Oct4 Dependence of Chromatin Structure Within the Extended Nanog Locus in ES Cells Dana N

Total Page:16

File Type:pdf, Size:1020Kb

Oct4 Dependence of Chromatin Structure Within the Extended Nanog Locus in ES Cells Dana N Downloaded from genesdev.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press RESEARCH COMMUNICATION Oct4 dependence of chromatin et al. 2003; Mitsui et al. 2003). Embryos depleted of Nanog fail to mature past5dofdevelopment (Mitsui et structure within the extended al. 2003). Nanog lies in a highly conserved genomic locus Nanog locus in ES cells with a distinctive configuration. The Nanog gene is flanked by several other genes that are expressed early in Dana N. Levasseur,1 Jianlong Wang,1 development and/or involved in critical fate decisions. Michael O. Dorschner,2 Colinearity of the genes encoding Aicda, Apobec1, 2 GDF3, Dppa3 (also known as Stella and PGC7), and John A. Stamatoyannopoulos, and Nanog is conserved throughout orthologous regions in 1,3,4 Stuart H. Orkin rodents and primates. The Aicda and Apobec1 genes en- code DNA editing enzymes that may serve as epigenetic 1Division of Hematology-Oncology, Children’s Hospital and modifiers by selectively influencing the genomewide Dana Farber Cancer Institute, Harvard Medical School, pool of methylatable targets during early development. Harvard Stem Cell Institute, Boston, Massachusetts 02115, Dppa3 is a maternal effect gene required for normal de- USA; 2Department of Genome Sciences, University of velopment. Recent work has shown that Dppa3 protects Washington, Seattle, Washington 98195, USA; 3Howard against inappropriate DNA demethylation in the mater- Hughes Medical Institute, Boston, Massachusetts 02115, USA nal genome and at certain imprinted loci (Nakamura et Embryonic stem (ES) cells offer insight into early devel- al. 2007). GDF3 and Nanog are essential for ES cell self- renewal and contribute to early remodeling of the devel- opmental fate decisions, and their controlled differentia- oping embryo. Interestingly, the region occupied by tion may yield vast regenerative potential. The molecu- these early developmental modifiers comprises only 160 lar determinants supporting ES cell self-renewal are in- kb, or 0.004% of the entire genome. The organization of completely understood. The homeodomain proteins the cluster implies complex interactions that may pro- Nanog and Oct4 are essential for mouse ES cell self-re- vide a window into regulation of pluripotency-related newal. Using a high-throughput approach, we discovered genes. DNaseI hypersensitive sites and potential regulatory el- Expression of the genes within the Nanog locus has ements along a 160-kb region of the genome that in- been reported in several cancers. Amplification of the cludes GDF3, Dppa3, and Nanog. We analyzed gene ex- Nanog locus on chromosome 12 in humans has been pression, chromatin occupancy, and higher-order chro- found in essentially all germ cell tumors analyzed and coordinated overexpression of GDF3, Dppa3, and Nanog matin structure throughout this gene locus and found is observed in human seminomas and embryonal carci- that expression of the reprogramming factor Oct4 is re- nomas, as revealed by expression profiling. Additionally, quired to maintain its integrity. Nanog has been characterized as a marker for metastatic Supplemental material is available at http://www.genesdev.org. germ cell tumors (Korkola et al. 2006; Santagata et al. 2007). Received August 17, 2007; revised version accepted December Oct4 function is required during the earliest stages of 18, 2007. development, and its depletion results in differentiation of the future embryo into extraembryonic trophecto- derm. In concert with Nanog, Sox2, KLF4, and Myc, Oct4 can reprogram differentiated somatic cells to a plu- Embryonic stem (ES) cells, which are derived from the ripotent state (Okita et al. 2007; Wernig et al. 2007). inner cell mass (ICM) of the developing blastocyst, are Nanog participates in an autoregulatory circuit together endowed with unlimited self-renewal capacity, while with Oct4, Sox2 (Boyer et al. 2005; Loh et al. 2006), and they retain the potential to differentiate into all germ likely other transcription factors (Ivanova et al. 2006; layers. There is considerable interest in revealing the ge- Matoba et al. 2006; Wang et al. 2006) to interact with netic programs responsible for ES cell self-renewal, with genes in cis or trans that preserve self-renewal and en- the ultimate goal of directing differentiation to create a able differentiation into all three germ layers. Here, we renewable tissue source for cell therapy. Currently, describe initial efforts to dissect regulatory interactions knowledge of the precise genetic determinants respon- and mechanisms operative in the Nanog locus. Using a sible for self-renewal is incomplete. high-throughput quantitative chromatin profiling (QCP) As components critical for ES cell self-renewal, several approach, we discovered DNaseI hypersensitive sites transcription factors, often referred to as core pluripo- (HS) and potential regulatory elements along a 160-kb tency factors, are subjects of intense study. One such region of chromosome 6 that includes GDF3, Dppa3, and factor, Nanog, was identified by virtue of its ability to Nanog. We analyzed gene expression, chromatin occu- promote self-renewal independent of the leukemia in- pancy, and higher-order chromatin structure throughout hibitory factor (LIF)/gp130 signaling pathway (Chambers this locus. We demonstrate that genes within the Nanog locus are coregulated. Importantly, we show that several pluripotency-related nuclear factors co-occupy chroma- [Keywords: Nanog; Oct4; chromatin; reprogramming; self renewal] tin throughout the locus, and that Oct4 expression is 4Corresponding author. required to maintain chromatin structure. Gene expres- E-MAIL [email protected]; FAX (617) 632-4367. sion and chromatin structure within this locus may Article published online ahead of print. Article and publication date are online at http://www.genesdev.org/cgi/doi/10.1101/ serve as a useful “molecular sensor” in cellular repro- gad.1606308. gramming studies. GENES & DEVELOPMENT 22:000–000 © 2008 by Cold Spring Harbor Laboratory Press ISSN 0890-9369/08; www.genesdev.org 1 Downloaded from genesdev.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Levasseur et al. tional start site is a strong candidate for a cis-control element of the gene. Many intergenic regulatory elements lie far upstream of the gene or gene loci that they control. A survey of the large intergenic regions separating Nanog from its neigh- boring genes revealed strong HSs located −47 kb, −45 kb, and −38 kb from the Nanog transcriptional start site and 26 kb downstream from Dppa3 (Fig. 1, boxed region). Consistent with the cell-specific nature of the chromatin structure of the entire Nanog locus, DNase hypersensi- tivity was not observed within 200 kb upstream of or downstream from the Nanog start site in a murine eryth- roleukemia (MEL) cell line (data not shown). Transcription factors involved in ES cell self-renewal bind HS throughout the Nanog locus Transcription factors including Nanog, Oct4, Sox2, and others (such as ZFP281 and Nac1) collaborate to main- tain ES cell pluripotency (Boyer et al. 2005; Loh et al. 2006; Wang et al. 2006). To determine the potential con- tribution of these factors toward transcriptional regula- tion, we examined chromatin occupancy of Oct4, Nanog, ZFP281, and Nac1 at HSs within the Nanog lo- Figure 1. DNaseI HS determination by QCP. (A) Genomic struc- cus. These factors bind at shared positions at an unex- ture of the Nanog locus. The intergenic cluster region is shown pectedly high frequency throughout the locus (Fig. 2). boxed. (B) Nanog regulatory elements are indicated with four peaks Binding was most significant at the Nanog −5-kb HS, of HS located at the −5-kb region. A novel regulatory element is also with near 100-fold enrichments over background in seen at +9 kb. (C,D) QCP profiles for Dppa3 and GDF3 are shown. Note the large tandem HS peak in the GDF3 intron located −99 kb chromatin immunoprecipitation (ChIP) assays. Al- from the start of Nanog transcription. Arrows at the promoters in- though Nanog and Sox2 binding were observed previ- dicate direction of transcription. Genomic positions relative to the ously at both the −5-kb region and proximal promoter Nanog start site are shown above each HS. Data were mapped to the (Loh et al. 2006), our findings indicate that Oct4 also March 2005 (mm6) genome assembly and are visualized within the binds the upstream region. The Nanog proximal pro- University of California at Santa Cruz genome browser (Kent et al. moter and GDF3 intronic HS also exhibited high-level 2002). binding by Oct4, Nanog, ZFP281, and Nac1. Multispe- Results and Discussion cies DNA alignments indicate conservation of potential Oct4-, Nanog-, and ZFP281-binding sites at the −99-kb DNaseI hypersensitivity signature extends over the GDF3 and −5-kb Nanog regulatory elements (Supple- entire region containing Nanog and the other early-expressed genes Little is known regarding the cis-acting elements respon- sible for Nanog regulation. A comprehensive survey of regulatory DNA within the Nanog locus has not been undertaken. DNaseI hypersensitivity is a sensitive indi- cator of regulatory elements in complex loci. As such, we mapped DNaseI hypersensitivity by QCP throughout the Nanog locus in mouse ES cells (Fig. 1; Dorschner et al. 2004). This high-throughput method permits assess- ment of HSs throughout the locus in an efficient manner and with great sensitivity. A strong HS was observed at −5 kb from the transcriptional start
Recommended publications
  • Multivariate Meta-Analysis of Differential Principal Components Underlying Human Primed and Naive-Like Pluripotent States
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.20.347666; this version posted October 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. October 20, 2020 To: bioRxiv Multivariate Meta-Analysis of Differential Principal Components underlying Human Primed and Naive-like Pluripotent States Kory R. Johnson1*, Barbara S. Mallon2, Yang C. Fann1, and Kevin G. Chen2*, 1Intramural IT and Bioinformatics Program, 2NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA Keywords: human pluripotent stem cells; naive pluripotency, meta-analysis, principal component analysis, t-SNE, consensus clustering *Correspondence to: Dr. Kory R. Johnson ([email protected]) Dr. Kevin G. Chen ([email protected]) 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.20.347666; this version posted October 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. ABSTRACT The ground or naive pluripotent state of human pluripotent stem cells (hPSCs), which was initially established in mouse embryonic stem cells (mESCs), is an emerging and tentative concept. To verify this important concept in hPSCs, we performed a multivariate meta-analysis of major hPSC datasets via the combined analytic powers of percentile normalization, principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE), and SC3 consensus clustering.
    [Show full text]
  • Mouse Dppa3 Conditional Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Dppa3 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Dppa3 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Dppa3 gene (NCBI Reference Sequence: NM_139218 ; Ensembl: ENSMUSG00000046323 ) is located on Mouse chromosome 6. 4 exons are identified, with the ATG start codon in exon 1 and the TAG stop codon in exon 4 (Transcript: ENSMUST00000049644). Exon 2 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Dppa3 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP24-68I7 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Female mice homozygous for a disruption in this gene are infertile or have reduced fertility due to a failure in embryonic development at or before implantation. Exon 2 starts from about 19.78% of the coding region. The knockout of Exon 2 will result in frameshift of the gene. The size of intron 1 for 5'-loxP site insertion: 1966 bp, and the size of intron 2 for 3'-loxP site insertion: 491 bp. The size of effective cKO region: ~728 bp. The cKO region does not have any other known gene. Page 1 of 7 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele gRNA region 5' gRNA region 3' 1 2 3 4 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Homology arm Exon of mouse Dppa3 cKO region loxP site Page 2 of 7 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • Heterogeneity Between Primary Colon Carcinoma and Paired Lymphatic and Hepatic Metastases
    MOLECULAR MEDICINE REPORTS 6: 1057-1068, 2012 Heterogeneity between primary colon carcinoma and paired lymphatic and hepatic metastases HUANRONG LAN1, KETAO JIN2,3, BOJIAN XIE4, NA HAN5, BINBIN CUI2, FEILIN CAO2 and LISONG TENG3 Departments of 1Gynecology and Obstetrics, and 2Surgical Oncology, Taizhou Hospital, Wenzhou Medical College, Linhai, Zhejiang; 3Department of Surgical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang; 4Department of Surgical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang; 5Cancer Chemotherapy Center, Zhejiang Cancer Hospital, Zhejiang University of Chinese Medicine, Hangzhou, Zhejiang, P.R. China Received January 26, 2012; Accepted May 8, 2012 DOI: 10.3892/mmr.2012.1051 Abstract. Heterogeneity is one of the recognized characteris- Introduction tics of human tumors, and occurs on multiple levels in a wide range of tumors. A number of studies have focused on the Intratumor heterogeneity is one of the recognized charac- heterogeneity found in primary tumors and related metastases teristics of human tumors, which occurs on multiple levels, with the consideration that the evaluation of metastatic rather including genetic, protein and macroscopic, in a wide range than primary sites could be of clinical relevance. Numerous of tumors, including breast, colorectal cancer (CRC), non- studies have demonstrated particularly high rates of hetero- small cell lung cancer (NSCLC), prostate, ovarian, pancreatic, geneity between primary colorectal tumors and their paired gastric, brain and renal clear cell carcinoma (1). Over the past lymphatic and hepatic metastases. It has also been proposed decade, a number of studies have focused on the heterogeneity that the heterogeneity between primary colon carcinomas and found in primary tumors and related metastases with the their paired lymphatic and hepatic metastases may result in consideration that the evaluation of metastatic rather than different responses to anticancer therapies.
    [Show full text]
  • Recent Evolution of a TET-Controlled and DPPA3/STELLA-Driven Pathway of Passive Demethylation in Mammals
    bioRxiv preprint doi: https://doi.org/10.1101/321604; this version posted April 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Recent evolution of a TET-controlled and DPPA3/STELLA-driven pathway of passive 2 demethylation in mammals 3 4 Authors: 5 Christopher B. Mulholland1 , Atsuya Nishiyama2 † , Joel Ryan1 † , Ryohei Nakamura 3, Merve Yiğit1 , Ivo M. Glück4 , 6 Carina Trummer 1, Weihua Qin 1, Michael D. Bartoschek1 , Franziska R. Traube5 , Edris Parsa 5, Enes Ugur 1,8, Miha 7 Modic 7, Aishwarya Acharya 1, Paul Stolz1 , Christoph Ziegenhain6 , Michael Wierer8 , Wolfgang Enard 6, Thomas 8 Carell 5, Don C. Lamb4 , Hiroyuki Takeda 3, Makoto Nakanashi2 , Sebastian Bultmann*1§ and Heinrich Leonhardt*1§ 9 10 Affiliations: 11 1 Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität 12 München, Planegg-Martinsried, Germany 13 2 Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan 14 3 Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan 15 4 Physical Chemistry, Department of Chemistry, Center for Nanoscience, Nanosystems Initiative Munich and Center for Integrated Protein Science 16 Munich, Ludwig-Maximilians-Universität München, Munich, Germany 17 5 Center for Integrated Protein Science (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany 18 6 Department of Biology II, Anthropology and Human Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany 19 7 The Francis Crick Institute and University College London, Institute of Neurology, London, United Kingdom 20 8 Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
    [Show full text]
  • A Novel Intronic Splice—Site Mutation of the CYP11A1 Gene Linked to Adrenal Insufficiency with 46,XY Disorder of Sex Developme
    International Journal of Environmental Research and Public Health Case Report A Novel Intronic Splice—Site Mutation of the CYP11A1 Gene Linked to Adrenal Insufficiency with 46,XY Disorder of Sex Development Pawel Matusik 1,* , Agnieszka Gach 2 , Olimpia Zajdel-Cwynar 3, Iwona Pinkier 2, Grzegorz Kudela 4 and Aneta Gawlik 1 1 Department of Pediatrics and Pediatric Endocrinology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; [email protected] 2 Department of Genetics, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland; [email protected] (A.G.); [email protected] (I.P.) 3 Upper-Silesian Child’s Health Centre, 40-752 Katowice, Poland; [email protected] 4 Department of Pediatric Surgery and Urology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-32-207-1654 Abstract: A novel CYP11A1: c.1236 + 5G > A was identified, expanding the mutation spectrum of the congenital adrenal insufficiency with 46,XY sex reversal. In a now 17-year-old girl delivered full-term (G2P2, parents unrelated), adrenal failure was diagnosed in the first year of life based on clinical picture of acute adrenal crisis with vomiting, dehydration, weight loss, hypotension, and electrolyte disturbances. At the time, hormonal tests revealed primary adrenocortical insufficiency and steroid Citation: Matusik, P.; Gach, A.; profiles showed lack of products of steroidogenesis, and since then the patient has been treated with Zajdel-Cwynar, O.; Pinkier, I.; Kudela, G.; Gawlik, A. A Novel Intronic substitution doses of hydrocortisone and fludrocortisone.
    [Show full text]
  • Recent Evolution of a TET-Controlled and DPPA3/STELLA-Driven Pathway of Passive 2 Demethylation in Mammals
    bioRxiv preprint doi: https://doi.org/10.1101/321604; this version posted April 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Recent evolution of a TET-controlled and DPPA3/STELLA-driven pathway of passive 2 demethylation in mammals 3 4 Authors: 5 Christopher B. Mulholland1 , Atsuya Nishiyama2 † , Joel Ryan1 † , Ryohei Nakamura 3, Merve Yiğit1 , Ivo M. Glück4 , 6 Carina Trummer 1, Weihua Qin 1, Michael D. Bartoschek1 , Franziska R. Traube5 , Edris Parsa 5, Enes Ugur 1,8, Miha 7 Modic 7, Aishwarya Acharya 1, Paul Stolz1 , Christoph Ziegenhain6 , Michael Wierer8 , Wolfgang Enard 6, Thomas 8 Carell 5, Don C. Lamb4 , Hiroyuki Takeda 3, Makoto Nakanashi2 , Sebastian Bultmann*1§ and Heinrich Leonhardt*1§ 9 10 Affiliations: 11 1 Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität 12 München, Planegg-Martinsried, Germany 13 2 Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan 14 3 Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan 15 4 Physical Chemistry, Department of Chemistry, Center for Nanoscience, Nanosystems Initiative Munich and Center for Integrated Protein Science 16 Munich, Ludwig-Maximilians-Universität München, Munich, Germany 17 5 Center for Integrated Protein Science (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany 18 6 Department of Biology II, Anthropology and Human Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany 19 7 The Francis Crick Institute and University College London, Institute of Neurology, London, United Kingdom 20 8 Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
    [Show full text]
  • Imprints and DPPA3 Are Bypassed During Pluripotency- and Differentiation-Coupled Methylation Reprogramming in Testicular Germ Cell Tumors
    Downloaded from genome.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press Research Imprints and DPPA3 are bypassed during pluripotency- and differentiation-coupled methylation reprogramming in testicular germ cell tumors J. Keith Killian,1 Lambert C.J. Dorssers,2 Britton Trabert,3 Ad J.M. Gillis,2 Michael B. Cook,3 Yonghong Wang,1 Joshua J. Waterfall,1 Holly Stevenson,1 William I. Smith Jr.,4 Natalia Noyes,1 Parvathy Retnakumar,1 J. Hans Stoop,2 J. Wolter Oosterhuis,2 Paul S. Meltzer,1 Katherine A. McGlynn,3 and Leendert H.J. Looijenga2 1Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA; 2Department of Pathology, Erasmus MC–University Medical Center, Rotterdam, 3015, The Netherlands; 3Hormonal and Reproductive Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA; 4Suburban Hospital Department of Pathology, Bethesda, Maryland 20814, USA Testicular germ cell tumors (TGCTs) share germline ancestry but diverge phenotypically and clinically as seminoma (SE) and nonseminoma (NSE), the latter including the pluripotent embryonal carcinoma (EC) and its differentiated derivatives, teratoma (TE), yolk sac tumor (YST), and choriocarcinoma. Epigenomes from TGCTs may illuminate reprogramming in both normal development and testicular tumorigenesis. Herein we investigate pure-histological forms of 130 TGCTs for conserved and subtype-specific DNA methylation, including analysis of relatedness to pluripotent stem cell (ESC, iPSC), primordial germ cell (PGC), and differentiated somatic references. Most generally, TGCTs conserve PGC-lineage erasure of maternal and paternal genomic imprints and DPPA3 (also known as STELLA); however, like ESCs, TGCTs show focal recur- rent imprinted domain hypermethylation.
    [Show full text]
  • Stella Modulates Transcriptional and Endogenous Retrovirus Programs
    Stella modulates transcriptional and endogenous retrovirus programs during maternal-to-zygotic transition Yun Huang1,7 , Jong Kyoung Kim2,6,7, Dang Vinh Do1, Caroline Lee1, Christopher A. Penfold1, Jan J. Zylicz1, John C. Marioni2,3,5, Jamie A. Hackett1,4,8, M. Azim Surani1,8 1 Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK 2 European Molecular Biology Laboratory – European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK 3 Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK 4 Present Address: European Molecular Biology Laboratory (EMBL) - Monterotondo, via Ramarini 32, 00015 Rome, Italy 5 Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK 6 Department of New Biology, DGIST, Daegu, 42988, Republic of Korea 7 Co-first authors 8 Co-corresponding authors [email protected] [email protected] 1 1 Abstract 2 3 The maternal-to-zygotic transition (MZT) marks the period when the embryonic genome is 4 activated and acquires control of development. Maternally inherited factors play a key role in 5 this critical developmental process, which occurs at the 2-cell stage in mice. We investigated 6 the function of the maternally inherited factor Stella (encoded by Dppa3) using single- 7 cell/embryo approaches. We show that loss of maternal Stella results in widespread 8 transcriptional mis-regulation and a partial failure of MZT. Strikingly, activation of 9 endogenous retroviruses (ERVs) is significantly impaired in Stella maternal/zygotic knockout 10 embryos, which in turn leads to a failure to upregulate chimeric transcripts.
    [Show full text]
  • Distinct Requirements for Energy Metabolism in Mouse Primordial Germ Cells and Their Reprogramming to Embryonic Germ Cells
    Distinct requirements for energy metabolism in mouse primordial germ cells and their reprogramming to embryonic germ cells Yohei Hayashi, Kei Otsuka, Masayuki Ebina, Kaori Igarashi, Asuka Takehara, Mitsuyo Matsumoto, Akio Kanai, Kazuhiko Igarashi, Tomoyoshi Soga, and Yasuhisa Matsui Supporting Appendix 1 www.pnas.org/cgi/doi/10.1073/pnas.1620915114 SI Materials and Methods Data reporting. No statistical methods were used to predetermine sample size. The experiments were not randomized. The investigators were not blinded to allocation during experiments and outcome assessment. Animals. MCH and C57BL/6 mice were purchased from Japan SLC. Oct4-deltaPE-GFP transgenic mice (1) were maintained in a C57BL/6J genetic background. The mice were kept and bred in an environmentally controlled and specific pathogen-free facility, the Animal Unit of the Institute of Development, Aging and Cancer (Tohoku University), according to the guidelines for experimental animals defined by the facility. Animal protocols were reviewed and approved by the Tohoku University Animal Studies Committee. Noon on the day of the plug was defined as embryonic day (E) 0.5. E13.5, E12.5 and E11.5 embryos were obtained from female MCH mice mated with male Oct4-deltaPE-GFP transgenic mice. Embryos were collected and dissected in Dulbecco’s modified Eagle medium (DMEM, Gibco 11965-092) containing 10% fetal bovine serum (FBS). The genital ridges of male embryos were dissected. Flow cytometry. The genital ridges containing PGCs from Oct4-deltaPE-GFP transgenic mice, prepared as described above, were incubated with 1.2 mg/ml collagenase (SIGMA C0130) in PBS containing 10 % FBS for 1 h at 37 oC.
    [Show full text]
  • Datasheet: AHP1798 Product Details
    Datasheet: AHP1798 Description: RABBIT ANTI STELLA Specificity: STELLA Format: Purified Product Type: Polyclonal Antibody Isotype: Polyclonal IgG Quantity: 0.1 mg Product Details Applications This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit www.bio-rad-antibodies.com/protocols. Yes No Not Determined Suggested Dilution Western Blotting 1.0 - 2.0ug/ml Where this product has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Suggested working dilutions are given as a guide only. It is recommended that the user titrates the product for use in their own system using appropriate negative/positive controls. Target Species Human Species Cross Reacts with: Mouse, Rat Reactivity N.B. Antibody reactivity and working conditions may vary between species. Product Form Purified IgG - liquid Antiserum Preparation Antisera to human Stella were raised by repeated immunisation of rabbits with highly purified antigen. Purified IgG prepared from whole serum by affinity chromatography. Buffer Solution Phosphate buffered saline Preservative 0.02% Sodium Azide (NaN ) Stabilisers 3 Approx. Protein IgG concentration 1.0mg/ml Concentrations Immunogen Synthetic peptide sequence corresponding to a 13 amino acid sequence from near the carboxy terminus of Human Stella External Database Links UniProt: Q6W0C5 Related reagents Entrez Gene: Page 1 of 2 359787 DPPA3 Related reagents Synonyms STELLAR Specificity Rabbit anti Stella antibody recognizes human Stella, also known as Developmental pluripotency- associated protein 3 (DPP3).
    [Show full text]
  • Imedpub Journals Journal of Clinical Epigenetics 2016 ISSN 2472-1158 Vol
    Review Article iMedPub Journals Journal of Clinical Epigenetics 2016 http://www.imedpub.com ISSN 2472-1158 Vol. 2 No. 4: 20 DOI: 10.21767/2472-1158.100028 An Update on Epigenetics in Mammalian Kochar Kaur K1,Allahbadia G2 3 Reproduction with Emphasis on Human and Singh M Reproduction 1 Centre for Human Reproduction 721, G.T.B. Nagar Jalandhar-14400, Punjab, India 2 Rotunda-A Centre for Human Reproduction, 672, Kalpak Garden, Abstract Perry Cross Road, Bandra (W)-400040, Basically epigenetic mechanisms control development and regulate gene Mumbai, India expression in various types of cells of the organism, each carrying similar DNA 3 Swami Satyanand Hospital, Nawi sequence. In simple language, the nucleotides of DNA are letters of the complicated Kachehri, Baradri, Ladowali Road, Jalandhar, Punjab, India text and these epigenetic labels or marks are the spaces, punctuations, sentences, paragraphs and styles which give meaning to this complicated text. Here we have tried to discuss the epigenetic markers like DNA methylation at CpG dinucleotide, covalent modifications of histone proteins and details of noncoding Corresponding author: RNA’s including long ncRNA’s, miRNA. Besides importance of lncRNA’S has been Kaur K discussed in dosage compensation in X linked genes with role of Xi where heavy [email protected] dosage of X linked genes get compensated with role of Xist and long noncoding RNAs and further the value of genome imprinting in ART and various disorders like Centre For Human Reproduction, 721, G.T.B. Beckman Wiedeman Syndrome (BWS), Russell silver syndrome (RSS) is discussed Nagar, Jalandhar-144001, Punjab, India.
    [Show full text]
  • Downloaded from the CCLE Por- AffecNg Tal of the Broad Institute [72, 80]
    Vural et al. Clin Epigenet (2021) 13:49 https://doi.org/10.1186/s13148-021-01026-4 RESEARCH Open Access Association of expression of epigenetic molecular factors with DNA methylation and sensitivity to chemotherapeutic agents in cancer cell lines Suleyman Vural1, Alida Palmisano1,2 , William C. Reinhold3, Yves Pommier3, Beverly A. Teicher4 and Julia Krushkal1* Abstract Background: Altered DNA methylation patterns play important roles in cancer development and progression. We examined whether expression levels of genes directly or indirectly involved in DNA methylation and demethylation may be associated with response of cancer cell lines to chemotherapy treatment with a variety of antitumor agents. Results: We analyzed 72 genes encoding epigenetic factors directly or indirectly involved in DNA methylation and demethylation processes. We examined association of their pretreatment expression levels with methylation beta- values of individual DNA methylation probes, DNA methylation averaged within gene regions, and average epige- nome-wide methylation levels. We analyzed data from 645 cancer cell lines and 23 cancer types from the Cancer Cell Line Encyclopedia and Genomics of Drug Sensitivity in Cancer datasets. We observed numerous correlations between expression of genes encoding epigenetic factors and response to chemotherapeutic agents. Expression of genes encoding a variety of epigenetic factors, including KDM2B, DNMT1, EHMT2, SETDB1, EZH2, APOBEC3G, and other genes, was correlated with response to multiple agents. DNA methylation of
    [Show full text]