Activation and Detoxification of Cassava Cyanogenic Glucosides by the Whitefly Bemisia Tabaci
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effect of Cultural Conditions on the Growth and Linamarase Production
Fadahunsi et al. Bull Natl Res Cent (2020) 44:185 https://doi.org/10.1186/s42269-020-00436-3 Bulletin of the National Research Centre RESEARCH Open Access Efect of cultural conditions on the growth and linamarase production by a local species of Lactobacillus fermentum isolated from cassava efuent Ilesanmi Festus Fadahunsi1* , Nafsat Kemi Busari1 and Olumide Samuel Fadahunsi2,3 Abstract Background: This study was designed to investigate the efect of cultural conditions on growth and production of linamarase by a local species of Lactobacillus fermentum isolated from cassava efuent. Isolation and identifcation of bacteria from cassava efuent were carried out using the culture-dependent method and polyphasic taxonomy, respectively, while screening for cyanide degradation, and the efects of cultural conditions on the growth and lin- amarase activity of L. fermentum were investigated based on standard procedures. Results: A total of twenty-one bacterial isolates were obtained from cassava efuent, and isolate MA 9 had the highest growth of 2.8 1010 cfu/ml in minimum medium, confrmed as safe, identifed as Lactobacillus fermentum and selected for further× study. The highest growth of 2.498 OD and linamarase activity of 2.49 U/ml were observed at inoculums volume of 0.10 ml at 48-h incubation period, while optimum growth of 1.926 OD and linamarase activity of 1.66 U/ml occurred at pH 5.5. At 37 °C, the optimum growth of 0.34 OD was recorded with the highest linamarase activity of 0.81 U/ml at 30 °C.However, the incubation period of 48 h stimulated an optimum growth of 3.091 OD with corresponding linamarase activity of 1.81 U/ml, while the substrate concentration of 400 ppm favours a maximum growth of 2.783 OD with linamarase activity of 1.86 U/ml at 48 h of incubation. -
Disaccharidase Deficiencies
J Clin Pathol: first published as 10.1136/jcp.s3-5.1.22 on 1 January 1971. Downloaded from J. clin. Path., 24, Suppl. (Roy. Coll. Path.), 5, 22-28 Disaccharidase deficiencies G. NEALE From the Department ofMedicine, Royal Postgraduate Medical School, Du Cane Road, London Up to 12 years ago the absorption of disaccharides capable of hydrolysing maltose, which may explain was a problem in physiology which attracted little why maltase deficiency is not found as an isolated attention and which appeared to be unrelated to the defect of the enterocyte. Isomaltase and sucrase problems of clinical medicine. Indeed, most text- appear to be distinct but linked entities, and hence books stated incorrectly that the disaccharides were they are absent together in the hereditary condition hydrolysed to monosaccharides in the lumen of the of sucrase-isomaltase deficiency (Dahlquist and small intestine despite the evidence of half a century Telenius, 1969). Lactase activity consists of at least before, which had suggested that they were digested two separate enzymes, one of which is not in the by the mucosal surface (Reid, 1901). The renewal of brush border but within the cell (Zoppi, Hadom, interest in the subject of disaccharide absorption Gitzelmann, Kistler, and Prader, 1966). The signifi- occurred after the description of congenital lactase cance of intracellular lactase activity is uncertain. It deficiency by Holzel, Schwarz, and Sutcliffe (1959) cannot play any part in the normal digestion of and of sucrase-isomaltase deficiency by Weijers, lactose which is a function of the brush border of the van de Kamer, Mossel, and Dicke (1960). -
Peraturan Badan Pengawas Obat Dan Makanan Nomor 28 Tahun 2019 Tentang Bahan Penolong Dalam Pengolahan Pangan
BADAN PENGAWAS OBAT DAN MAKANAN REPUBLIK INDONESIA PERATURAN BADAN PENGAWAS OBAT DAN MAKANAN NOMOR 28 TAHUN 2019 TENTANG BAHAN PENOLONG DALAM PENGOLAHAN PANGAN DENGAN RAHMAT TUHAN YANG MAHA ESA KEPALA BADAN PENGAWAS OBAT DAN MAKANAN, Menimbang : a. bahwa masyarakat perlu dilindungi dari penggunaan bahan penolong yang tidak memenuhi persyaratan kesehatan; b. bahwa pengaturan terhadap Bahan Penolong dalam Peraturan Kepala Badan Pengawas Obat dan Makanan Nomor 10 Tahun 2016 tentang Penggunaan Bahan Penolong Golongan Enzim dan Golongan Penjerap Enzim dalam Pengolahan Pangan dan Peraturan Kepala Badan Pengawas Obat dan Makanan Nomor 7 Tahun 2015 tentang Penggunaan Amonium Sulfat sebagai Bahan Penolong dalam Proses Pengolahan Nata de Coco sudah tidak sesuai dengan kebutuhan hukum serta perkembangan ilmu pengetahuan dan teknologi sehingga perlu diganti; c. bahwa berdasarkan pertimbangan sebagaimana dimaksud dalam huruf a dan huruf b, perlu menetapkan Peraturan Badan Pengawas Obat dan Makanan tentang Bahan Penolong dalam Pengolahan Pangan; -2- Mengingat : 1. Undang-Undang Nomor 18 Tahun 2012 tentang Pangan (Lembaran Negara Republik Indonesia Tahun 2012 Nomor 227, Tambahan Lembaran Negara Republik Indonesia Nomor 5360); 2. Peraturan Pemerintah Nomor 28 Tahun 2004 tentang Keamanan, Mutu dan Gizi Pangan (Lembaran Negara Republik Indonesia Tahun 2004 Nomor 107, Tambahan Lembaran Negara Republik Indonesia Nomor 4424); 3. Peraturan Presiden Nomor 80 Tahun 2017 tentang Badan Pengawas Obat dan Makanan (Lembaran Negara Republik Indonesia Tahun 2017 Nomor 180); 4. Peraturan Badan Pengawas Obat dan Makanan Nomor 12 Tahun 2018 tentang Organisasi dan Tata Kerja Unit Pelaksana Teknis di Lingkungan Badan Pengawas Obat dan Makanan (Berita Negara Republik Indonesia Tahun 2018 Nomor 784); MEMUTUSKAN: Menetapkan : PERATURAN BADAN PENGAWAS OBAT DAN MAKANAN TENTANG BAHAN PENOLONG DALAM PENGOLAHAN PANGAN. -
Disaccharidase Deficiency and Malabsorption of Carbohydrates
SINGAPORE MEDICAL JOURNAL DISACCHARIDASE DEFICIENCY AND MALABSORPTION OF CARBOHYDRATES C K Lee SYNOPSIS A large proportion of man's caloric intake is carbohydrate and starch and sucrose account for over three-quarters of the total consumed. But the rapid change of the food industry from an art to a high specialised industry in recent years have made available a variety of rare food sugars, amongst which are various disacharides. Since the digestion or enzymic breakdown of carbohydrates is a normal initial requirement that precedes their absorption, and metabolism of carbohydrates varies according to their molecular structure, these rare sugars can cause diseases of carbohydrate intolerance and malabsorption. Intolerance and malabsorption can be due to polysaccharide intolerance because of amylase dy- sfunction (caused by the absence of pancreatic amylases) or malfunctioning of absorptive process (caused by damaged or atrophied absorptive mucosa as a result of another primary disease or a variety of other casautive agents or factors, thus resulting in the Department of Chemistry inability of carbohydrate absorption by the alimentary system). A National University of Singapore third type of intolerance is due to primary deficiency or impaired Kent Ridge activity of digestive disaccharidases of the small intestine. The Singapore 0511 physiological significance and the metabolic consequences of such a lactase, sucrase-isomaltase, mal- C K Lee, Ph.D., F.I.F.S.T., C.Chem. F.R.S.C. deficiency or impaired activity of Senior Lecturer tase and trehalase are discussed. 6 VOLUME 25 NO.1 FEBRUARY 19M INTRODUCTION abundance in the free state. It is a constituent of the important plant and animal reserve sugars, starch and Recent years have seen a considerable advance in all glycogen. -
Congenital Sucrase-Isomaltase Deficiency: What, When, and How?
October 2020 Volume 16, Issue 10, Supplement 5 Congenital Sucrase-Isomaltase Deficiency: What, When, and How? William D. Chey, MD, AGAF, FACG, FACP Professor of Medicine University of Michigan Health System Ann Arbor, Michigan Brooks Cash, MD Dan and Lille Sterling Professor of Gastroenterology Chief, Division of Gastroenterology, Hepatology, and Nutrition University of Texas Health Science Center at Houston Houston, Texas Anthony Lembo, MD Professor of Medicine Harvard Medical School Boston, Massachusetts Daksesh B. Patel, DO Illinois Gastroenterology Group/GI Alliance Chief, Division of Gastroenterology and Hepatology AMITA St Francis Hospital Evanston, Illinois Accredited by Rehoboth McKinley Christian Health Care Services Kate Scarlata, RDN, LDN Owner, For a Digestive Peace of Mind, LLC Digestive Health Nutrition Consulting Medway, Massachusetts A CME Activity Approved for 1.0 AMA PRA Category 1 CreditTM Provided by the Gi Health Foundation Release Date: October 2020 ON THE WEB: Expiration Date: gastroenterologyandhepatology.net October 31, 2021 Supported by an Estimated time to educational grant from Indexed through the National Library of Medicine complete activity: QOL Medical, LLC (PubMed/Medline), PubMed Central (PMC), and EMBASE 1.0 hour Congenital Sucrase-Isomaltase Deficiency: What, When, and How? To claim 1.0 AMA PRA Category 1 CreditTM for this activity, please visit: gihealthfoundation.org/CSIDMONOGRAPH Target Audience Disclosures This CME monograph will target gastroenterologists, primary care physi- Faculty members are required to inform the audience when they are dis- cians, nurse practitioners, physician assistants, and nurses. cussing off-label, unapproved uses of devices and drugs. Physicians should consult full prescribing information before using any product mentioned Goal Statement during this educational activity. -
Protein-Carbohydrate Interactions Leading to Hydrolysis and Transglycosylation in Plant Glycoside Hydrolase Family 1 Enzymes
J. Appl. Glycosci., 59, 51‒62 (2012) doi: 10.5458/jag.jag.JAG-2011_022 ©2012 The Japanese Society of Applied Glycoscience Review Protein-carbohydrate Interactions Leading to Hydrolysis and Transglycosylation in Plant Glycoside Hydrolase Family 1 Enzymes (Received December 7, 2011; Accepted January 30, 2012) (J-STAGE Advance Published Date: February 11, 2012) James R. Ketudat Cairns,1,* Salila Pengthaisong,1 Sukanya Luang,1 Sompong Sansenya, 1 Anupong Tankrathok1 and Jisnuson Svasti2 1Schools of Biochemistry and Chemistry, Institute of Science, Suranaree University of Technology (Muang District, Nakhon Ratchasima 30000, Thailand) 2Department of Biochemistry and Centre for Protein Structure and Engineering, Faculty of Science, Mahidol University (Phayathai, Bangkok 10400, Thailand) Abstract: Glycoside hydrolase family 1 (GH1) includes enzymes with a wide range of specifi cities in terms of reactions, substrates and products, with plant GH1 enzymes covering a particularly wide range of hy- drolases and transglycosylases. In plants, in addition to β-D-glucosidases, β-D-mannosidases, disacchari- dases, thioglucosidases and hydroxyisourate hydrolase, GH1 has recently been found to include galactosyl and glucosyl transferases that utilize galactolipid and acyl glucose donors, respectively. The amino acids binding to the nonreducing monosaccharide residue of glycosides and oligosaccharides in subsite -1 are largely conserved in GH1 glycoside hydrolases, despite their different glycon specifi cities, and residues outside this subsite contribute to sugar specifi city. The conserved subsite -1 residues form extensive hy- drogen bonding and aromatic stacking interactions to the glycon to distort it toward the transition state, so they must make different interactions with different sugars. Aglycon specifi city is largely determined by interactions with the cleft leading into the active site, but different enzymes appear to interact with their substrates via different residues. -
Isolation of Pure Cassava Linamarin As an Anti Cancer Agent
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Wits Institutional Repository on DSPACE ISOLATION OF PURE CASSAVA LINAMARIN AS AN ANTI CANCER AGENT CHRISTOPHER AVWOGHOKOGHENE, IDIBIE A Dissertation Submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, in Fulfillment of the requirement for the Degree of Master of Science in Engineering. Johannesburg, 2006. DECLARATION I declare that this dissertation is my own, unaided work. It is being submitted for the degree of Master of Science in the University of Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination in any other University. (Signature of candidature) Day of ii ABSTRACT Cassava is a known source of linamarin, but difficulties associated with its isolation have prevented it from being exploited as a source. A batch adsorption process using activated carbon at the appropriate contact time proved successful in its isolation with ultrafiltration playing a pivotal role in the purification process. Result revealed that optimum purification was obtained with increasing amount of crude cassava extract (CCE) purified. 60g of CCE took 32 mins, 80 g, 34 mins while 100 g took 36 mins of contact time, where 1.7 g, 2.0 g and 2.5 g of purified product were obtained, respectively. The purification process in batch mode was also carried out at different temperatures ranging from 25 to 65oC. Results showed that purification increases with increase in temperature. In a bid to ascertain the moles of linamarin adsorbed per pore volume of activated carbon used, the composite isotherm was found to represent the measured adsorption data quite well. -
Information to Users
INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in ^ ew riter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper aligmnent can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Information Company 300 North Zeeb Road, Ann Arbor M3 48106-1346 USA 313/761-4700 800/521-0600 GENETIC ENGINEERING APPROACHES TO IMPROVE AGRONOMIC TRAITS IN CASSAVA (MANIHOT ESCULENTA CRANTZ) DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Graduate School of The Ohio State University By Diana Isabel Arias-Garzon, B.S. -
Original Research Article Open Access
Available online at http://www.journalijdr.com ISSN: 2230-9926 International Journal of Development Research Vol. 10, Issue, 01, pp. 33316-33320, January, 2020 RESEARCH ARTICLE ORIGINAL RESEARCH ARTICLE OPEN ACCESS POSSIBLE USE OF MANIHOT SCULENTA LEAVES AS FOOD *1Pedro Henrique Silva de Rossi, 1,2Sandra Maria Barbalho, 1Marie Oshiiwa, 1,2Elen Landgraf Guiguer, 1Claudia Cristina T. Nicolau, 1Adriana Ragassi Fiorini, 2Adriano Cressoni Araújo, 2Patrícia Cincotto dos Santos Bueno, 2Ricardo de Alvares Goulart, 2Claudia Rucco P. Detregiachi and 1Alda Maria Machado B. Otoboni 1Department of Biochemistry and Nutrition, Faculty of Food Technology of Marília, Marília, São Paulo – Brazil 2Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília–Brazil / Brazil ARTICLE INFO ABSTRACT Article History: Several nutritional problems are seen in developing countries, and a countless number of people Article History: ReceivedReceived 14xxxxxx,th October 2019, 2019 are affected by chronic undernutrition. Plants such as Cassava (Manihot esculenta) work as a ReceivedReceived inin revisedrevised formform staple food source for over 800 million people around the world. The aerial part of cassava can be 17xxxxxxxx,th November 201,9 2019 used in animal feed, and in human food in the preparation of typical dishes of the Northern AcceptedAccepted 19xxxxxxxxxth December, 20, 192019 (Amazonian region) and Northeastern regions of Brazil. Besides the presence of cyanide PublishedPublished onlineonline 31xxxxxst January, 2019, 2020 compounds, cassava leaves may represent a source of proteins, vitamins, and minerals; it has a low cost of production, and it is widely adapted to Brazilian conditions. For these reasons, this Key Words: study aims to review the main aspects of this vegetal waist and evaluate its potential as a safe Manihot esculenta; Cassava leaves; food source. -
Inhibition of Activities of Individual Subunits of Intestinal Maltase-Glucoamylase and Sucrase-Isomaltase by Dietary Phenolic
Purdue University Purdue e-Pubs Open Access Dissertations Theses and Dissertations January 2014 INHIBITION OF ACTIVITIES OF INDIVIDUAL SUBUNITS OF INTESTINAL MALTASE-GLUCOAMYLASE AND SUCRASE-ISOMALTASE BY DIETARY PHENOLIC COMPOUNDS FOR MODULATING GLUCOSE RELEASE AND GENE RESPONSE Meric Simsek Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations Recommended Citation Simsek, Meric, "INHIBITION OF ACTIVITIES OF INDIVIDUAL SUBUNITS OF INTESTINAL MALTASE-GLUCOAMYLASE AND SUCRASE-ISOMALTASE BY DIETARY PHENOLIC COMPOUNDS FOR MODULATING GLUCOSE RELEASE AND GENE RESPONSE" (2014). Open Access Dissertations. 1500. https://docs.lib.purdue.edu/open_access_dissertations/1500 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Graduate School Form 30 (Updated 11/20/2014) PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance This is to certify that the thesis/dissertation prepared By Meric Simsek Entitled INHIBITION OF ACTIVITIES OF INDIVIDUAL SUBUNITS OF INTESTINAL MALTASE-GLUCOAMYLASE AND SUCRASE-ISOMALTASE BY DIETARY PHENOLIC COMPOUNDS FOR MODULATING GLUCOSE RELEASE AND GENE RESPONSE Doctor of Philosophy For the degree of Is approved by the final examining committee: Bruce R. Hamaker Mario G. Ferruzzi Kee-Hong Kim Roberto Quezada-Calvillo To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement, Publication Delay, and Certification/Disclaimer (Graduate School Form 32), this thesis/dissertation adheres to the provisions of Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material. Bruce R. Hamaker Approved by Major Professor(s): ____________________________________ ____________________________________ 11/21/2014 Approved by: Mario G. -
Coffea Arabica Bean Extract Inhibits Glucose Transport and Disaccharidase Activity in Caco‑2 Cells
BIOMEDICAL REPORTS 15: 73, 2021 Coffea arabica bean extract inhibits glucose transport and disaccharidase activity in Caco‑2 cells ATCHARAPORN ONTAWONG1, ACHARAPORN DUANGJAI1 and CHUTIMA SRIMAROENG2 1Division of Physiology, School of Medical Sciences, University of Phayao, Muang Phayao, Phayao 56000; 2Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Nong Khai 52000, Thailand Received February 3, 2021; Accepted June 14, 2021 DOI: 10.3892/br.2021.1449 Abstract. The major constituents of Coffea arabica (coffee), or sucrase‑isomaltase cleaves the α‑glucoside bonds of including caffeine, chlorogenic acid and caffeic acid, exhibit disaccharides, including sucrose, to monosaccharides. The antihyperglycemic properties in in vitro and in vivo models. absorption of dietary monosaccharides by the intestine may However, whether Coffea arabica bean extract (CBE) regu‑ be one of the risk factors associated with diabetes mellitus (1). lates glucose uptake activity and the underlying mechanisms Glucose derived from starch or sucrose is taken up by the involved remain unclear. The aim of the present study was epithelial cells through the brush border membrane (BBM), to examine the effects of CBE on glucose absorption and predominantly by a sodium‑dependent glucose co‑transporter identify the mechanisms involved using an in vitro model. (SGLT1) (2,3). A previous study has revealed that glucose The uptake of a fluorescent glucose analog into Caco‑2 transporter 2 (GLUT2) is expressed at the BBM of enterocytes colorectal adenocarcinoma cells was determined. The expres‑ during the digestive phase and may affect circulatory glucose sion levels of sodium glucose co‑transporter 1 (SGLT1) and concentration (2). Subsequently, glucose effluxes across the baso‑ glucose transporter 2 (GLUT2) were evaluated. -
Metabolism of the Cyanogenic Glucosides in Developing Flax: Metabolic Analysis, and Expression Pattern of Genes
H OH metabolites OH Article Metabolism of the Cyanogenic Glucosides in Developing Flax: Metabolic Analysis, and Expression Pattern of Genes Magdalena Zuk 1,2,* , Katarzyna Pelc 1, Jakub Szperlik 1, Agnieszka Sawula 1 and Jan Szopa 2 1 Faculty of Biotechnology, Wroclaw University, Przybyszewskiego 63/77, 51-148 Wrocław, Poland; [email protected] (K.P.); [email protected] (J.S.); [email protected] (A.S.) 2 Linum Fundation, pl. Grunwaldzki 24A, 50-363 Wrocław, Poland; [email protected] * Correspondence: [email protected] Received: 18 May 2020; Accepted: 12 July 2020; Published: 14 July 2020 Abstract: Cyanogenic glucosides (CG), the monoglycosides linamarin and lotaustralin, as well as the diglucosides linustatin and neolinustatin, have been identified in flax. The roles of CG and hydrogen cyanide (HCN), specifically the product of their breakdown, differ and are understood only to a certain extent. HCN is toxic to aerobic organisms as a respiratory inhibitor and to enzymes containing heavy metals. On the other hand, CG and HCN are important factors in the plant defense system against herbivores, insects and pathogens. In this study, fluctuations in CG levels during flax growth and development (using UPLC) and the expression of genes encoding key enzymes for their metabolism (valine N-monooxygenase, linamarase, cyanoalanine nitrilase and cyanoalanine synthase) using RT-PCR were analyzed. Linola cultivar and transgenic plants characterized by increased levels of sulfur amino acids were analyzed. This enabled the demonstration of a significant relationship between the cyanide detoxification process and general metabolism. Cyanogenic glucosides are used as nitrogen-containing precursors for the synthesis of amino acids, proteins and amines.