Comparative Genome Analysis Between the Atlantic Salmon Sex Chromosome and the Genomes of Other Teleosts

Total Page:16

File Type:pdf, Size:1020Kb

Comparative Genome Analysis Between the Atlantic Salmon Sex Chromosome and the Genomes of Other Teleosts COMPARATIVE GENOME ANALYSIS BETWEEN THE ATLANTIC SALMON SEX CHROMOSOME AND THE GENOMES OF OTHER TELEOSTS by Teng-Kai (Kevin) Huang B. Sc., Simon Fraser University, 2006 THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE In the Department of Molecular Biology and Biochemistry © Teng-Kai (Kevin) Huang 2009 SIMON FRASER UNIVERSITY Spring 2009 All rights reserved. This work may not be reproduced jill whole or in part, by photocopy or other means, without permission of the author. APPROVAL Name: Teng-Kai (Kevin) Huang Degree: Master of Science Title of Thesis: Comparative Genome Analysis between the Atlantic Salmon Sex Chromosome and the Genomes of Other Teleosts Examining Committee: Chair: Dr. Andrew J. Bennet Professor, Department of Chemistry Dr. William S. Davidson Senior Supervisor Professor, Department of Molecular Biology and Biochemistry Dr. Jack N. Chen Supervisor Associate Professor, Department of Molecular Biology and Biochemistry Dr. Norbert H. Haunerland Supervisor Professor, Department of Biological Sciences Dr. Fiona S. L. Brinkman Public Examiner Associate Professor, Department of Molecular Biology and Biochemistry Date Defended!Approved: ii SIMON FRASER UNIVERSITY LIBRARY Declaration of Partial Copyright Licence The author, whose copyright is declared on the title page of this work, has granted to Simon Fraser University the right to lend this thesis, project or extended essay to users of the Simon Flraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. The author has further granted permission to Simon Fraser University to keep or make a digital copy for use in its circulating collection (currently available to the public at the "Institutional Repository" link of the SFU Library website <www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing the content, to translate the thesis/project or extended essays, if technically possible, to any medium or format for the purpose of preservation of the digital work. The author has further agreed that permission for multiple copying of this work for scholarly purposes may be granted by either the author or the Dean of Graduate Studies. It is understood that copying or publication of this work for financial gain shall not be allowed without the author's written permission. Permission for public performance, or limited permission for private scholarly use, of any multimedia materials forming part of this work, may have been granted by the author. This information may be found on the separately catalogued multimedia material and in the signed Partial Copyright Licence. While licensing SFU to permit the above uses, the author retains copyright in the thesis, project or extended essays, including the right to change the work for subsequent purposes, including editing and publishing the work in whole or in part, and licensing other parties, as the author may desire. The original Partial Copyright Licence attesting to these terms, and signed by this author, may be found in the original bound copy of this work, retained in the Simon Fraser University Archive. Simon Fraser University Library Burnaby, BC, Canada Revised: Fall 2007 ABSTRACT In Atlantic salmon, Linkage Group (LG) I contains the sex-determining locus, and from previous studies it was found that LG 1 corresponds to chromosome 2. I have completed a screen of the Atlantic salmon bacterial artificial chromosome (BAC) libraries for all known microsatellite markers on LG 1, and was able to integrate much of the physical and linkage maps in this genomic region. I have also constructed BAC minimum tiling pathways in many regions of chromosome 2, with the sequences of some of these regions being obtained. All the BAC-end sequences from the contigs assigned to Atlantic salmon LG 1 were subjected to BLASTx searches with the genomes of medaka, stickleback, zebrafish and Tetraodon. The orthologous genes found were used to identify the regions of these fish genomes that are syntenic to Atlantic salmon LG 1. Three sex­ determining gene candidates were also identified: ZFYVE27, Zmat4 and TSG118. iii ACKNOWLEDGEMENTS First of all, I would like to thank my senior supervisor, Dr. William S. Davidson, for his tremendous help for the past two years of my master program. My learning experience has been fun and enjoyable with him, and I really appreciate his kindness, patience, and support. I am grateful to all the guidance and advice that he provided me to carry out my research for the past two years, and his help on the completion of my thesis and my master degree. I thank Dr. Jack N. Chen and Dr. Norbert H. Haunerland, the members of my thesis committee, for contributing their time and expertise on my work, and their good-natured support. I am grateful too for the support from all the lab people for the past two years. I enjoyed the friendships and all the times that we had together. Especially, I need to express my gratitude and appreciation to Dr. Kazuhiro Fujiki, who taught me all the skills necessary for the two years of my master program, and shared all of his knowledge and advice with me regarding to my project. I would also like to thank Jieying Li for her help on some of the minimum tiling pathway constructions, and she has done the job very well. My appreciation also goes to Keith Boroevich for developing the Asalbase website with all the BLASTx results, and William Chow for developing the GRASP website with all the sequence annotation data. I must acknowledge all of my church friends, especially to Benson Hsu and Howard Liu, and my church pastors, Victor Pai and Dove Jang, who had prayed for me, encouraged me, and supported me for the past two years of my master program. I would not have been able to complete my master program without their support. Finally, I would like to thank my Grade 4 science teacher, Ms. Lucia Chen. She really inspired me to do science as my career through a project that we had worked together for a science competition 16 years ago, and it is this inspiration that drives me forward until this day. I am also grateful for the many support and encouragement that she gave me during the period of my thesis writing. Without her, my life could be completely different, and the completion of this thesis would be impossible. (Thank you, Ms. Chen.) IV TABLE OF CONTENTS Approval " ii Abstract " iii Acknowledgements " iv Table of Contents n ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••V List of Figures n................................................................................... vii List of Tables ix Chapter 1: Introduction 1 1.1 Sex-Determining Mechanisms 1 1.1.1 Environmental Mechanisms 1 1.1.2 Genetic Mechanisms 2 1.2 Sex-Determination and Sex Chromosome Evolution in Vertebrates 2 1.2.1 Mammals 3 1.2.2 Birds 5 1.2.3 Fishes 6 1.3 Sex-Determination in Teleost Fishes .- 9 1.3.1 Medaka 9 1.3.2 Poeciliid 10 1.3.3 Tilapia 12 1.3.4 Stickleback 14 1.3.5 Pufferfish 15 1.4 Sex-Determinations in Salmonids 16 1.5 Atlantic Salmon Linkage Group (LG) 1 19 1.6 Comparative Genome Analysis 21 1.6.1 Whole-Genome Duplication 21 1.6.2 Salmonid Genome Duplication 23 1.6.3 Comparing Genomes from Different Species 24 1.7 Aim of the Thesis 27 Chapter 2: Materials and Methods 28 2.1 Integration of Microsatellite and SNP Markers into Atlantic Salmon Linkage Group 1 28 2.1.1 Probe and Primer Design 28 2.1.2 BAC Library Screening 28 2.1.3 Positiveness Check by PCR 29 2.1.4 Identifying the Corresponding Contig 30 2.2 Chromosome "Walking" Along Atlantic Salmon Linkage Group 1 31 v 2.2.1 Probe and Primer Design 31 2.2.2 BAC Library Screening 31 2.2.3 Positiveness Check by PCR 31 2.2.4 Joining the Contigs 31 2.3 Sequencing the BAC Inserts 32 2.3.1 PCR Procedure 32 2.3.2 Subcloning the PCR Product 32 2.3.3 Insert Check by Colony PCR 33 2.3.4 Sequencing Reaction 34 2.4 BAC Sequencing Analysis and Gene Identification 35 2.5 Comparative Genome Analysis 36 Chapter 3: Results 37 3.1 Updating the Atlantic Salmon Linkage Group (LG) 1 Physical Map 37 3.1.1 An Overview of Atlantic Salmon LG 1 37 3.1.2 Incorporating Sex-Linked Microsatellte Markers into the Physical Map 39 3.2 Extension of Coverage of Atlantic Salmon LG 1 Physical Map .47 3.2.1 Chromosome Walking .47 3.2.2 Joining the Contigs 55 3.3 Minimum Tiling Pathways 57 3.3.1 Super-Contig 783 59 3.3.2 Super-Contig 332 67 3.3.3 Super-Contig 315 72 3.3.4 Super-Contig 2169 75 3.3.5 OMYlllliRA 79 3.4 Assembly and Annotation of BAC Sequences 83 3.4.1 Sequences Annotation 83 3.4.2 Genes Identified " 89 3.5 Comparative Genome Analysis 107 3.5.1 Medaka " 110 3.5.2 Stickleback " 114 3.5.3 Zebrafish 118 3.5.4 Tetraodon 122 3.6 A Comparison between the Comparative Genomics Data and the BAC Sequencing Data 125 3.7 Candidate Sex-Determining Genes 128 Chapter 4: Discussions and Conclusions 139 4.1 A Comparison between the Previous Work in Comparative Genomics and my Results 139 4.2 Future Work 141 References 143 VI LIST OF FIGURES Figure 3.1 Atlantic salmon Linkage Group 1. 38 Figure 3.2 CHORI-214 Atlantic salmon BAC library filter hybridized with BHMS7.029 probe 44 Figure 3.3 Hybridization positive BACs found by BHMS7.029 microsatellite probe were confirmed by PCR .45 Figure 3.4 Contig 332 as viewed from Asalbase .46 Figure 3.5 Checking the Orientation of BACs located at the end of a contig using PCR 53 Figure 3.6 PCR result of end BACs in contig 783, using both T7 and SP6 primers from S0065E16 54 Figure 3.7 Super-contig 783 63 Figure 3.8 Super-contig 332 69 Figure 3.9 Super-contig 315 73 Figure 3.10 Super-contig 2169 77 Figure 3.11 The region around the microsatellite marker OMYIIINRA.
Recommended publications
  • A Genomic Screen for Activators of the Antioxidant Response Element
    A genomic screen for activators of the antioxidant response element Yanxia Liu†, Jonathan T. Kern‡, John R. Walker§, Jeffrey A. Johnson‡, Peter G. Schultz§¶ʈ, and Hendrik Luesch†ʈ †Department of Medicinal Chemistry, University of Florida, 1600 Southwest Archer Road, Gainesville, FL 32610; ‡Department of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705; §Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121; and ¶Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 Contributed by Peter G. Schultz, January 31, 2007 (sent for review December 13, 2006) The antioxidant response element (ARE) is a cis-acting regulatory activation, translocates into the nucleus and transcriptionally acti- enhancer element found in the 5؅ flanking region of many phase II vates ARE-dependent genes after recruiting Maf proteins (2). The detoxification enzymes. Up-regulation of ARE-dependent target upstream regulatory mechanisms by which ARE-activating signals genes is known to have neuroprotective effects; yet, the mechanism are linked to Nrf2 remain to be fully elucidated. It has been of activation is largely unknown. By screening an arrayed collection demonstrated that reactive sulfhydryl groups of Keap1 are sensors of Ϸ15,000 full-length expression cDNAs in the human neuroblas- for induction of phase II genes (13), leading to the proposal that the toma cell line IMR-32 with an ARE-luciferase reporter, we have Nrf2/Keap1 interaction represents a cytoplasmic sensor for oxida- identified several cDNAs not previously associated with ARE activa- tive stress. However, 1-phosphatidylinositol 3-kinase (PI3K), tion.
    [Show full text]
  • 2R Or Not 2R Is Not the Question Anymore
    CORRESPONDENCE LINK TO ORIGINAL ARTICLE LINK TO INITIAL CORRESPONDENCE origin of evolutionary novelties are highly interesting questions, but they remain 2R or not 2R is not the largely unsolved11. However, evidence for the two rounds of genome duplication dur- question anymore ing chordate evolution is very strong, and it would seem safe to say that the debate Yves Van de Peer, Steven Maere and Axel Meyer over 2R is settled and is no longer an open question12. As we point out in our Opinion article1, it is only the evolutionary effects of In his comments on our Opinion article in passing in our recent review on WGDs events such as WGDs on evolution that are (The evolutionary significance of ancient and their significance for evolution in Nature debated1,11, and no longer whether or not genome duplications. Nature Rev. Genet. Reviews Genetics1. two rounds of WGD occurred during the 10, 725–732 (2009))1 Amir Ali Abbasi Abbasi2, however, questions the support evolution of chordates. (Piecemeal or big bangs: correlating the for the 2R hypothesis, claiming that it still Yves Van de Peer and Steven Maere are at the vertebrate evolution with proposed models remains debated today. He points out cor- Department of Plant Systems Biology, VIB (Flanders of gene expansion events. Nature Rev. Genet. rectly that evidence for the 2R hypothesis Institute of Biotechnology), B-9052 Ghent, Belgium. 6 Jan 2010 (doi:10.1038/nrg2600-c1))2 was based initially on data from only a Axel Meyer is at the Department of Biology, University argues that it is not justified to speculate small number of genes and vertebrate and of Konstanz, D-78457 Konstanz, Germany.
    [Show full text]
  • Supplemental Information
    Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig.
    [Show full text]
  • Integrated Bioinformatics Analysis of Aberrantly-Methylated
    Shen et al. BMC Ophthalmology (2020) 20:119 https://doi.org/10.1186/s12886-020-01392-2 RESEARCH ARTICLE Open Access Integrated bioinformatics analysis of aberrantly-methylated differentially- expressed genes and pathways in age- related macular degeneration Yinchen Shen1,2†,MoLi3†, Kun Liu1,2, Xiaoyin Xu1,2, Shaopin Zhu1,2, Ning Wang1,2, Wenke Guo4, Qianqian Zhao4, Ping Lu4, Fudong Yu4 and Xun Xu1,2* Abstract Background: Age-related macular degeneration (AMD) represents the leading cause of visual impairment in the aging population. The goal of this study was to identify aberrantly-methylated, differentially-expressed genes (MDEGs) in AMD and explore the involved pathways via integrated bioinformatics analysis. Methods: Data from expression profile GSE29801 and methylation profile GSE102952 were obtained from the Gene Expression Omnibus database. We analyzed differentially-methylated genes and differentially-expressed genes using R software. Functional enrichment and protein–protein interaction (PPI) network analysis were performed using the R package and Search Tool for the Retrieval of Interacting Genes online database. Hub genes were identified using Cytoscape. Results: In total, 827 and 592 genes showed high and low expression, respectively, in GSE29801; 4117 hyper-methylated genes and 511 hypo-methylated genes were detected in GSE102952. Based on overlap, we categorized 153 genes as hyper-methylated, low-expression genes (Hyper-LGs) and 24 genes as hypo-methylated, high-expression genes (Hypo-HGs). Four Hyper-LGs (CKB, PPP3CA, TGFB2, SOCS2) overlapped with AMD risk genes in the Public Health Genomics and Precision Health Knowledge Base. KEGG pathway enrichment analysis indicated that Hypo-HGs were enriched in the calcium signaling pathway, whereas Hyper-LGs were enriched in sphingolipid metabolism.
    [Show full text]
  • Timing and Mechanism of Ancient Vertebrate Genome Duplications – the Adventure of a Hypothesis
    ARTICLE IN PRESS TIGS 365 Review TRENDS in Genetics Vol.xx No.xx Monthxxxx Timing and mechanism of ancient vertebrate genome duplications – the adventure of a hypothesis Georgia Panopoulou and Albert J. Poustka Evolution and Development Group, Department of Vertebrate Genomics, Max-Planck Institut fu¨ r Molekulare Genetik, Ihnestrasse 73, D-14195 Berlin, Germany Complete genome doubling has long-term conse- period following the split of the cephalochordate and quences for the genome structure and the subsequent vertebrate lineages and before the emergence of gnathos- evolution of an organism. It has been suggested that tomes (Figure 1). Based on the apparent stepwise increase two genome duplications occurred at the origin of in the gene copy-number from invertebrates to jawless vertebrates (known as the 2R hypothesis). However, there has been considerable debate as to whether these were two successive duplications, or whether a single Glossary duplication occurred, followed by large-scale segmental (AB)(CD) topology measure: the nodes of the phylogenetic tree of four duplications. In this article, we review and compare the duplicates generated from two duplication events should have the (AB)(CD) evidence for the 2R duplications from vertebrate genomes topology where the dates of duplication for the (AB) and (CD) nodes are the same. Neighbor genes within paralogons that have the same topology are with similar data from other more recent polyploids. assumed to have been generated through the same event. Agnathans: jawless vertebrates. Aneuploidy: the loss or addition of one or more specific chromosomes to the normal set of chromosomes of an organism (e.g. a form of aneuploidy is Introduction trisomy 21).
    [Show full text]
  • “Parent-Daughter” Relationships Among Vertebrate Paralogs
    Reconstruction of the deep history of “Parent-Daughter” relationships among vertebrate paralogs Haiming Tang*, Angela Wilkins Mercury Data Science, Houston, TX, 77098 * Corresponding author Abstract: Gene duplication is a major mechanism through which new genetic material is generated. Although numerous methods have been developed to differentiate the ortholog and paralogs, very few differentiate the “Parent-Daughter” relationship among paralogous pairs. As coined by the Mira et al, we refer the “Parent” copy as the paralogous copy that stays at the original genomic position of the “original copy” before the duplication event, while the “Daughter” copy occupies a new genomic locus. Here we present a novel method which combines the phylogenetic reconstruction of duplications at different evolutionary periods and the synteny evidence collected from the preserved homologous gene orders. We reconstructed for the first time a deep evolutionary history of “Parent-Daughter” relationships among genes that were descendants from 2 rounds of whole genome duplications (2R WGDs) at early vertebrates and were further duplicated in later ceancestors like early Mammalia and early Primates. Our analysis reveals that the “Parent” copy has significantly fewer accumulated mutations compared with the “Daughter” copy since their divergence after the duplication event. More strikingly, we found that the “Parent” copy in a duplication event continues to be the “Parent” of the younger successive duplication events which lead to “grand-daughters”. Data availability: we have made the “Parent-Daughter” relationships publicly available at https://github.com/haimingt/Parent-Daughter-In-Paralogs/ Introduction Gene duplication has been widely accepted as a shaping force in evolution (Zhang, et al.
    [Show full text]
  • NIH Public Access Author Manuscript Dev Dyn
    NIH Public Access Author Manuscript Dev Dyn. Author manuscript; available in PMC 2010 June 25. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Dev Dyn. 2009 June ; 238(6): 1249±1270. doi:10.1002/dvdy.21891. Comparative and Developmental Study of the Immune System in Xenopus Jacques Robert1,* and Yuko Ohta2 1Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 2Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland Abstract Xenopus laevis is the model of choice for evolutionary, comparative, and developmental studies of immunity, and invaluable research tools including MHC-defined clones, inbred strains, cell lines, and monoclonal antibodies are available for these studies. Recent efforts to use Silurana (Xenopus) tropicalis for genetic analyses have led to the sequencing of the whole genome. Ongoing genome mapping and mutagenesis studies will provide a new dimension to the study of immunity. Here we review what is known about the immune system of X. laevis integrated with available genomic information from S. tropicalis. This review provides compelling evidence for the high degree of similarity and evolutionary conservation between Xenopus and mammalian immune systems. We propose to build a powerful and innovative comparative biomedical model based on modern genetic technologies that takes take advantage of X. laevis and S. tropicalis, as well as the whole Xenopus genus. Keywords comparative immunology; developmental immunology; evolution of immunity; genomics INTRODUCTION From an evolutionary point of view, Xenopus is one “connecting” taxon that links mammals to vertebrates of more ancient origin (bony and cartilaginous fishes), that shared a common ancestor ~350 MYA (Pough et al., 2002).
    [Show full text]
  • Of Genome Duplications and the Evolution of the Glycolytic Pathway in Vertebrates Dirk Steinke†1,3, Simone Hoegg†1, Henner Brinkmann2 and Axel Meyer*1
    BMC Biology BioMed Central Research article Open Access Three rounds (1R/2R/3R) of genome duplications and the evolution of the glycolytic pathway in vertebrates Dirk Steinke†1,3, Simone Hoegg†1, Henner Brinkmann2 and Axel Meyer*1 Address: 1Lehrstuhl für Evolutionsbiologie und Zoologie, Department of Biology, University of Konstanz, 78457 Konstanz, Germany, 2Département de biochimie. Université de Montreal, Montreal, QC, H3C3J7, Canada and 3Canadian Centre for DNA Barcoding, Biodiversity Institute of Ontario, University of Guelph, Guelph, ON, N1G 2W1, Canada Email: Dirk Steinke - [email protected]; Simone Hoegg - [email protected]; Henner Brinkmann - [email protected]; Axel Meyer* - [email protected] * Corresponding author †Equal contributors Published: 06 June 2006 Received: 03 February 2006 Accepted: 06 June 2006 BMC Biology 2006, 4:16 doi:10.1186/1741-7007-4-16 This article is available from: http://www.biomedcentral.com/1741-7007/4/16 © 2006 Steinke et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Evolution of the deuterostome lineage was accompanied by an increase in systematic complexity especially with regard to highly specialized tissues and organs. Based on the observation of an increased number of paralogous genes in vertebrates compared with invertebrates, two entire genome duplications (2R) were proposed during the early evolution of vertebrates. Most glycolytic enzymes occur as several copies in vertebrate genomes, which are specifically expressed in certain tissues.
    [Show full text]
  • Proteomic Analysis of Ubiquitin Ligase KEAP1 Reveals Associated Proteins That Inhibit NRF2 Ubiquitination
    Published OnlineFirst February 4, 2013; DOI: 10.1158/0008-5472.CAN-12-4400 Cancer Molecular and Cellular Pathobiology Research Proteomic Analysis of Ubiquitin Ligase KEAP1 Reveals Associated Proteins That Inhibit NRF2 Ubiquitination Bridgid E. Hast1, Dennis Goldfarb2, Kathleen M. Mulvaney1, Michael A. Hast4, Priscila F. Siesser1, Feng Yan1, D. Neil Hayes3, and Michael B. Major1,2 Abstract Somatic mutations in the KEAP1 ubiquitin ligase or its substrate NRF2 (NFE2L2) commonly occur in human cancer, resulting in constitutive NRF2-mediated transcription of cytoprotective genes. However, many tumors display high NRF2 activity in the absence of mutation, supporting the hypothesis that alternative mechanisms of pathway activation exist. Previously, we and others discovered that via a competitive binding mechanism, the proteins WTX (AMER1), PALB2, and SQSTM1 bind KEAP1 to activate NRF2. Proteomic analysis of the KEAP1 protein interaction network revealed a significant enrichment of associated proteins containing an ETGE amino acid motif, which matches the KEAP1 interaction motif found in NRF2. Like WTX, PALB2, and SQSTM1, we found that the dipeptidyl peptidase 3 (DPP3) protein binds KEAP1 via an "ETGE" motif to displace NRF2, thus inhibiting NRF2 ubiquitination and driving NRF2-dependent transcription. Comparing the spectrum of KEAP1-interacting proteins with the genomic profile of 178 squamous cell lung carcinomas characterized by The Cancer Genome Atlas revealed amplification and mRNA overexpression of the DPP3 gene in tumors with high NRF2 activity but lacking NRF2 stabilizing mutations. We further show that tumor-derived mutations in KEAP1 are hypomorphic with respect to NRF2 inhibition and that DPP3 overexpression in the presence of these mutants further promotes NRF2 activation.
    [Show full text]
  • “Primordial Immune Complex”: Origins of MHC Class I and Antigen Receptors Revealed by Comparative Genomics
    Inferring the ''Primordial Immune Complex'': Origins of MHC Class I and Antigen Receptors Revealed by Comparative Genomics This information is current as of September 29, 2021. Yuko Ohta, Masanori Kasahara, Timothy D. O'Connor and Martin F. Flajnik J Immunol published online 6 September 2019 http://www.jimmunol.org/content/early/2019/09/05/jimmun ol.1900597 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2019/09/06/jimmunol.190059 Material 7.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 29, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2019 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published September 6, 2019, doi:10.4049/jimmunol.1900597 The Journal of Immunology Inferring the “Primordial Immune Complex”: Origins of MHC Class I and Antigen Receptors Revealed by Comparative Genomics Yuko Ohta,* Masanori Kasahara,† Timothy D. O’Connor,‡,x,{,‖ and Martin F. Flajnik* Comparative analyses suggest that the MHC was derived from a prevertebrate “primordial immune complex” (PIC).
    [Show full text]
  • A Peripheral Blood Gene Expression Signature to Diagnose Subclinical Acute Rejection
    CLINICAL RESEARCH www.jasn.org A Peripheral Blood Gene Expression Signature to Diagnose Subclinical Acute Rejection Weijia Zhang,1 Zhengzi Yi,1 Karen L. Keung,2 Huimin Shang,3 Chengguo Wei,1 Paolo Cravedi,1 Zeguo Sun,1 Caixia Xi,1 Christopher Woytovich,1 Samira Farouk,1 Weiqing Huang,1 Khadija Banu,1 Lorenzo Gallon,4 Ciara N. Magee,5 Nader Najafian,5 Milagros Samaniego,6 Arjang Djamali ,7 Stephen I. Alexander,2 Ivy A. Rosales,8 Rex Neal Smith,8 Jenny Xiang,3 Evelyne Lerut,9 Dirk Kuypers,10,11 Maarten Naesens ,10,11 Philip J. O’Connell,2 Robert Colvin,8 Madhav C. Menon,1 and Barbara Murphy1 Due to the number of contributing authors, the affiliations are listed at the end of this article. ABSTRACT Background In kidney transplant recipients, surveillance biopsies can reveal, despite stable graft function, histologic features of acute rejection and borderline changes that are associated with undesirable graft outcomes. Noninvasive biomarkers of subclinical acute rejection are needed to avoid the risks and costs associated with repeated biopsies. Methods We examined subclinical histologic and functional changes in kidney transplant recipients from the prospective Genomics of Chronic Allograft Rejection (GoCAR) study who underwent surveillance biopsies over 2 years, identifying those with subclinical or borderline acute cellular rejection (ACR) at 3 months (ACR-3) post-transplant. We performed RNA sequencing on whole blood collected from 88 indi- viduals at the time of 3-month surveillance biopsy to identify transcripts associated with ACR-3, developed a novel sequencing-based targeted expression assay, and validated this gene signature in an independent cohort.
    [Show full text]
  • A Master Autoantigen-Ome Links Alternative Splicing, Female Predilection, and COVID-19 to Autoimmune Diseases
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.30.454526; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A Master Autoantigen-ome Links Alternative Splicing, Female Predilection, and COVID-19 to Autoimmune Diseases Julia Y. Wang1*, Michael W. Roehrl1, Victor B. Roehrl1, and Michael H. Roehrl2* 1 Curandis, New York, USA 2 Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA * Correspondence: [email protected] or [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.30.454526; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Chronic and debilitating autoimmune sequelae pose a grave concern for the post-COVID-19 pandemic era. Based on our discovery that the glycosaminoglycan dermatan sulfate (DS) displays peculiar affinity to apoptotic cells and autoantigens (autoAgs) and that DS-autoAg complexes cooperatively stimulate autoreactive B1 cell responses, we compiled a database of 751 candidate autoAgs from six human cell types. At least 657 of these have been found to be affected by SARS-CoV-2 infection based on currently available multi-omic COVID data, and at least 400 are confirmed targets of autoantibodies in a wide array of autoimmune diseases and cancer.
    [Show full text]