Safety Assessment of Transgenic Organisms in the Environment, Volume 6
Total Page:16
File Type:pdf, Size:1020Kb
Harmonisation of Regulatory Oversight in Biotechnology Harmonisation of Regulatory Oversight Safety Assessment of Transgenic Organisms Safety Assessment of Transgenic Organisms in the Environment, Volume 6 in the Environment, Volume 6 in Biotechnology OECD CONSENSUS DOCUMENTS Safety Assessment Volume 6 of this Series compiles the science-based consensus documents issued by the OECD Working Group on the Harmonisation of Regulatory Oversight in Biotechnology from 2013 to 2015. They contain information for use during the risk/safety assessment of transgenic organisms to be released in the of Transgenic Organisms environment, for agriculture, forestry or other purposes. The rst chapter deals with the low-level presence of transgenic plants in seed and grain commodities and how this knowledge can be used in biosafety regulatory in the Environment, Volume 6 assessment. The following chapters cover the biology of several crop species (sugarcane, cassava, common bean and cowpea) and include elements of taxonomy, centres of origin, reproductive biology, genetics, hybridisation and introgression, crop production and cultivation practices, interactions with other organisms OECD CONSENSUS DOCUMENTS such as pests and pathogens, and biotechnological developments. The last chapter relates to the biology of eucalyptus tree, focused on those species and hybrids which are planted commercially and might be the subject of genetic modi cation. This volume should be of value to applicants for commercial uses of transgenic organisms, regulators and risk assessors in national authorities, as well as the wider scienti c community. Contents Part I. Micro-organisms Chapter 1. Low-level presence of transgenic plants in seed and grain commodities: environmental risk/safety assessment and availability and use of information Part II. Biology of crops Chapter 2. Sugarcane (Saccharum spp.) Chapter 3. Cassava (Manihot esculenta) Chapter 4. Common bean (Phaseolus vulgaris) Chapter 5. Cowpea (Vigna unguiculata) Part III. Biology of trees OECD CONSENSUS DOCUMENTS CONSENSUS OECD Chapter 6. Eucalyptus (Eucalyptus spp.) Consult this publication on line at http://dx.doi.org/10.1787/9789264253421-en. This work is published on the OECD iLibrary, which gathers all OECD books, periodicals and statistical databases. Visit www.oecd-ilibrary.org for more information. ISBN 978-92-64-25045-1 97 2011 18 1 P 9HSTCQE*cfaefb+ Harmonisation of Regulatory Oversight in Biotechnology Safety Assessment of Transgenic Organisms in the Environment, Volume 6 OECD CONSENSUS DOCUMENTS This work is published under the responsibility of the Secretary-General of the OECD. The opinions expressed and arguments employed herein do not necessarily reflect the official views of OECD member countries. This document and any map included herein are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area. Please cite this publication as: OECD (2016), Safety Assessment of Transgenic Organisms in the Environment, Volume 6: OECD Consensus Documents, Harmonisation of Regulatory Oversight in Biotechnology, OECD Publishing, Paris. http://dx.doi.org/10.1787/9789264253421-en ISBN 978-92-64-25045-1 (print) ISBN 978-92-64-25342-1 (PDF) Series: Harmonisation of Regulatory Oversight in Biotechnology ISSN 2414-6854 (print) ISSN 2311-4622 (online) The statistical data for Israel are supplied by and under the responsibility of the relevant Israeli authorities. The use of such data by the OECD is without prejudice to the status of the Golan Heights, East Jerusalem and Israeli settlements in the West Bank under the terms of international law. Photo credits: Cover © Dagallier Bertrand Corrigenda to OECD publications may be found on line at: www.oecd.org/about/publishing/corrigenda.htm. © OECD 2016 You can copy, download or print OECD content for your own use, and you can include excerpts from OECD publications, databases and multimedia products in your own documents, presentations, blogs, websites and teaching materials, provided that suitable acknowledgement of OECD as source and copyright owner is given. All requests for public or commercial use and translation rights should be submitted to [email protected]. Requests for permission to photocopy portions of this material for public or commercial use shall be addressed directly to the Copyright Clearance Center (CCC) at [email protected] or the Centre français d’exploitation du droit de copie (CFC) at [email protected]. FOREWORD – 3 Foreword From their first commercialisation in the mid-1990s, genetically engineered crops (also known as “transgenic” or “genetically modified” plants) have been approved for commercial release in an increasing number of countries, for planting or for entering in the composition of foods and feeds, or use in industrial processing. Up to now, the large majority of these agricultural productions remain for soybean, maize, cotton and rapeseed (canola), as outlined in The Bioeconomy to 2030: Designing a Policy Agenda (OECD, 2009). Despite some differences in total estimates, all analyses and statistics concur in underlining the general increasing trend in volumes produced and traded, number of countries involved and growth potential. For instance, James reports in the Global Status of Commercialized Biotech/GM Crops: 2014, ISAAA Brief No. 49 that the surface area of transgenic crops worldwide constantly increased over the 19-year-period from 1996 to 2014, to reach 181.5 million hectares grown in 28 countries. To date, genetically engineered varieties of over 25 different plant species (including crops, flowers and trees) have received regulatory approval in OECD and non-OECD countries from all regions of the world. Such approvals for release in the environment usually follow a science-based risk/safety assessment before being granted. The five main producers of genetically engineered crops in 2014 were the United States, followed by Brazil, Argentina, India and Canada, covering together almost 90% of the total area. Interestingly, developing countries grew more of global transgenic crops (53%) than industrial countries, at 47%. Among the 28 countries having planted those crops in 2014, only 9 of them were OECD countries, listed by decreasing area as follows: the United States, Canada, Australia, Mexico, Spain, Chile, Portugal, the Czech Republic and the Slovak Republic. In addition, some countries do not grow genetically engineered plants but import the produced commodities, for use in their feed industry in particular, as it is the case in several jurisdictions of Europe as well as some other economies worldwide. Information on the transgenic crops which have been approved for commercial release in at least one country (for use in agriculture and/or foods and feeds processing) can be found in the OECD Biotrack Product Database (www2.oecd.org/biotech). Each transgenic product and its Unique Identifier are described, with information on approvals in countries. To date, this database covers about 240 approved genetically engineered plant varieties, and will be extended in future years to include additional species and information from a larger group of countries. Modern biotechnologies are applied to plants, and also trees, animals and micro- organisms. The safety of the resulting genetically engineered organisms when released in the environment for their use in agriculture, food and feed industry, as biofuel or for other applications represents a challenging issue. This is already true nowdays with the increasing cultivation of transgenic crops. It will be even more critical in the future as applications of biotechnologies widen to new SAFETY ASSESSMENT OF TRANSGENIC ORGANISMS IN THE ENVIRONMENT: OECD CONSENSUS DOCUMENTS, VOLUME 6 © OECD 2016 4 – FOREWORD species and new areas: a growing number of novel organisms will have to be assessed before their possible use and market release. Among the ongoing developments of modern biotechnology, crop varieties modified for gaining adaptation features such as the resistance to certain biotic/abiotic stresses, result in better resilience to climate change. “Bio-fortification” (applied to rice, tuber crops and other species) develop varieties with enhanced content in some constituents, e.g. vitamins or minerals. Plants with reduced lignine or with increased oil content are examples of products sought to facilitate industrial uses of the commodities and decrease the production costs. As highlighted in the proceedings of the OECD Conference “Biosafety and the Environmental Uses of Micro-organisms” held in 2012, a range of new species are contemplated as potential biofuels to provide renewable energy; among them algaes, with photosynthetic cyanobacteria, are of special interest as they can be cultivated year round on non-arable land, alleviating the pressure on agricultural land and freshwater resources that would be exerted by crops growng for biofuel purposes. Less anticipated, genetically engineered mosquitos are used in few places since 2014 to control the insect population and fight tropical diseases transmitted by them. Other biotechnology developments, and in particular applied to micro-organisms, might lead to other products such biofertilizer organisms living in symbiosis in crop roots and optimising the nitrogen fixation, or biocontrol agents acting as plant protection products to control disease and attack by insects. Other exploratory fields may comprise bioremediation