Datasheet: AHP1798 Product Details

Total Page:16

File Type:pdf, Size:1020Kb

Datasheet: AHP1798 Product Details Datasheet: AHP1798 Description: RABBIT ANTI STELLA Specificity: STELLA Format: Purified Product Type: Polyclonal Antibody Isotype: Polyclonal IgG Quantity: 0.1 mg Product Details Applications This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit www.bio-rad-antibodies.com/protocols. Yes No Not Determined Suggested Dilution Western Blotting 1.0 - 2.0ug/ml Where this product has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Suggested working dilutions are given as a guide only. It is recommended that the user titrates the product for use in their own system using appropriate negative/positive controls. Target Species Human Species Cross Reacts with: Mouse, Rat Reactivity N.B. Antibody reactivity and working conditions may vary between species. Product Form Purified IgG - liquid Antiserum Preparation Antisera to human Stella were raised by repeated immunisation of rabbits with highly purified antigen. Purified IgG prepared from whole serum by affinity chromatography. Buffer Solution Phosphate buffered saline Preservative 0.02% Sodium Azide (NaN ) Stabilisers 3 Approx. Protein IgG concentration 1.0mg/ml Concentrations Immunogen Synthetic peptide sequence corresponding to a 13 amino acid sequence from near the carboxy terminus of Human Stella External Database Links UniProt: Q6W0C5 Related reagents Entrez Gene: Page 1 of 2 359787 DPPA3 Related reagents Synonyms STELLAR Specificity Rabbit anti Stella antibody recognizes human Stella, also known as Developmental pluripotency- associated protein 3 (DPP3). Stella is a marker for pluripotency in embryonic stem (ES) cells as its expression is observed in primordial germ cells of both sexes and germ cell tumors but not in normal somatic tissues. However, in ES cell colonies, heterogeneous expression of Stella was seen in high throughput in situ hybridization assays, indicating that higher levels of complexity exist in otherwise thought to be undifferentiated ES cells. At least two distinct isoforms of Stella are known to exist. Stella is highly expressed in testicular germ cell tumours. It is also expressed in embryonic stem and carcinoma cells. Low expression is observed in tissues of the testis, ovary and thymus. Western Blotting AHP1798 detects a band of approximately 18 kDa in 293 cell lysate Further Reading 1. Bowles J et al (2003) Dppa3 is a marker of pluripotency and has a human homologue that is expressed in germ cell tumours. Cytogenet. Genome Res. 101:261-5. Storage Store at +4oC or at -20oC if preferred. Storage in frost-free freezers is not recommended. This product should be stored undiluted. Avoid repeated freezing and thawing as this may denature the antibody. Should this product contain a precipitate we recommend microcentrifugation before use. Shelf Life 18 months from date of despatch. Health And Safety Material Safety Datasheet documentation #10040 available at: Information 10040: https://www.bio-rad-antibodies.com/uploads/MSDS/10040.pdf Regulatory For research purposes only Related Products Recommended Secondary Antibodies Sheep Anti Rabbit IgG (STAR54...) HRP Recommended Useful Reagents HISTAR DETECTION SYSTEM (STAR3000A) TidyBlot™ WESTERN BLOT DETECTION REAGENT:HRP (STAR209P) North & South Tel: +1 800 265 7376 Worldwide Tel: +44 (0)1865 852 700 Europe Tel: +49 (0) 89 8090 95 21 America Fax: +1 919 878 3751 Fax: +44 (0)1865 852 739 Fax: +49 (0) 89 8090 95 50 Email: [email protected] Email: [email protected] Email: [email protected] 'M313702:180329' Printed on 02 May 2018 © 2018 Bio-Rad Laboratories Inc | Legal | Imprint Page 2 of 2.
Recommended publications
  • A Genomic Screen for Activators of the Antioxidant Response Element
    A genomic screen for activators of the antioxidant response element Yanxia Liu†, Jonathan T. Kern‡, John R. Walker§, Jeffrey A. Johnson‡, Peter G. Schultz§¶ʈ, and Hendrik Luesch†ʈ †Department of Medicinal Chemistry, University of Florida, 1600 Southwest Archer Road, Gainesville, FL 32610; ‡Department of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705; §Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121; and ¶Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 Contributed by Peter G. Schultz, January 31, 2007 (sent for review December 13, 2006) The antioxidant response element (ARE) is a cis-acting regulatory activation, translocates into the nucleus and transcriptionally acti- enhancer element found in the 5؅ flanking region of many phase II vates ARE-dependent genes after recruiting Maf proteins (2). The detoxification enzymes. Up-regulation of ARE-dependent target upstream regulatory mechanisms by which ARE-activating signals genes is known to have neuroprotective effects; yet, the mechanism are linked to Nrf2 remain to be fully elucidated. It has been of activation is largely unknown. By screening an arrayed collection demonstrated that reactive sulfhydryl groups of Keap1 are sensors of Ϸ15,000 full-length expression cDNAs in the human neuroblas- for induction of phase II genes (13), leading to the proposal that the toma cell line IMR-32 with an ARE-luciferase reporter, we have Nrf2/Keap1 interaction represents a cytoplasmic sensor for oxida- identified several cDNAs not previously associated with ARE activa- tive stress. However, 1-phosphatidylinositol 3-kinase (PI3K), tion.
    [Show full text]
  • Multivariate Meta-Analysis of Differential Principal Components Underlying Human Primed and Naive-Like Pluripotent States
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.20.347666; this version posted October 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. October 20, 2020 To: bioRxiv Multivariate Meta-Analysis of Differential Principal Components underlying Human Primed and Naive-like Pluripotent States Kory R. Johnson1*, Barbara S. Mallon2, Yang C. Fann1, and Kevin G. Chen2*, 1Intramural IT and Bioinformatics Program, 2NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA Keywords: human pluripotent stem cells; naive pluripotency, meta-analysis, principal component analysis, t-SNE, consensus clustering *Correspondence to: Dr. Kory R. Johnson ([email protected]) Dr. Kevin G. Chen ([email protected]) 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.20.347666; this version posted October 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. ABSTRACT The ground or naive pluripotent state of human pluripotent stem cells (hPSCs), which was initially established in mouse embryonic stem cells (mESCs), is an emerging and tentative concept. To verify this important concept in hPSCs, we performed a multivariate meta-analysis of major hPSC datasets via the combined analytic powers of percentile normalization, principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE), and SC3 consensus clustering.
    [Show full text]
  • Supplemental Information
    Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig.
    [Show full text]
  • Integrated Bioinformatics Analysis of Aberrantly-Methylated
    Shen et al. BMC Ophthalmology (2020) 20:119 https://doi.org/10.1186/s12886-020-01392-2 RESEARCH ARTICLE Open Access Integrated bioinformatics analysis of aberrantly-methylated differentially- expressed genes and pathways in age- related macular degeneration Yinchen Shen1,2†,MoLi3†, Kun Liu1,2, Xiaoyin Xu1,2, Shaopin Zhu1,2, Ning Wang1,2, Wenke Guo4, Qianqian Zhao4, Ping Lu4, Fudong Yu4 and Xun Xu1,2* Abstract Background: Age-related macular degeneration (AMD) represents the leading cause of visual impairment in the aging population. The goal of this study was to identify aberrantly-methylated, differentially-expressed genes (MDEGs) in AMD and explore the involved pathways via integrated bioinformatics analysis. Methods: Data from expression profile GSE29801 and methylation profile GSE102952 were obtained from the Gene Expression Omnibus database. We analyzed differentially-methylated genes and differentially-expressed genes using R software. Functional enrichment and protein–protein interaction (PPI) network analysis were performed using the R package and Search Tool for the Retrieval of Interacting Genes online database. Hub genes were identified using Cytoscape. Results: In total, 827 and 592 genes showed high and low expression, respectively, in GSE29801; 4117 hyper-methylated genes and 511 hypo-methylated genes were detected in GSE102952. Based on overlap, we categorized 153 genes as hyper-methylated, low-expression genes (Hyper-LGs) and 24 genes as hypo-methylated, high-expression genes (Hypo-HGs). Four Hyper-LGs (CKB, PPP3CA, TGFB2, SOCS2) overlapped with AMD risk genes in the Public Health Genomics and Precision Health Knowledge Base. KEGG pathway enrichment analysis indicated that Hypo-HGs were enriched in the calcium signaling pathway, whereas Hyper-LGs were enriched in sphingolipid metabolism.
    [Show full text]
  • Mouse Dppa3 Conditional Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Dppa3 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Dppa3 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Dppa3 gene (NCBI Reference Sequence: NM_139218 ; Ensembl: ENSMUSG00000046323 ) is located on Mouse chromosome 6. 4 exons are identified, with the ATG start codon in exon 1 and the TAG stop codon in exon 4 (Transcript: ENSMUST00000049644). Exon 2 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Dppa3 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP24-68I7 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Female mice homozygous for a disruption in this gene are infertile or have reduced fertility due to a failure in embryonic development at or before implantation. Exon 2 starts from about 19.78% of the coding region. The knockout of Exon 2 will result in frameshift of the gene. The size of intron 1 for 5'-loxP site insertion: 1966 bp, and the size of intron 2 for 3'-loxP site insertion: 491 bp. The size of effective cKO region: ~728 bp. The cKO region does not have any other known gene. Page 1 of 7 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele gRNA region 5' gRNA region 3' 1 2 3 4 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Homology arm Exon of mouse Dppa3 cKO region loxP site Page 2 of 7 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • Proteomic Analysis of Ubiquitin Ligase KEAP1 Reveals Associated Proteins That Inhibit NRF2 Ubiquitination
    Published OnlineFirst February 4, 2013; DOI: 10.1158/0008-5472.CAN-12-4400 Cancer Molecular and Cellular Pathobiology Research Proteomic Analysis of Ubiquitin Ligase KEAP1 Reveals Associated Proteins That Inhibit NRF2 Ubiquitination Bridgid E. Hast1, Dennis Goldfarb2, Kathleen M. Mulvaney1, Michael A. Hast4, Priscila F. Siesser1, Feng Yan1, D. Neil Hayes3, and Michael B. Major1,2 Abstract Somatic mutations in the KEAP1 ubiquitin ligase or its substrate NRF2 (NFE2L2) commonly occur in human cancer, resulting in constitutive NRF2-mediated transcription of cytoprotective genes. However, many tumors display high NRF2 activity in the absence of mutation, supporting the hypothesis that alternative mechanisms of pathway activation exist. Previously, we and others discovered that via a competitive binding mechanism, the proteins WTX (AMER1), PALB2, and SQSTM1 bind KEAP1 to activate NRF2. Proteomic analysis of the KEAP1 protein interaction network revealed a significant enrichment of associated proteins containing an ETGE amino acid motif, which matches the KEAP1 interaction motif found in NRF2. Like WTX, PALB2, and SQSTM1, we found that the dipeptidyl peptidase 3 (DPP3) protein binds KEAP1 via an "ETGE" motif to displace NRF2, thus inhibiting NRF2 ubiquitination and driving NRF2-dependent transcription. Comparing the spectrum of KEAP1-interacting proteins with the genomic profile of 178 squamous cell lung carcinomas characterized by The Cancer Genome Atlas revealed amplification and mRNA overexpression of the DPP3 gene in tumors with high NRF2 activity but lacking NRF2 stabilizing mutations. We further show that tumor-derived mutations in KEAP1 are hypomorphic with respect to NRF2 inhibition and that DPP3 overexpression in the presence of these mutants further promotes NRF2 activation.
    [Show full text]
  • A Peripheral Blood Gene Expression Signature to Diagnose Subclinical Acute Rejection
    CLINICAL RESEARCH www.jasn.org A Peripheral Blood Gene Expression Signature to Diagnose Subclinical Acute Rejection Weijia Zhang,1 Zhengzi Yi,1 Karen L. Keung,2 Huimin Shang,3 Chengguo Wei,1 Paolo Cravedi,1 Zeguo Sun,1 Caixia Xi,1 Christopher Woytovich,1 Samira Farouk,1 Weiqing Huang,1 Khadija Banu,1 Lorenzo Gallon,4 Ciara N. Magee,5 Nader Najafian,5 Milagros Samaniego,6 Arjang Djamali ,7 Stephen I. Alexander,2 Ivy A. Rosales,8 Rex Neal Smith,8 Jenny Xiang,3 Evelyne Lerut,9 Dirk Kuypers,10,11 Maarten Naesens ,10,11 Philip J. O’Connell,2 Robert Colvin,8 Madhav C. Menon,1 and Barbara Murphy1 Due to the number of contributing authors, the affiliations are listed at the end of this article. ABSTRACT Background In kidney transplant recipients, surveillance biopsies can reveal, despite stable graft function, histologic features of acute rejection and borderline changes that are associated with undesirable graft outcomes. Noninvasive biomarkers of subclinical acute rejection are needed to avoid the risks and costs associated with repeated biopsies. Methods We examined subclinical histologic and functional changes in kidney transplant recipients from the prospective Genomics of Chronic Allograft Rejection (GoCAR) study who underwent surveillance biopsies over 2 years, identifying those with subclinical or borderline acute cellular rejection (ACR) at 3 months (ACR-3) post-transplant. We performed RNA sequencing on whole blood collected from 88 indi- viduals at the time of 3-month surveillance biopsy to identify transcripts associated with ACR-3, developed a novel sequencing-based targeted expression assay, and validated this gene signature in an independent cohort.
    [Show full text]
  • A Master Autoantigen-Ome Links Alternative Splicing, Female Predilection, and COVID-19 to Autoimmune Diseases
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.30.454526; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A Master Autoantigen-ome Links Alternative Splicing, Female Predilection, and COVID-19 to Autoimmune Diseases Julia Y. Wang1*, Michael W. Roehrl1, Victor B. Roehrl1, and Michael H. Roehrl2* 1 Curandis, New York, USA 2 Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA * Correspondence: [email protected] or [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.30.454526; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Chronic and debilitating autoimmune sequelae pose a grave concern for the post-COVID-19 pandemic era. Based on our discovery that the glycosaminoglycan dermatan sulfate (DS) displays peculiar affinity to apoptotic cells and autoantigens (autoAgs) and that DS-autoAg complexes cooperatively stimulate autoreactive B1 cell responses, we compiled a database of 751 candidate autoAgs from six human cell types. At least 657 of these have been found to be affected by SARS-CoV-2 infection based on currently available multi-omic COVID data, and at least 400 are confirmed targets of autoantibodies in a wide array of autoimmune diseases and cancer.
    [Show full text]
  • Population-Haplotype Models for Mapping and Tagging Structural Variation Using Whole Genome Sequencing
    Population-haplotype models for mapping and tagging structural variation using whole genome sequencing Eleni Loizidou Submitted in part fulfilment of the requirements for the degree of Doctor of Philosophy Section of Genomics of Common Disease Department of Medicine Imperial College London, 2018 1 Declaration of originality I hereby declare that the thesis submitted for a Doctor of Philosophy degree is based on my own work. Proper referencing is given to the organisations/cohorts I collaborated with during the project. 2 Copyright Declaration The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work 3 Abstract The scientific interest in copy number variation (CNV) is rapidly increasing, mainly due to the evidence of phenotypic effects and its contribution to disease susceptibility. Single nucleotide polymorphisms (SNPs) which are abundant in the human genome have been widely investigated in genome-wide association studies (GWAS). Despite the notable genomic effects both CNVs and SNPs have, the correlation between them has been relatively understudied. In the past decade, next generation sequencing (NGS) has been the leading high-throughput technology for investigating CNVs and offers mapping at a high-quality resolution. We created a map of NGS-defined CNVs tagged by SNPs using the 1000 Genomes Project phase 3 (1000G) sequencing data to examine patterns between the two types of variation in protein-coding genes.
    [Show full text]
  • A Genetic Mapping System in Caenorhabditis Elegans Based On
    z A Genetic Mapping System in Caenorhabditis elegansBased on Polymorphic Sequence-Tagged Sites Benjamin D. Williams,* Bertold Schrank,* Chau Huynh,* Ratna Shownkeent and Robert H. Waterston* *Department of Genetics, Washington University School ofMedicine, St. Louis, Missouri631 IO, and ?Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 2QH, United Kingdom Manuscript received December 26, 1991 Accepted for publication March 9, 1992 ABSTRACT We devised an efficient genetic mapping system in the nematode Caenorhabditis elegans which is based upon the differences in number and location of the transposable element Tcl between the Bristol and Bergerac strains. Using the nearly completed physical map of theC. elegans genome, we selected 40 widely distributed sites which contain a Tcl element in the Bergerac strain, but not in the Bristol strain. For each site a polymerase chain reaction assay was designed that can distinguish between the Bergerac Tcl-containing site and the Bristol “empty” site. By combining appropriate assays in a single reaction, one can score multiple sites within single worms. This permits a mutation to be rapidly mapped,first to a linkage group and thento a chromosomal subregion, through analysis of only a small number of progeny from a single interstrain cross. EQUENCE-tagged sites (STSs), which havere- Previously, Tcls have been used in efforts to mo- S cently been proposed as common landmarks for lecularly clone specific genes, both by direct transpo- genomic physical mapping (OLSONet al. 1989), are son tagging(MOERMAN, BENIAN and WATERSTON short, unique genomic regions that areeasily detected 1986) andby genetic mappingof the Bristol/Bergerac by polymerase chain reaction(PCR) amplification Tcl polymorphisms nearest a gene to identify molec- (SAIKIet al.
    [Show full text]
  • Heterogeneity Between Primary Colon Carcinoma and Paired Lymphatic and Hepatic Metastases
    MOLECULAR MEDICINE REPORTS 6: 1057-1068, 2012 Heterogeneity between primary colon carcinoma and paired lymphatic and hepatic metastases HUANRONG LAN1, KETAO JIN2,3, BOJIAN XIE4, NA HAN5, BINBIN CUI2, FEILIN CAO2 and LISONG TENG3 Departments of 1Gynecology and Obstetrics, and 2Surgical Oncology, Taizhou Hospital, Wenzhou Medical College, Linhai, Zhejiang; 3Department of Surgical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang; 4Department of Surgical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang; 5Cancer Chemotherapy Center, Zhejiang Cancer Hospital, Zhejiang University of Chinese Medicine, Hangzhou, Zhejiang, P.R. China Received January 26, 2012; Accepted May 8, 2012 DOI: 10.3892/mmr.2012.1051 Abstract. Heterogeneity is one of the recognized characteris- Introduction tics of human tumors, and occurs on multiple levels in a wide range of tumors. A number of studies have focused on the Intratumor heterogeneity is one of the recognized charac- heterogeneity found in primary tumors and related metastases teristics of human tumors, which occurs on multiple levels, with the consideration that the evaluation of metastatic rather including genetic, protein and macroscopic, in a wide range than primary sites could be of clinical relevance. Numerous of tumors, including breast, colorectal cancer (CRC), non- studies have demonstrated particularly high rates of hetero- small cell lung cancer (NSCLC), prostate, ovarian, pancreatic, geneity between primary colorectal tumors and their paired gastric, brain and renal clear cell carcinoma (1). Over the past lymphatic and hepatic metastases. It has also been proposed decade, a number of studies have focused on the heterogeneity that the heterogeneity between primary colon carcinomas and found in primary tumors and related metastases with the their paired lymphatic and hepatic metastases may result in consideration that the evaluation of metastatic rather than different responses to anticancer therapies.
    [Show full text]
  • Dynamics of Meiotic Sex Chromosome Inactivation And
    bioRxiv preprint doi: https://doi.org/10.1101/665372; this version posted July 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 Dynamics of Meiotic Sex Chromosome Inactivation 2 and Pachytene Activation in Mice Spermatogenesis 3 4 Ábel Vértesy1,2; Javier Frias-Aldeguer1,4; Zeliha Sahin1,3; Nicolas Rivron1,4; Alexander van 5 Oudenaarden1,2 and Niels Geijsen1,5 6 7 1. Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and 8 University Medical Center, 3584 CT Utrecht, The Netherlands 9 2. Department of Genetics, Center for Molecular Medicine, Cancer Genomics Netherlands, 10 University Medical Center Utrecht, The Netherlands 11 3. Amsterdam UMC, University of Amsterdam, Clinical Genetics, Amsterdam Medical 12 Research, Meibergdreef 9, Amsterdam, Netherlands 13 4. MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 14 The Netherlands 15 5. Faculty of Veterinary Medicine, Clinical Sciences of Companion Animals, Utrecht 16 University, The Netherlands 17 18 Abstract 19 During germ cell development, cells undergo a drastic switch from mitosis to meiosis to 20 form haploid germ cells. Sequencing and computational technologies now allow studying 21 development at the single-cell level. Here we developed a multiplexed trajectory 22 reconstruction to create a high-resolution developmental map of spermatogonia and 23 prophase-I spermatocytes from testes of a Dazl-GFP reporter mouse. We identified three 24 main transitions in the meiotic prophase-I: meiotic entry, the meiotic sex chromosome 25 inactivation (MSCI), and concomitant pachytene activation.
    [Show full text]