The Genomics of Colletotrichum 3 Joanne Crouch, Richard O’Connell, Pamela Gan, Ester Buiate, Maria F

Total Page:16

File Type:pdf, Size:1020Kb

The Genomics of Colletotrichum 3 Joanne Crouch, Richard O’Connell, Pamela Gan, Ester Buiate, Maria F The Genomics of Colletotrichum 3 JoAnne Crouch, Richard O’Connell, Pamela Gan, Ester Buiate, Maria F. Torres, Lisa Beirn, Ken Shirasu, and Lisa Vaillancourt top ten most important fungal phytopathogens 3.1 Introduction (Dean et al. 2012). Economically important diseases caused by The fungal genus Colletotrichum includes more Colletotrichum are widespread, occurring on than 100 species responsible for anthracnose maize, beans, strawberries, coffee, chili peppers, foliar blight and rot diseases of nearly every crop cucurbits, potatoes, and countless other culti- grown for food, fiber, and forage worldwide vated plants (e.g., Bergstrom and Nicholson (Cannon et al. 2012b; Hyde et al. 2009). 1999; Hyde et al. 2009; Lees and Hilton 2003; Because of their ubiquity, substantial capacity Legard 2000; Melotto et al. 2000; Prihastuti for destruction, and scientific importance as et al. 2009; Singh and Schwartz 2010; Than model pathosystems, fungi in the genus Collet- et al. 2008; Ureña-Padilla et al. 2002; Varzea otrichum are collectively ranked by the inter- et al. 2002; Waller 1992; Wasilwa et al. 1993; national plant pathology community among the Xie et al. 2010). Colletotrichum postharvest fruit rots are responsible for major economic losses, with severe infections resulting in up to 100 % J. Crouch Systematic Mycology and Microbiology Lab, loss during storage (Prusky 1996). Colletotri- USDA-ARS 10300 Baltimore Ave. Bldg. chum diseases also produce substantial damage 10A, Room 228, Beltsville, MD, on important subsistence crops including lentil, 20705, USA cowpea, yam, banana, sorghum, and cassava e-mail: [email protected] (Adegbite and Amusa 2008; Chona 1980; R. O’Connell Chongo et al. 2002; Finlay and Brown 1993; UMR1290 BIOGER-CPP, INRA-AgroParisTech, Avenue Lucien Brétignières, 78850, Thiverval-Grignon, France E. Buiate e-mail: [email protected] e-mail: [email protected] P. Gan Á K. Shirasu M. F. Torres Plant Science Center, RIKEN, Yokohama, e-mail: [email protected] Japan e-mail: [email protected] M. F. Torres Functional Genomics Laboratory, Weill Cornell K. Shirasu Medical College, Cornell University, Qatar e-mail: [email protected] Foundation-Education City, Doha, Qatar E. Buiate Á M. F. Torres Á L. Vaillancourt (&) L. Beirn Department of Plant Pathology, University of Department of Plant Biology and Pathology, Kentucky, 201F Plant Science Building, Lexington, Rutgers, The State University of New Jersey, 59 KY 40546, USA Dudley Road, New Brunswick, NJ 08901, USA e-mail: [email protected] e-mail: [email protected] R. A. Dean et al. (eds.), Genomics of Plant-Associated Fungi: Monocot Pathogens, 69 DOI: 10.1007/978-3-662-44053-7_3, Ó Springer-Verlag Berlin Heidelberg 2014 70 J. Crouch et al. Green and Simons 1994; Moses et al. 1996; substantially elucidated using Colletotrichum Moura-Costa et al. 1993). (Kubo and Takano 2013). Key components of Colletotrichum diseases can negatively the cyclic-AMP, MAP kinase, and calcium- impact many of the most important monocots mediated signaling pathways have been cloned targeted as candidate bioenergy crops, including and characterized from Colletotrichum species switchgrass, miscanthus, maize, sorghum, indi- (e.g., Chen and Dickman 2002, 2004; Dickman angrass, and sugarcane (Crouch 2013; Crouch and Yarden 1999; Ha et al. 2003; Kim et al. and Beirn 2009; Crouch et al. 2009a, b; Cortese 2000; Takano et al. 2000; Warwar and Dickman and Bonos 2012; Dahlberg et al. 2011; Hartman 1996; Yang and Dickman 1997, 1999a, b). et al. 2011; King et al. 2011; Waxman and Today, Colletotrichum species continue to serve Bergstrom 2011a, b; Zeiders 1987). Plants in a as important models for studies of the molecular wide variety of uncultivated terrestrial and and cellular basis of pathogenicity (Kubo and aquatic biomes may also be impacted by Col- Takano 2013; O’Connell et al. 2012; O’Connell letotrichum infections, including forests, grass- and Panstruga 2006; Perfect et al. 1999). lands, prairie, shrub land, savannahs, and deserts (Abang et al. 2006; Ammar and El-Naggar 2011; Crouch 2013; Crouch et al. 2009b; Damm et al. 3.2 Systematics of Colletotrichum 2012a; Dingley and Gilmour 1972; Lubbe et al. 2004; Soares et al. 2009). Colletotrichum is an asexual fungus, with the Colletotrichum occupies a noteworthy place sexual state traditionally classified in the Asco- in the history of plant pathology and mycology. mycete genus Glomerella (Sordariomycetes; The first description of physiological races and Hypocreomycetidae; Glomerellaceae; Glome- cultivar specificity involved the causal agent of rellales) (Réblová et al. 2011). With the adoption bean anthracnose, C. lindemuthianum (Barrus of single name nomenclature for pleomorphic 1911), with that work leading to some of the first fungi established by the 2013 Melbourne Code of resistance breeding efforts using race differen- the International Code of Nomenclature for tials (reviewed in Geffroy et al. 1999). Sub- algae, fungi, and plants (www.iapt-taxon.org/ sequent work with the bean anthracnose nomen/main.php), it is unlikely that the Glome- pathosystem has greatly advanced our under- rella name will continue to be used in the future. standing of the gene-for-gene system (López Although several species in the genus are known et al. 2003; Melotto and Kelly 2001). Work with that produce the teleomorph readily (e.g., the teleomorph of C. gloeosporioides pioneered G. cingulata, G. acutata), Colletotrichum species early investigations of fungal sexual determina- are predominantly observed in the vegetative or tion and development (Lucas et al. 1944, Chilton asexual state, with the sexual morph rarely et al. 1945, Chilton and Wheeler 1949a, b; identified for most species (Vaillancourt et al. Driver and Wheeler 1955; Edgerton et al. 1945; 2000b). Since plant pathologists and mycologists Lucas 1946; Wheeler 1950, 1954; Wheeler et al. working with the fungus typically encounter the 1948; Wheeler and McGahan 1952). In the anamorph, the Colletotrichum name more accu- 1960s and 1970s, Colletotrichum studies were at rately communicates biological information the cutting edge of our understanding of the about the organism. Furthermore, Colletotrichum nature of systemic induced resistance, the is the older of the two genera and has priority chemistry of host defense, and the importance of (1831 vs. 1903; www.mycobank.org). Final res- phytoalexins in the defense response, and they olution of the sole adopted genus name will go enabled purification of elicitor molecules from through the formal channels established by the fungal cell walls for the first time (Kuc 1972; International Subcommission of Colletotrichum Sticher et al. 1997). The development and Taxonomy (www.fungaltaxonomy.org/ subcom- function of melanized appressoria has been missions) to ensure community consensus. In this 3 The Genomics of Colletotrichum 71 chapter we will use Colletotrichum to refer both characterized through multilocus phylogenies to the anamorphic and the teleomorphic phases. (Crouch et al. 2009a; Damm et al. 2009; 2012a, Colletotrichum is the sole member of the b; Weir et al. 2012), yielding a framework for Glomerellaceae, one of three families that col- understanding evolutionary relationships across lectively make up the order Glomerellales in the the genus as a whole (Cannon et al. 2012b). Sordariomycete subclass Hypocreomycetidae (Réblová et al. 2011). Earlier reports suggested Colletotrichum as a sister group to Verticillium 3.3 Colletotrichum Lifestyles (Zhang et al. 2006), but more comprehensive and Modes of Infection research has shown that this inferred relationship reflected insufficient sampling rather than an Fungi in the genus Colletotrichum display a actual close phylogenetic association, as Verti- range of nutritional strategies and lifestyles, cillium is a member of the Plectosphaerellaceae including plant associations that occupy a con- (Cannon et al. 2012a; Réblová et al. 2011; Zare tinuum from necrotrophy to hemibiotrophy and et al. 2000). endophytism. Some species employ a sapro- During the past several years, Colletotrichum trophic lifestyle to obtain nutrients from soil and taxonomy has been the subject of several sub- organic matter. Colletotrichum are also known to stantive revisions. Species concepts are still in a colonize organisms outside the plant kingdom, state of flux, but it is now well-established that including insects and humans. the genus consists of several major monophy- Plant-associated Colletotrichum species typi- letic clades that are referred to as species cally use a melanized appressorium to penetrate aggregates, described by the name and attributes host tissues (Kubo and Takano 2013) (Fig. 3.2). of the most prominent representative species in The melanin is required for appressorial func- the group (O’Connell et al. 2012; Cannon et al. tion, permitting the accumulation of significant 2012b; Fig. 3.1). To date, nine aggregates have turgor pressure that facilitates mechanical pene- been described based on multilocus molecular tration of the host cell wall (Bechinger et al. phylogenetics, namely acutatum, graminicola, 1999; Kubo and Furusawa 1991). The appres- spaethianum, destructivum, dematium, gloeo- sorium also secretes pectinases and cell wall- sporioides, boninense, truncatum, and orbiculare degrading enzymes that are likely to play diverse (Cannon et al. 2012b). Although the Colletotri- roles in preparing the infection court, adhesion, chum aggregates carry no formal taxonomic signaling,
Recommended publications
  • Endophytic Fungi: Biological Control and Induced Resistance to Phytopathogens and Abiotic Stresses
    pathogens Review Endophytic Fungi: Biological Control and Induced Resistance to Phytopathogens and Abiotic Stresses Daniele Cristina Fontana 1,† , Samuel de Paula 2,*,† , Abel Galon Torres 2 , Victor Hugo Moura de Souza 2 , Sérgio Florentino Pascholati 2 , Denise Schmidt 3 and Durval Dourado Neto 1 1 Department of Plant Production, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418900, Brazil; [email protected] (D.C.F.); [email protected] (D.D.N.) 2 Plant Pathology Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418900, Brazil; [email protected] (A.G.T.); [email protected] (V.H.M.d.S.); [email protected] (S.F.P.) 3 Department of Agronomy and Environmental Science, Frederico Westphalen Campus, Federal University of Santa Maria, Frederico Westphalen 98400000, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-54-99646-9453 † These authors contributed equally to this work. Abstract: Plant diseases cause losses of approximately 16% globally. Thus, management measures must be implemented to mitigate losses and guarantee food production. In addition to traditional management measures, induced resistance and biological control have gained ground in agriculture due to their enormous potential. Endophytic fungi internally colonize plant tissues and have the potential to act as control agents, such as biological agents or elicitors in the process of induced resistance and in attenuating abiotic stresses. In this review, we list the mode of action of this group of Citation: Fontana, D.C.; de Paula, S.; microorganisms which can act in controlling plant diseases and describe several examples in which Torres, A.G.; de Souza, V.H.M.; endophytes were able to reduce the damage caused by pathogens and adverse conditions.
    [Show full text]
  • Monilochaetes and Allied Genera of the Glomerellales, and a Reconsideration of Families in the Microascales
    available online at www.studiesinmycology.org StudieS in Mycology 68: 163–191. 2011. doi:10.3114/sim.2011.68.07 Monilochaetes and allied genera of the Glomerellales, and a reconsideration of families in the Microascales M. Réblová1*, W. Gams2 and K.A. Seifert3 1Department of Taxonomy, Institute of Botany of the Academy of Sciences, CZ – 252 43 Průhonice, Czech Republic; 2Molenweg 15, 3743CK Baarn, The Netherlands; 3Biodiversity (Mycology and Botany), Agriculture and Agri-Food Canada, Ottawa, Ontario, K1A 0C6, Canada *Correspondence: Martina Réblová, [email protected] Abstract: We examined the phylogenetic relationships of two species that mimic Chaetosphaeria in teleomorph and anamorph morphologies, Chaetosphaeria tulasneorum with a Cylindrotrichum anamorph and Australiasca queenslandica with a Dischloridium anamorph. Four data sets were analysed: a) the internal transcribed spacer region including ITS1, 5.8S rDNA and ITS2 (ITS), b) nc28S (ncLSU) rDNA, c) nc18S (ncSSU) rDNA, and d) a combined data set of ncLSU-ncSSU-RPB2 (ribosomal polymerase B2). The traditional placement of Ch. tulasneorum in the Microascales based on ncLSU sequences is unsupported and Australiasca does not belong to the Chaetosphaeriaceae. Both holomorph species are nested within the Glomerellales. A new genus, Reticulascus, is introduced for Ch. tulasneorum with associated Cylindrotrichum anamorph; another species of Reticulascus and its anamorph in Cylindrotrichum are described as new. The taxonomic structure of the Glomerellales is clarified and the name is validly published. As delimited here, it includes three families, the Glomerellaceae and the newly described Australiascaceae and Reticulascaceae. Based on ITS and ncLSU rDNA sequence analyses, we confirm the synonymy of the anamorph generaDischloridium with Monilochaetes.
    [Show full text]
  • Colletotrichum – Names in Current Use
    Online advance Fungal Diversity Colletotrichum – names in current use Hyde, K.D.1,7*, Cai, L.2, Cannon, P.F.3, Crouch, J.A.4, Crous, P.W.5, Damm, U. 5, Goodwin, P.H.6, Chen, H.7, Johnston, P.R.8, Jones, E.B.G.9, Liu, Z.Y.10, McKenzie, E.H.C.8, Moriwaki, J.11, Noireung, P.1, Pennycook, S.R.8, Pfenning, L.H.12, Prihastuti, H.1, Sato, T.13, Shivas, R.G.14, Tan, Y.P.14, Taylor, P.W.J.15, Weir, B.S.8, Yang, Y.L.10,16 and Zhang, J.Z.17 1,School of Science, Mae Fah Luang University, Chaing Rai, Thailand 2Research & Development Centre, Novozymes, Beijing 100085, PR China 3CABI, Bakeham Lane, Egham, Surrey TW20 9TY, UK and Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK 4Cereal Disease Laboratory, U.S. Department of Agriculture, Agricultural Research Service, 1551 Lindig Street, St. Paul, MN 55108, USA 5CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands 6School of Environmental Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada 7International Fungal Research & Development Centre, The Research Institute of Resource Insects, Chinese Academy of Forestry, Bailongsi, Kunming 650224, PR China 8Landcare Research, Private Bag 92170, Auckland 1142, New Zealand 9BIOTEC Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology, NSTDA, 113 Thailand Science Park, Paholyothin Road, Khlong 1, Khlong Luang, Pathum Thani, 12120, Thailand 10Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou 550006 PR China 11Hokuriku Research Center, National Agricultural Research Center,
    [Show full text]
  • Estudio De La Evolución De Un Fitopatógeno: Genómica Comparada Del Hongo Patógeno De Maíz Colletotrichum Graminicola
    Universidad de salamanca FACULTAD DE BIOLOGÍA DEPARTAMENTO DE MICROBIOLOGÍA Y GENÉTICA ÁREA: GENÉTICA TESIS DOCTORAL Estudio de la evolución de un fitopatógeno: Genómica comparada del hongo patógeno de maíz Colletotrichum graminicola GABRIEL EDUARDO RECH SALAMANCA, 2013 UNIVERSIDAD DE SALAMANCA Facultad de Biología Departamento de Microbiología y Genética Área: Genética Centro Hispano-Luso de Investigaciones Agrarias Insight into the evolution of a plant pathogen: Comparative genomic analysis of the fungal maize pathogen Colletotrichum graminicola PhD Thesis Programa de Doctorado: Agrobiotecnología Órgano responsable del Programa de Doctorado: Departamento de Fisiología Vegetal Gabriel Eduardo Rech Salamanca, 2013 UNIVERSIDAD DE SALAMANCA Facultad de Biología Departamento de Microbiología y Genética Área: Genética Centro Hispano-Luso de Investigaciones Agrarias Estudio de la evolución de un fitopatógeno: Genómica comparada del hongo patógeno de maíz Colletotrichum graminicola Tesis Doctoral Programa de Doctorado: Agrobiotecnología Órgano responsable del Programa de Doctorado: Departamento de Fisiología Vegetal Gabriel Eduardo Rech Salamanca, 2013 D. Luis Román Fernández Lago, Director del Departamento de Microbiología y Genética de la Facultad de Biología de la Universidad de Salamanca y Dña. Berta Dopico Rivela, Directora del Departamento de Fisiología Vegetal de la Facultad de Biología de la Universidad de Salamanca, órgano responsable del Programa de Doctorado en Agrobiotecnología CERTIFICAMOS: Que la presente Memoria titulada “Estudio de la evolución de un fitopatógeno: Genómica comparada del hongo patógeno de maíz Colletotrichum graminicola”, ha sido realizada en el Departamento de Microbiología y Genética de la Facultad de Biología y el Centro Hispano-Luso de Investigaciones Agrarias de la Universidad de Salamanca por el Licenciado D. Gabriel Eduardo Rech, bajo la dirección del Dr.
    [Show full text]
  • Clover Anthracnose Caused by Colletotrichum Trifolii
    2 5 2 5 1.0 :; 1111128 1//// . :; 111112 8 11111 . Ww I~ 2.2 : I~ I 2.2 ~ W '"'w Ii£ w ~ ~ ~ ~ ~ 1.1 1.1 ...,a~ ... -- 111111.8 111111.8 '111111. 25 IIIII~ 111111.6 111111.25 111111.4 111111.6 MICROCOPY RESOLUTION TEST CH>XRT (MICROCOPY RESOLUTION TEST CHART NATIONAL BURlAU or SlANO;'RD~·196 H NATiONAL BUREAU OF SlA.NDARDS-1963·A ==========~=~:~========~TECHNICAL BULU'.TIN No. Z8~FEBRUARY. 19Z8 UNITlm:STATES DEPARTMENT OF AGRICULTURE WASHINGTON, D. C. CLOVER ANTHRACNOSE CAUSED BY COLLETOTRICHUM TRIFOLII By JOHN MONTEITH, Jr. ABsociate Pathologist, Office of Vegetable and Forage Diseases, Bureau of Plant Industry 1 CONTENTS Page Page rntroductlon _____________________ 1 The funguR in relntlon to anthrac­ ElIstol'Y and geogro9hlcal dlstrlbu- ., nos~('ontlnul'd. tlon___________________________ 3- Vlabillty Bnd longe't'lty ot DlY~ flost plnnts______________________ lIum and conidia ___________ 13 SYlI1ptom~ _______________________ 3 Dlsspmluution of conidla_______ 13 Inj lIty produced __________________ II Method of Infection and period The cau~,,1 ol'J~nnlsm--------------, 7 of Incubntlon_______________ 13 Tllxonomy __________.:.________ 7 Source of natural Infl'ctlon____ 14 l~olll t1ous____________________ 8 Environmental factors Influencing oc­ Spore germlnntlon ____________ 8 currence and progress of the dla- Cull ural characters ___________ 9 ease__________________________ 15 Helu tlon of tpllIpero ture to '.:'em peruture _________________ 15 growth 011 medIa ___________ \l hlolsture ____________________ 17 Errect of I\ght________________
    [Show full text]
  • Colletotrichum: a Catalogue of Confusion
    Online advance Fungal Diversity Colletotrichum: a catalogue of confusion Hyde, K.D.1,2*, Cai, L.3, McKenzie, E.H.C.4, Yang, Y.L.5,6, Zhang, J.Z.7 and Prihastuti, H.2,8 1International Fungal Research & Development Centre, The Research Institute of Resource Insects, Chinese Academy of Forestry, Bailongsi, Kunming 650224, PR China 2School of Science, Mae Fah Luang University, Thasud, Chiang Rai 57100, Thailand 3Novozymes China, No. 14, Xinxi Road, Shangdi, HaiDian, Beijing, 100085, PR China 4Landcare Research, Private Bag 92170, Auckland, New Zealand 5Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou 550006 PR China 6Department of Biology and Geography, Liupanshui Normal College. Shuicheng, Guizhou 553006, P.R. China 7Institute of Biotechnology, College of Agriculture & Biotechnology, Zhejiang University, Kaixuan Rd 258, Hangzhou 310029, PR China 8Department of Biotechnology, Faculty of Agriculture, Brawijaya University, Malang 65145, Indonesia Hyde, K.D., Cai, L., McKenzie, E.H.C., Yang, Y.L., Zhang, J.Z. and Prihastuti, H. (2009). Colletotrichum: a catalogue of confusion. Fungal Diversity 39: 1-17. Identification of Colletotrichum species has long been difficult due to limited morphological characters. Single gene phylogenetic analyses have also not proved to be very successful in delineating species. This may be partly due to the high level of erroneous names in GenBank. In this paper we review the problems associated with taxonomy of Colletotrichum and difficulties in identifying taxa to species. We advocate epitypification and use of multi-locus phylogeny to delimit species and gain a better understanding of the genus. We review the lifestyles of Colletotrichum species, which may occur as epiphytes, endophytes, saprobes and pathogens.
    [Show full text]
  • A Polyphasic Approach for Studying Colletotrichum
    Online advance Fungal Diversity A polyphasic approach for studying Colletotrichum Cai, L.1*, Hyde, K.D.2,3, Taylor, P.W.J.4, Weir, B.S.5, Waller, J.M.6, Abang, M.M.7, Zhang, J.Z.8, Yang, Y.L.9, Phoulivong, S.3, Liu, Z.Y.9, Prihastuti, H.3, Shivas, R.G.10, McKenzie, E.H.C.5 and Johnston, P.R.5 1Novozymes China, No. 14, Xinxi Road, Shangdi, HaiDian, Beijing, 100085, PR China 2International Fungal Research & Development Centre, The Research Institute of Resource Insects, Chinese Academy of Forestry, Bailongsi, Kunming 650224, PR China 3School of Science, Mae Fah Luang University, Thasud, Chiang Rai 57100, Thailand 4BioMarka/Center for Plant Health, Melbourne School of Land and Environment, The University of Melbourne, Victoria 3010 Australia 5Landcare Research New Zealand Ltd, Private Bag 92170, Auckland Mail Centre, Auckland 1142, New Zealand 6CABI Europe UK, Bakeham Lane, Egham, Surrey, TW20 9TY. 7AVRDC-The World Vegetable Center, Regional Center for Africa, PO Box 10 Duluti, Arusha, Tanzania 8Institute of Biotechnology, College of Agriculture & biotechnology, Zhejiang University, Kaixuan Rd 258, Hangzhou 310029, PR China 9 Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou 550006 P.R. China 10Plant Pathology Herbarium, Queensland Primary Industries and Fisheries, 80 Meiers Road, Indooroopilly 4068, Queensland, Australia Cai, L., Hyde, K.D., Taylor, P.W.J., Weir, B.S., Waller, J., Abang, M.M., Zhang, J.Z., Yang, Y.L., Phoulivong, S., Liu, Z.Y., Prihastuti, H., Shivas, R.G., McKenzie, E.H.C. and Johnston, P.R. (2009). A polyphasic approach for studying Colletotrichum. Fungal Diversity 39: 183-204.
    [Show full text]
  • Colletotrichum Truncatum (Schwein.) Andrus & W.D
    -- CALIFORNIA D EPAUMENT OF cdfa FOOD & AGRICULTURE ~ California Pest Rating Proposal for Colletotrichum truncatum (Schwein.) Andrus & W.D. Moore 1935 Soybean anthracnose Current Pest Rating: Q Proposed Pest Rating: B Domain: Eukaryota, Kingdom: Fungi, Phylum: Ascomycota, Subphylum: Pezizomycotina, Class: Sordariomycetes, Subclass: Sordariomycetidae, Family: Glomerellaceae Comment Period: 02/02/2021 through 03/19/2021 Initiating Event: In 2003, an incoming shipment of Jatropha plants from Costa Rica was inspected by a San Luis Obispo County agricultural inspector. The inspector submitted leaves showing dieback symptoms to CDFA’s Plant pest diagnostics center for diagnosis. From the leaf spots, CDFA plant pathologist Timothy Tidwell identified the fungal pathogen Colletotrichum capsici, which was not known to be present in California, and assigned a temporary Q rating. In 2015, a sample was submitted by Los Angeles County agricultural inspectors from Ficus plants shipping from Florida. Plant Pathologist Suzanne Latham diagnosed C. truncatum, a species that was synonymized with C. capsisi in 2009, from the leaf spots. She was able to culture the fungus from leaf spots and confirm its identity by PCR and DNA sequencing. Between 2016 and 2020, multiple samples of alfalfa plants from Imperial County with leafspots and dieback were submitted to the CDFA labs as part of the PQ seed quarantine program with infections from C. truncatum. Seed mother plants must be free-from specific disease of quarantine significance in order to be given phytosanitary certificates for export. Although not a pest of concern for alfalfa, C. truncatum is on the list for beans grown for export seed. The risk to California from C.
    [Show full text]
  • Notes on Currently Accepted Species of Colletotrichum
    Mycosphere 7(8) 1192-1260(2016) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/si/2c/9 Copyright © Guizhou Academy of Agricultural Sciences Notes on currently accepted species of Colletotrichum Jayawardena RS1,2, Hyde KD2,3, Damm U4, Cai L5, Liu M1, Li XH1, Zhang W1, Zhao WS6 and Yan JY1,* 1 Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, People’s Republic of China 2 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 3 Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China 4 Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany 5State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China 6Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China. Jayawardena RS, Hyde KD, Damm U, Cai L, Liu M, Li XH, Zhang W, Zhao WS, Yan JY 2016 – Notes on currently accepted species of Colletotrichum. Mycosphere 7(8) 1192–1260, Doi 10.5943/mycosphere/si/2c/9 Abstract Colletotrichum is an economically important plant pathogenic genus worldwide, but can also have endophytic or saprobic lifestyles. The genus has undergone numerous revisions in the past decades with the addition, typification and synonymy of many species. In this study, we provide an account of the 190 currently accepted species, one doubtful species and one excluded species that have molecular data. Species are listed alphabetically and annotated with their habit, host and geographic distribution, phylogenetic position, their sexual morphs and uses (if there are any known).
    [Show full text]
  • Approaches to Species Delineation in Anamorphic (Mitosporic) Fungi: a Study on Two Extreme Cases
    Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 917 Approaches to Species Delineation in Anamorphic (mitosporic) Fungi: A Study on Two Extreme Cases BY OLGA VINNERE ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2004 ! ""# $"%"" & ' & & ( ) * + ') , -) ""#) . / . 0 1 2 '% . / *+ ) . ) 3$4) 4 ) ) 5/6 3$788#78!9 74 / ' ' & ' & & ' ' & ' & ) ' + +& & & & ' ) : ' & ' ' ' & + & & & 0 1 & ') 5 5 & & & + ' & ' ) - & ; + + ' & ' + ' ' & ' & ) * & ' ' & < & & ) * + ; & ' & & ' + & & & < & < ' ' & & ' ' & ' + ) ' + < ' & ') 5 + < 5 & ' 0 1 0 1 ) 2 & ' + + & 6. = ' & = ' ) . 7 & & 0 1 + + + ) 2 & ' & + & ' ' ' ) - ' & + ' + ' + & ' + ) . & & & & ' + ' ' & ) /= ' & ' & 6. ' ' ' + 7 ' + & ' ' ' ! ) > + ' ' ' + ) * & & ' & & ' = ' & & ' ' & < +') " # $ & ' ? / ( ' & ' % & ' (
    [Show full text]
  • From Colletotrichum Graminicola, a Systemic Vascular Pathogen of Maize
    mycological research 113 (2009) 1433–1442 journal homepage: www.elsevier.com/locate/mycres Antifungal metabolites (monorden, monocillins I, II, III) from Colletotrichum graminicola, a systemic vascular pathogen of maize Donald T. WICKLOWa,*, Annalisa M. JORDANb, James B. GLOERb aMycotoxin Research Unit, Agricultural Research Service, National Center for Agricultural Utilization Research, USDA, Peoria, IL 61604, USA bDepartment of Chemistry, University of Iowa, Iowa City, IA 52242, USA article info abstract Article history: Colletotrichum graminicola is a systemic vascular pathogen that causes anthracnose stalk rot Received 18 August 2009 and leaf blight of maize. In the course of an effort to explore the potential presence and Received in revised form roles of C. graminicola metabolites in maize, ethyl acetate extracts of solid substrate 1 October 2009 fermentations of several C. graminicola isolates from Michigan and Illinois were found to Accepted 4 October 2009 be active against Aspergillus flavus and Fusarium verticillioides, both mycotoxin-producing Available online 13 October 2009 seed-infecting fungal pathogens. Chemical investigations of the extract of one such isolate Corresponding Editor: Marc Stadler (NRRL 47511) led to the isolation of known metabolites monorden (also known as radicicol) and monocillins I–III as major components. Monorden and monocillin I displayed in vitro Keywords: activity against the stalk- and ear-rot pathogen Stenocarpella maydis while only the most Anthracnose abundant metabolite (monorden) showed activity against foliar pathogens Alternaria alter- Biotrophy nata, Bipolaris zeicola, and Curvularia lunata. Using LC–HRESITOFMS, monorden was detected Hsp90 inhibitor in steam-sterilized maize stalks and stalk residues inoculated with C. graminicola but not in Necrosis the necrotic stalk tissues of wound-inoculated plants grown in an environmental chamber.
    [Show full text]
  • Fostering the Safe Distribution of Maize and Wheat Seed
    Fostering the Safe Distribution of Maize and Wheat Seed General guidelines Third edition Monica Mezzalama Headquartered in Mexico, the International Maize and Wheat Improvement Center (known by its Spanish acronym, CIMMYT) is a not-for-profit agriculture research and training organization. The center works to reduce poverty and hunger by sustainably increasing the productivity of maize and wheat in the developing world. CIMMYT maintains the world’s largest maize and wheat seed bank and is best known for initiating the Green Revolution, which saved millions of lives across Asia and for which CIMMYT’s Dr. Norman Borlaug was awarded the Nobel Peace Prize. CIMMYT is a member of the CGIAR Consortium and receives support from national governments, foundations, development banks, and other public and private agencies. © International Maize and Wheat Improvement Center (CIMMYT) 2012. All rights reserved. The designations employed in the presentation of materials in this publication do not imply the expression of any opinion whatsoever on the part of CIMMYT or its contributory organizations concerning the legal status of any country, territory, city, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The opinions expressed are those of the author(s), and are not necessarily those of CIMMYT or our partners. CIMMYT encourages fair use of this material. Proper citation is requested. Correct citation: Mezzalama, M. 2012. Seed Health: Fostering the Safe Distribution of Maize and Wheat Seed: General guidelines. Third edition. Mexico, D.F.: CIMMYT. ISBN: 978-607-8263-14-1 AGROVOC Descriptors: Wheats; Maize; Seed certification; Seed treatment; Standards; Licenses; Import quotas; Health policies; Stored products pests; Laboratory experimentation; Tilletia indica; Urocystis; Ustilago segetum; Ustilago seae; Smuts; Mexico Additional Keywords: CIMMYT AGRIS Category Codes: D50 Legislation E71 International Trade Dewey decimal classification: 631.521 Printed in Mexico.
    [Show full text]