Colletotrichum: Biological Control, Bio- Catalyst, Secondary Metabolites and Toxins
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Monilochaetes and Allied Genera of the Glomerellales, and a Reconsideration of Families in the Microascales
available online at www.studiesinmycology.org StudieS in Mycology 68: 163–191. 2011. doi:10.3114/sim.2011.68.07 Monilochaetes and allied genera of the Glomerellales, and a reconsideration of families in the Microascales M. Réblová1*, W. Gams2 and K.A. Seifert3 1Department of Taxonomy, Institute of Botany of the Academy of Sciences, CZ – 252 43 Průhonice, Czech Republic; 2Molenweg 15, 3743CK Baarn, The Netherlands; 3Biodiversity (Mycology and Botany), Agriculture and Agri-Food Canada, Ottawa, Ontario, K1A 0C6, Canada *Correspondence: Martina Réblová, [email protected] Abstract: We examined the phylogenetic relationships of two species that mimic Chaetosphaeria in teleomorph and anamorph morphologies, Chaetosphaeria tulasneorum with a Cylindrotrichum anamorph and Australiasca queenslandica with a Dischloridium anamorph. Four data sets were analysed: a) the internal transcribed spacer region including ITS1, 5.8S rDNA and ITS2 (ITS), b) nc28S (ncLSU) rDNA, c) nc18S (ncSSU) rDNA, and d) a combined data set of ncLSU-ncSSU-RPB2 (ribosomal polymerase B2). The traditional placement of Ch. tulasneorum in the Microascales based on ncLSU sequences is unsupported and Australiasca does not belong to the Chaetosphaeriaceae. Both holomorph species are nested within the Glomerellales. A new genus, Reticulascus, is introduced for Ch. tulasneorum with associated Cylindrotrichum anamorph; another species of Reticulascus and its anamorph in Cylindrotrichum are described as new. The taxonomic structure of the Glomerellales is clarified and the name is validly published. As delimited here, it includes three families, the Glomerellaceae and the newly described Australiascaceae and Reticulascaceae. Based on ITS and ncLSU rDNA sequence analyses, we confirm the synonymy of the anamorph generaDischloridium with Monilochaetes. -
Fungal Planet Description Sheets: 716–784 By: P.W
Fungal Planet description sheets: 716–784 By: P.W. Crous, M.J. Wingfield, T.I. Burgess, G.E.St.J. Hardy, J. Gené, J. Guarro, I.G. Baseia, D. García, L.F.P. Gusmão, C.M. Souza-Motta, R. Thangavel, S. Adamčík, A. Barili, C.W. Barnes, J.D.P. Bezerra, J.J. Bordallo, J.F. Cano-Lira, R.J.V. de Oliveira, E. Ercole, V. Hubka, I. Iturrieta-González, A. Kubátová, M.P. Martín, P.-A. Moreau, A. Morte, M.E. Ordoñez, A. Rodríguez, A.M. Stchigel, A. Vizzini, J. Abdollahzadeh, V.P. Abreu, K. Adamčíková, G.M.R. Albuquerque, A.V. Alexandrova, E. Álvarez Duarte, C. Armstrong-Cho, S. Banniza, R.N. Barbosa, J.-M. Bellanger, J.L. Bezerra, T.S. Cabral, M. Caboň, E. Caicedo, T. Cantillo, A.J. Carnegie, L.T. Carmo, R.F. Castañeda-Ruiz, C.R. Clement, A. Čmoková, L.B. Conceição, R.H.S.F. Cruz, U. Damm, B.D.B. da Silva, G.A. da Silva, R.M.F. da Silva, A.L.C.M. de A. Santiago, L.F. de Oliveira, C.A.F. de Souza, F. Déniel, B. Dima, G. Dong, J. Edwards, C.R. Félix, J. Fournier, T.B. Gibertoni, K. Hosaka, T. Iturriaga, M. Jadan, J.-L. Jany, Ž. Jurjević, M. Kolařík, I. Kušan, M.F. Landell, T.R. Leite Cordeiro, D.X. Lima, M. Loizides, S. Luo, A.R. Machado, H. Madrid, O.M.C. Magalhães, P. Marinho, N. Matočec, A. Mešić, A.N. Miller, O.V. Morozova, R.P. Neves, K. Nonaka, A. Nováková, N.H. -
Colletotrichum – Names in Current Use
Online advance Fungal Diversity Colletotrichum – names in current use Hyde, K.D.1,7*, Cai, L.2, Cannon, P.F.3, Crouch, J.A.4, Crous, P.W.5, Damm, U. 5, Goodwin, P.H.6, Chen, H.7, Johnston, P.R.8, Jones, E.B.G.9, Liu, Z.Y.10, McKenzie, E.H.C.8, Moriwaki, J.11, Noireung, P.1, Pennycook, S.R.8, Pfenning, L.H.12, Prihastuti, H.1, Sato, T.13, Shivas, R.G.14, Tan, Y.P.14, Taylor, P.W.J.15, Weir, B.S.8, Yang, Y.L.10,16 and Zhang, J.Z.17 1,School of Science, Mae Fah Luang University, Chaing Rai, Thailand 2Research & Development Centre, Novozymes, Beijing 100085, PR China 3CABI, Bakeham Lane, Egham, Surrey TW20 9TY, UK and Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK 4Cereal Disease Laboratory, U.S. Department of Agriculture, Agricultural Research Service, 1551 Lindig Street, St. Paul, MN 55108, USA 5CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands 6School of Environmental Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada 7International Fungal Research & Development Centre, The Research Institute of Resource Insects, Chinese Academy of Forestry, Bailongsi, Kunming 650224, PR China 8Landcare Research, Private Bag 92170, Auckland 1142, New Zealand 9BIOTEC Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology, NSTDA, 113 Thailand Science Park, Paholyothin Road, Khlong 1, Khlong Luang, Pathum Thani, 12120, Thailand 10Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou 550006 PR China 11Hokuriku Research Center, National Agricultural Research Center, -
Colletotrichum: a Catalogue of Confusion
Online advance Fungal Diversity Colletotrichum: a catalogue of confusion Hyde, K.D.1,2*, Cai, L.3, McKenzie, E.H.C.4, Yang, Y.L.5,6, Zhang, J.Z.7 and Prihastuti, H.2,8 1International Fungal Research & Development Centre, The Research Institute of Resource Insects, Chinese Academy of Forestry, Bailongsi, Kunming 650224, PR China 2School of Science, Mae Fah Luang University, Thasud, Chiang Rai 57100, Thailand 3Novozymes China, No. 14, Xinxi Road, Shangdi, HaiDian, Beijing, 100085, PR China 4Landcare Research, Private Bag 92170, Auckland, New Zealand 5Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou 550006 PR China 6Department of Biology and Geography, Liupanshui Normal College. Shuicheng, Guizhou 553006, P.R. China 7Institute of Biotechnology, College of Agriculture & Biotechnology, Zhejiang University, Kaixuan Rd 258, Hangzhou 310029, PR China 8Department of Biotechnology, Faculty of Agriculture, Brawijaya University, Malang 65145, Indonesia Hyde, K.D., Cai, L., McKenzie, E.H.C., Yang, Y.L., Zhang, J.Z. and Prihastuti, H. (2009). Colletotrichum: a catalogue of confusion. Fungal Diversity 39: 1-17. Identification of Colletotrichum species has long been difficult due to limited morphological characters. Single gene phylogenetic analyses have also not proved to be very successful in delineating species. This may be partly due to the high level of erroneous names in GenBank. In this paper we review the problems associated with taxonomy of Colletotrichum and difficulties in identifying taxa to species. We advocate epitypification and use of multi-locus phylogeny to delimit species and gain a better understanding of the genus. We review the lifestyles of Colletotrichum species, which may occur as epiphytes, endophytes, saprobes and pathogens. -
Colletotrichum Truncatum (Schwein.) Andrus & W.D
-- CALIFORNIA D EPAUMENT OF cdfa FOOD & AGRICULTURE ~ California Pest Rating Proposal for Colletotrichum truncatum (Schwein.) Andrus & W.D. Moore 1935 Soybean anthracnose Current Pest Rating: Q Proposed Pest Rating: B Domain: Eukaryota, Kingdom: Fungi, Phylum: Ascomycota, Subphylum: Pezizomycotina, Class: Sordariomycetes, Subclass: Sordariomycetidae, Family: Glomerellaceae Comment Period: 02/02/2021 through 03/19/2021 Initiating Event: In 2003, an incoming shipment of Jatropha plants from Costa Rica was inspected by a San Luis Obispo County agricultural inspector. The inspector submitted leaves showing dieback symptoms to CDFA’s Plant pest diagnostics center for diagnosis. From the leaf spots, CDFA plant pathologist Timothy Tidwell identified the fungal pathogen Colletotrichum capsici, which was not known to be present in California, and assigned a temporary Q rating. In 2015, a sample was submitted by Los Angeles County agricultural inspectors from Ficus plants shipping from Florida. Plant Pathologist Suzanne Latham diagnosed C. truncatum, a species that was synonymized with C. capsisi in 2009, from the leaf spots. She was able to culture the fungus from leaf spots and confirm its identity by PCR and DNA sequencing. Between 2016 and 2020, multiple samples of alfalfa plants from Imperial County with leafspots and dieback were submitted to the CDFA labs as part of the PQ seed quarantine program with infections from C. truncatum. Seed mother plants must be free-from specific disease of quarantine significance in order to be given phytosanitary certificates for export. Although not a pest of concern for alfalfa, C. truncatum is on the list for beans grown for export seed. The risk to California from C. -
Notes on Currently Accepted Species of Colletotrichum
Mycosphere 7(8) 1192-1260(2016) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/si/2c/9 Copyright © Guizhou Academy of Agricultural Sciences Notes on currently accepted species of Colletotrichum Jayawardena RS1,2, Hyde KD2,3, Damm U4, Cai L5, Liu M1, Li XH1, Zhang W1, Zhao WS6 and Yan JY1,* 1 Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, People’s Republic of China 2 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 3 Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China 4 Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany 5State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China 6Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China. Jayawardena RS, Hyde KD, Damm U, Cai L, Liu M, Li XH, Zhang W, Zhao WS, Yan JY 2016 – Notes on currently accepted species of Colletotrichum. Mycosphere 7(8) 1192–1260, Doi 10.5943/mycosphere/si/2c/9 Abstract Colletotrichum is an economically important plant pathogenic genus worldwide, but can also have endophytic or saprobic lifestyles. The genus has undergone numerous revisions in the past decades with the addition, typification and synonymy of many species. In this study, we provide an account of the 190 currently accepted species, one doubtful species and one excluded species that have molecular data. Species are listed alphabetically and annotated with their habit, host and geographic distribution, phylogenetic position, their sexual morphs and uses (if there are any known). -
The Colletotrichum Destructivum Species Complex – Hemibiotrophic Pathogens of Forage and field Crops
available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 79: 49–84. The Colletotrichum destructivum species complex – hemibiotrophic pathogens of forage and field crops U. Damm1*, R.J. O'Connell2, J.Z. Groenewald1, and P.W. Crous1,3,4 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; 2UMR1290 BIOGER-CPP, INRA-AgroParisTech, 78850 Thiverval-Grignon, France; 3Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa; 4Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands *Correspondence: U. Damm, [email protected], Present address: Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany. Abstract: Colletotrichum destructivum is an important plant pathogen, mainly of forage and grain legumes including clover, alfalfa, cowpea and lentil, but has also been reported as an anthracnose pathogen of many other plants worldwide. Several Colletotrichum isolates, previously reported as closely related to C. destructivum, are known to establish hemibiotrophic infections in different hosts. The inconsistent application of names to those isolates based on outdated species concepts has caused much taxonomic confusion, particularly in the plant pathology literature. A multilocus DNA sequence analysis (ITS, GAPDH, CHS-1, HIS3, ACT, TUB2) of 83 isolates of C. destructivum and related species revealed 16 clades that are recognised as separate species in the C. destructivum complex, which includes C. destructivum, C. fuscum, C. higginsianum, C. lini and C. tabacum. Each of these species is lecto-, epi- or neotypified in this study. Additionally, eight species, namely C. americae- borealis, C. antirrhinicola, C. bryoniicola, C. -
Colletotrichum Graminicola
Apr 19Pathogen of the month – April 2019 SH V (1914) a b c d e Fig. 1. (a) Colletotrichum graminicola asexual falcate conidia stained with calcofluor white; (b) acervuli with setae; (c) cross section of an acervulus (black arrow); (d) lobed, melanized appressoria, and (e) intracellular hyphae in a mesophyll cell. Note two distinct types of hyphae: vesicles (V; also known as biotrophic hyphae) and necrotrophic secondary hyphae (SH). Figs (b-e) were observed on maize leaf sheaths. Figs (b- e) were cleared in chloral hydrate and (d-e) stained with lactophenol blue. Wilson Wilson Common Name: Maize anthracnose fungus Disease: Maize Anthracnose; Anthracnose leaf blight (ALB); anthracnose stalk rot (ASR) Classification: K: Fungi P: Ascomycota C: Sordariomycetes O:Glomerellales F: Glomerellaceae The hemibiotrophic fungal pathogen, Colletotrichum graminicola (Teleomorph – Glomerella graminicola D.J. Politis G.W (1975)) causes anthracnose in maize (corn) and is a major problem as some varieties of engineered maize seem more susceptible to infection resulting in increasing economic concerns in the US. With a 57.4-Mb genome .) .) distributed among 13 chromosomes, it belongs to the graminicola species complex with other 14 closely related species. Such graminicolous Colletotrichum species infect other cereals and grasses such as C. sublineolum in sorghum, C. falcatum in sugarcane and C. cereale in wheat and turfgrass. Of the 44 Colletotrichum species that exist in Australia, graminicolous Colletotrichum isolates still need to be verified in the Australian collection. Ces Biology and Ecology: of pith tissue in the corn stalk around the stalk internodes. ( The fungus forms fluffly aerial mycelium and produces two Maize roots can be infected by the fungus leading to differently shaped hyaline conidia: (a) falcate (24-30 x 4-5 asymptomatic systemic colonization of the plants. -
Linu Ģenētisko Resursu Rezistence Pret Slimībām - Rezistences Izvērtējums Un Uzlabošanas Metodes
DAUGAVPILS UNIVERSITĀTE DZĪVĪBAS ZINĀTĽU UN TEHNOLOĢIJU INSTITŪTS Linu ģenētisko resursu rezistence pret slimībām - rezistences izvērtējums un uzlabošanas metodes Promocijas darbs Zinātniskā doktora grāda, zinātnes doktora (Ph.D.) bioloģijā iegūšanai (ekoloģijas apakšnozarē) Promocijas darba autore: Inga Morozova Promocijas darba zinātniskā vadītāja: Asoc. profesore, Dr. biol. Dace Grauda Daugavpils 2020 Promocijas darbs izstrādāts: APP „Agroresursu ekonomikas institūta‖, Laukaugu selekcijas un agroekoloģijas nodaļas, Viļānu daļas izmēģinājumu demonstrējuma laukos un Latvijas Universitātes, Bioloģijas institūta, Vides ģenētikas laboratorijā laika periodā no 2014.- 2019. gadam. Darba raksturs: zinātniskā doktora grāda, zinātnes doktora (Ph.D.) bioloģijā iegūšanai ekoloģijas apakšnozarē Promocijas darba zinātniskais vadītājs: Dr. biol., asoc. prof., Dace Grauda (Latvijas Universitāte, Latvija) Recenzenti: Dr.biol., prof., Inese Kokina (Daugavpils Universitāte, Latvija) Ph.D.,vad.pētnieks, Petras Prakas (Lietuvas Valsts zinātniski pētnieciskā institūta Dabas izpētes centrs, Lietuva) Ph.D., pētnieks, Donatas Šneideris (Lietuvas Valsts zinātniski pētnieciskā institūta Dabas izpētes centrs, Lietuva) Promocijas padomes priekšsēdētājs: Dr. biol., prof. Arvīds Barševskis Promocijas darba aizstāvēšana notiks: Daugavpils Universitātes (DU) Bioloģijas zinātľu nozares promocijas padomes atklātā sēdē tiešsaistē ZOOM platformā, 2020. gada 19. novembrī plkst. 11.00. Ar promocijas darbu un tā kopsavilkumu var iepazīties Daugavpils Universitātes bibliotēkā, -
Colonization of Potato by Colletotrichum Coccodes: Effect of Soil Infestation and Seed Tuber and Foliar Inoculation
This article is from the July 2010 issue of published by The American Phytopathological Society For more information on this and other topics related to plant pathology, we invite you to visit APSnet at www.apsnet.org Colonization of Potato by Colletotrichum coccodes: Effect of Soil Infestation and Seed Tuber and Foliar Inoculation J. S. Pasche, R. J. Taylor, and N. C. Gudmestad, Department of Plant Pathology, North Dakota State University, Fargo 58102 often occurs in conjunction with these ABSTRACT diseases. Co-infection with V. dahliae has Pasche, J. S., Taylor, R. J., and Gudmestad, N. C. 2010. Colonization of potato by Colleto- been shown to result in greater reductions trichum coccodes: Effect of soil infestation and seed tuber and foliar inoculation. Plant Dis. than observed with either pathogen alone 94:905-914. (51). Although yield losses of up to 30% due to black dot have been documented, it Colonization of potato (Solanum tuberosum) tissue, including roots, stolons, and above and has proven difficult to reproduce these below ground stems, by Colletotrichum coccodes, the causal agent of black dot, was evaluated losses across growing seasons under field following soil infestation, inoculation of seed tubers and foliage, and every combination thereof, conditions, even when differences in black in field trials over two growing seasons in North Dakota and Minnesota. A total of 107,520 isola- tions for C. coccodes performed across four site-years allowed for an extensive comparison of dot symptoms were noted among treat- fungal colonization of the host plant and disease severity. The black dot pathogen was detected ments (27,28,50). -
Name = Colletotrichum Truncatum and Its Synonyms
19/9/2019 All data for a single taxon * **Tell us why you value the fungal databases*** Fungus-Host - 932 records were found using the criteria: name = Colletotrichum truncatum and its synonyms Colletotrichum truncatum (Schwein.) Andrus & W.D. Moore 1935 (Ascomycetes, Phyllachorales) ≡ Vermicularia truncata Schwein. 1832 ≡Colletotrichum dematium f. truncatum (Schwein.) Arx 1957 Note: As 'truncata'. = Vermicularia capsici Syd. 1913 ≡ Colletotrichum capsici (Syd.) E.J. Butler & Bisby 1931 ≡ Steirochaete capsici (Syd.) Sacc. 1921 = Colletotrichum curvatum Briant & E.B. Martyn 1929 = Colletotrichum indicum Dastur 1934 ≡ Vermicularia indica (Dastur) Vassiljevsky 1950 Notes: Roberts and Snow (1990) considered C. capcisi and C. indicum conspecific based on morphological and pathological studies. Distribution: Cosmopolitan. Substrate: Leaves, stems, flowers, fruit. Disease Note: Anthracnose, blight, dieback, leaf, fruit, and stem rots. Host: Multiple genera in multiple families; major pathogen of Jatropha curcas (Euphorbiaceae). Supporting Literature: Aktaruzzaman, M., Afroz, T., Lee, Y.-G., and Kim, B.-S. 2018. Post-harvest anthracnose of papaya caused by Colletotrichum truncatum in Korea. Eur. J. Pl. Pathol. 150(1): 259-265. Bahri, B.A., Saadani, M., Mechichi, G., and Rouissi, W. 2019. Genetic diversity of Colletotrichum gloeosporioides species complex associated with Citrus wither-tip of twigs in Tunisia using microsatellite markers. J. Phytopathol. 167(6): 351-362. Bi, Y., Guo, W., Zhang, G.J., Liu, S.C., and Chen, Y. 2017. First report of Colletotrichum truncatum causing anthracnose of strawberry in China. Pl. Dis. 101(5): 832. Cavalcante, G.R.S., Barguil, B.M., Vieira, W.A.S., Lima, W.G., Michereff, S.J., Doyle, V.P., and Camara, M.P.S. -
Agricultural Microbiology E Acarologia, Av
DOI: http://dx.doi.org/10.1590/1678-992X-2018-0269 ISSN 1678-992X Research Article Colletotrichum nymphaeae var. entomophilum var. nov. a natural enemy of the citrus scale insect, Praelongorthezia praelonga (Hemiptera: Ortheziidae) Anja Amtoft Wynns1 , Annette Bruun Jensen1* , Jørgen Eilenberg1 , Italo Delalibera Júnior2 1University of Copenhagen – Dept. of Plant and ABSTRACT: The citrus scale insect Praelongorthezia praelonga (Douglas), a major pest of citrus Environmental Sciences, Thorvaldsensvej 40, 1871 – and other economically important crops, has only two commonly documented natural enemies: Frederiksberg C – Denmark. an entomopathogenic strain of the fungus Colletotrichum nymphaeae (Pass.) Aa and several 2Universidade de São Paulo/ESALQ – Depto. de Entomologia parasitoids. The entomopathogenic strain of C. nymphaeae, formerly recognized under the syn- Agricultural Microbiology e Acarologia, Av. Pádua Dias, 11 – 13418-900 – Piracicaba, onym C. gloeosporioides f. sp. ortheziidae, is under development for commercial application as SP – Brasil. a biological control agent in citrus in Brazil-the top exporter of citrus globally. The synonomy of *Corresponding author <[email protected]> C. gloeosporioides f. sp. ortheziidae with C. nymphaeae remains based on limited DNA sequence data and without morphological study. To qualify for future approval as a biological control agent Edited by: Richard V. Glatz by federal agencies in Brazil and the European Union, the circumscription of a microorganism must be explicit and without ambiguities. Herein, through morphological study and phylogenetic Received August 20, 2018 analysis of five DNA regions we clarify the circumscription and affinity of entomopathogenic C. Accepted April 30, 2019 nymphaeae and describe it as a new variety. Keywords: Biological control, Colletotrichum (Sordariomycetes: Glomerellaceae), entomopathogen Introduction In Brazil, C.