A state-of-the-art Computing facility • Caters to the computing needs of education and research at the institute • Comprehensive range of systems to cater to a wide spectrum of computing requirements. • Excellent infrastructure supports uninterrupted computing - anywhere, all times. SERC - Facilities • Computing - – Powerful hardware with adequate resources – Excellent Systems and Application Software,tools and libraries • Printing, Plotting and Scanning services • Help-Desk - User Consultancy and Support • Library - Books, Manuals, Software, Distribution of Systems • SERC has 5 floors - Basement,Ground,First,Second and Third • Basement - Power and Airconditioning • Ground - Compute & File servers, Supercomputing Cluster • First floor - Common facilities for Course and Research - Windows,NT,Linux,Mac and other workstations Distribution of Systems - contd. • Second Floor – Access Stations for Research students • Third Floor – Access Stations for Course students • Both the floors have similar facilities Computing Systems Systems at SERC • ACCESS STATIONS *SUN ULTRA 20 Workstations – dual core Opteron 4GHz cpu, 1GB memory * IBM INTELLISTATION EPRO – Intel P4 2.4GHz cpu, 512 MB memory Both are Linux based systems OLDER Access stations * COMPAQ XP 10000 * SUN ULTRA 60 * HP C200 * SGI O2 * IBM POWER PC 43p Contd... FILE SERVERS 5TB SAN storage IBM RS/6000 43P 260 : 32 * 18GB Swappable SSA Disks. Contd.... • HIGH PERFORMANCE SERVERS * SHARED MEMORY MULTI PROCESSOR • IBM P-series 690 Regatta (32proc.,256 GB) • SGI ALTIX 3700 (32proc.,256GB) • SGI Altix 350 ( 16 proc.,16GB – 64GB) Contd... * IBM SP3. NH2 - 16 Processors WH2 - 4 Processors * Six COMPAQ ALPHA SERVER ES40 4 CPU’s per server with 667 MHz.
    [Show full text]
  • Parallel Maximum-Likelihood Inversion for Estimating Wavenumber-Ordered Spectra in Emission Spectroscopy
    Parallel Maximum-Likelihood Inversion for Estimating Wavenumber-Ordered Spectra in Emission Spectroscopy Hoda El-Sayed Marc Salit John Travis [email protected] [email protected] Judith Devaney William George [email protected] [email protected] National Institute of Standards and Technology Gaithersburg, Maryland USA Abstract distributes the signal-carried noise to the signal, preventing the masking of small spectral features by the signal-carried We introduce a parallelization of the maximum- noise from the large spectral features. The spectral esti- likelihood cosine transform. This transform consists of a mates obtained using maximum-likelihood inversion have computationally intensive iterative fitting process, but is another potentially useful property—a line-shape which is readily decomposed for parallel processing. The parallel burdened with a less distorting transform-function than the implementation is not only scalable, but has also brought sinc function of the Fourier transform. the execution time of this previously intractable problem to In this paper we present a parallel implementation of the feasible levels using contemporary and cost-efficient high- maximum-likelihood inversion method. It will be shown performance computers, including an SGI Origin 2000, an that the parallel implementation is not only scalable, but SGI Onyx, and a cluster of Intel-based PCs. has also brought the execution time of this problem to feasible levels using contemporary and cost-efficient high- Key words : parallel processing, emission spectroscopy, performance computers including Origin 2000, SGI Onyx, cosine transform, maximum-likelihood inversion, perfor- and PC clusters. By parallelizing this application, we were mance evaluation, DParLib, MPI. able to reduce the running time of the program to seconds rather than hours.
    [Show full text]
  • MPEG-4: Fallacies and Paradoxes
    MPEG-4: Fallacies and Paradoxes Zhen Fang Sally A. McKee University of Utah Cornell University School of Computing Electrical and Computer Engineering WWC-5 MPEG-4: Multimedia for Our Time • Internet streaming video, Digital TV, mobile multimedia, broadcast … • Improved from MPEG-1 and MPEG-2 – Interactivity – Streaming • You have been using it ! –.avi, .wmv, .asx, .mp4, … – Few of them are true MPEG-4. WWC-5 MPEG-4 Visual: a Hierarchical Structure Video Session VS1 • Object-based approach VO n enables interactivity Visual Object and streaming VO1 VO2 VOLm Visual Object Layer • Each VOP contains VOL1 VOL2 VOP motion, shape and k texture data Visual Object Plane VOP1 VOP2 WWC-5 Motion Estimation P-VOP • Spatial and temporal compression B-VOP2 • OoO processing increases memory and B-VOP1 computation demand time I-VOP WWC-5 Popular Assumptions on MPEG4 Visual • Memory-streaming • Bus-bandwidth limited • Memory latency sensitive • Adversely affected by larger image sizes • Adversely affected by a greater number of images or layers • These are all intuitive and plausible! WWC-5 Experiment Environment • SGI O2 (R12000, 1MB L2C) • SGI Onyx VTX (R10000, 2MB L2C) • SGI Onyx2 InfiniteReality (R12000, 8MB L2C) L1 data cache 32KB, 2-way, 32B/line, LRU, WB L2 unified cache 2-way, 128B/line, LRU, WB System bus 64 bits, 133MHz, split transaction main memory 4-way interleaved SDRAM, 680MB/s sustained, 800MB/s peak WWC-5 Experiment Environment (2) • ISO reference software – by EU ACTS Project MoMuSys • MIPS cc compiler at -O3 • SGI SpeedShop performance
    [Show full text]
  • SPRING 2013 Volume 7, Issue 1 SVG UPDATE 9 Sportspost:NY 36 12 League Technology Summit 26 Transport 36 Sports Venue Technology Summit
    ADVANCING THE CREATION, PRODUCTION, & DISTRIBUTION OF SPORTS CONTENT Spring 2013 • Volume 7, iSSUE 1 AN PUBLICATION SVG SPECIAL REPORT: THE BIG SHOW FROM THE BIG EASY Inside the Super Bowl XLVII Compound in New Orleans • SVG Update: In-Depth Recaps of Recent SVG Events • Sports Broadcasting Hall of Fame: The Class of 2012 • White Papers: The Promise of 4K, Streaming the Pac-12 Networks, and Workflow Automation in Sports plus Comprehensive 2013 NAB Preview & SVG Sponsor Update UPFRONT IN THIS ISSUE 4 FROM THE CHAIRMAN Even With 4K, the Future of Sports Video Is Better HD 6 THE TIp-off Standing Up For Your Rights SPRING 2013 VOLUME 7, ISSUE 1 SVG UPDATE 9 SportsPost:NY 36 12 League Technology Summit 26 TranSPORT 36 Sports Venue Technology Summit 42 SVG SPECIAL REPORT: THE BIG GAME FROM THE BIG EASY SPORTS BROADCASTING HALL OF FAME Class of 2012 Coverage begins on page 54 56 George Bodenheimer 64 Cory Leible 58 Ray Dolby 66 Paul Tagliabue 60 Frank Gifford 68 Jack Weir 62 Ed Goren 70 Jack Whitaker 72 WHITE PAPERS 80 72 Canon: The Promise of 4K 76 iStreamPlanet: Live Linear Streaming 80 Wohler: File-based Workflow Automation 3 2 1 8 4 PRODUCT NEWS 15 32 84 Remote Sports Production Gearbase 18 More trucks, more gear, more consolidation 111 87 NAB Preview 84 A comprehensive look at what SVG Sponsors will showcase in Las Vegas 122 Sponsor Update New technology, news, and innovations 87 138 SVG SPONSOR INDEX 144 THE FINAL BUZZER A Measured Response to 4K Hype? The SportsTech Journal is produced and published by the Sports Video Group.
    [Show full text]
  • CXFSTM Administration Guide for SGI® Infinitestorage
    CXFSTM Administration Guide for SGI® InfiniteStorage 007–4016–020 CONTRIBUTORS Written by Lori Johnson Illustrated by Chrystie Danzer Production by Karen Jacobson Engineering contributions to the book by Rich Altmaier, Neil Bannister, François Barbou des Places, Ken Beck, Felix Blyakher, Laurie Costello, Mark Cruciani, Dave Ellis, Brian Gaffey, Philippe Gregoire, Dean Jansa, Erik Jacobson, Dennis Kender, Chris Kirby, Ted Kline, Dan Knappe, Kent Koeninger, Linda Lait, Bob LaPreze, Steve Lord, Aaron Mantel, Troy McCorkell, LaNet Merrill, Terry Merth, Nate Pearlstein, Bryce Petty, Alain Renaud, John Relph, Elaine Robinson, Dean Roehrich, Eric Sandeen, Wesley Smith, Kerm Steffenhagen, Paddy Sreenivasan, Andy Tran, Rebecca Underwood, Connie Waring, Geoffrey Wehrman COPYRIGHT © 1999–2004 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc. LIMITED RIGHTS LEGEND The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of
    [Show full text]
  • Translating Research Into Business
    THE STATE OF SÃO PAULO RESEARCH FOUNDATION Translating Research into Business Ten years promoting technological innovation THE STATE OF SÃO PAULO RESEARCH FOUNDATION Carlos Vogt President Marcos Macari Vice-president BOARD OF TRUSTEES Adilson Avansi de Abreu Carlos Vogt Celso Lafer Hermann Wever Horácio Lafer Piva Hugo Aguirre Armelin José Arana Varela Marcos Macari Nilson Dias Vieira Júnior Vahan Agopyan Yoshiaki Nakano EXECUTIVE BOARD Ricardo Renzo Brentani Chief Executive Carlos Henrique de Brito Cruz Scientific Director Joaquim José de Camargo Engler Administrative Director Translating Research into Business Ten years promoting technological innovation Projects supported by FAPESP in the Partnership for Technological Innovation and Technological Innovation in Small Businesses Programs 2005 Catalogação-na-publicação elaborada pelo Centro de Documentação e Informação da FAPESP The State of São Paulo Research Foundation. Translating research into business : ten years promoting technological innovation : projects supported by FAPESP in the Partnership for Technological Innovation and Technological Innovation in Small Businesses programs / The State of São Paulo Research Foundation – São Paulo : FAPESP, 2005. 256 p. : il. ; 28 cm. Tradução de: A pesquisa traduzida em negócios : dez anos de incentivo à inovação tecnológica : projetos apoiados pela FAPESP nos programas Parceria para Inovação Tecnológica e Inovação Tecnológica em Pequenas Empresas. I. Título II. Título: Ten years promoting technological innovation. III. Título: Projects supported by FAPESP in the Partnership for Technological Innovation and Technological Innovation in Small Businesses programs. 1.FAPESP 2. Pesquisa e desenvolvimento – São Paulo 3. Ciência 4. Tecnologia 5. Inovação tecnológica 6. Inovação Tecnológica em Pequenas Empresas 7. PIPE 8. Parceria para Inovação Tecnológica 9. PITE 04/05 CDD 507.208161 Depósito Legal na Biblioteca Nacional, conforme Lei n.º 10.994, de 14 de dezembro de 2004.
    [Show full text]
  • Failsafetm Administrator's Guide for SGI
    FailSafeTM Administrator’s Guide for SGI® InfiniteStorage 007–3901–009 CONTRIBUTORS Written by Jenn Byrnes, Susan Ellis, Lori Johnson, Steven Levine Edited by Susan Wilkening Illustrated by Chrystie Danzer, Dany Galgani Production by Glen Traefald Engineering contributions by Gemma Exton, Scott Henry, Vidula Iyer, Ashwinee Khaladkar, Harald Kaul, Tony Kavadias, Linda Lait, Michael Nishimoto, Nate Pearlstein, Alain Renaud, Wesley Smith, Bill Sparks, Paddy Sreenivasan, Dan Stekloff, Rebecca Underwood, Manish Verma COPYRIGHT © 1999–2003, Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole or in part,without the prior written permission of Silicon Graphics, Inc. LIMITED RIGHTS LEGEND The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy 2E, Mountain View, CA 94043-1351. TRADEMARKS AND ATTRIBUTIONS Silicon Graphics, SGI, the SGI logo, IRIS, IRIX, Onyx, Onyx2, Origin, and XFS are registered trademarks and CXFS, FailSafe, IRIS FailSafe, NUMAlink, Performance Co-Pilot, SGI SAN Server, and Silicon Graphics Fuel are trademarks of Silicon Graphics, Inc., in the United States and/or other countries worldwide.
    [Show full text]