Muscular Microsporidian Infection in Arctic Char Salvelinus Alpinus from Two Lakes in Nunavik, Quebec, Canada

Total Page:16

File Type:pdf, Size:1020Kb

Muscular Microsporidian Infection in Arctic Char Salvelinus Alpinus from Two Lakes in Nunavik, Quebec, Canada Vol. 144: 209–220, 2021 DISEASES OF AQUATIC ORGANISMS Published online May 27 https://doi.org/10.3354/dao03593 Dis Aquat Org OPEN ACCESS Muscular microsporidian infection in Arctic char Salvelinus alpinus from two lakes in Nunavik, Quebec, Canada Marion Jalenques1, Justin Sanders2, Lilian Tran3, Laurie Beaupré4, Michael Kent2, Stéphane Lair1,* 1Centre québécois sur la santé des animaux sauvages / Canadian Wildlife Health Cooperative, Faculté de médecine vétérinaire, Université de Montréal, St. Hyacinthe, Quebec J2S 2M2, Canada 2Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA 3Makivik Corporation, Kuujjuaq, Quebec J0M 1C0, Canada 4Direction de la gestion de la faune du Nord-du-Québec Ministère des Forêts, de la Faune et des Parcs, Chibougamau, Quebec G8P 2Z3, Canada ABSTRACT: Arctic char Salvelinus alpinus is an important cultural and subsistence resource for Inuit communities. Muscular infections by microsporidia were diagnosed for the first time in Arctic char originating from 2 different lakes in Nunavik (Quebec, Canada). The consumption of these infected fish was associated with digestive tract disorders in people. To better characterize microsporidiosis in these char populations, a cross-sectional study was conducted on 91 fish. The microsporidium was classified as a member of the Microsporidium collective genus by morpholog- ical evaluation and phylogenetic analysis using small subunit ribosomal DNA sequence data. The presence and severity of infection were determined histologically. Microsporidian infection occurred in 61% of the fish (56/91) and was significantly associated with an increase in their age, length and weight. The severity of infection (percentage of muscle area affected by microsporidia) was mild in most cases (<1% of the total muscle area). Based on multiple linear regression mod- eling, the severity of infection was significantly greater in females and negatively correlated with the body condition. Despite a high prevalence, the low pathogenicity of the infection suggests that microsporidiosis has little impact on these char populations. Moreover, since digestive-tract dis - orders following ingestion of fish infected by microsporidia have never been reported in humans, it seems unlikely that it was responsible for the reported clinical signs. Anisakid larvae are occasionally observed in these char populations. Digestive-tract infection associated with inges- tion of these larvae should thus be considered as a potential differential diagnosis in these Inuit communities. KEY WORDS: Microsporidia · Salvelinus alpinus · Arctic char · Myositis · Nunavik · Anisakis · Zoonosis 1. INTRODUCTION where they occur as both anadromous and resident freshwater (landlocked) populations (Fisheries and Arctic char Salvelinus alpinus, teleosts from the Oceans Canada 2014, Kuhnlein & Humphries 2017, family Salmonidae, are found in lakes, rivers and Martyniuk et al. 2020). This fish species is an impor- coas tal saltwater across northern North America, tant part of the traditional Inuit diet and is consumed © The authors 2021. Open Access under Creative Commons by *Corresponding author: [email protected] Attribution Licence. Use, distribution and reproduction are un - restricted. Authors and original publication must be credited. Publisher: Inter-Research · www.int-res.com 210 Dis Aquat Org 144: 209–220, 2021 raw, boiled, dried or fermented in local communities study were to (1) determine the prevalence of mi- (Kuhnlein & Humphries 2017). Muscular infections crosporidiosis in Arctic char populations from Lakes by microsporidia (microsporidiosis) have been oppor- Duquet and Françoys-Malherbe, (2) characterize the tunistically documented in Arctic char from Lake lesions caused by this organism, (3) evaluate the as- Duquet located near Salluit, Nunavik, Quebec, Can- sociation between the infection and fish characteris- ada (Wildlife Health Intelligence Platform, Canadian tics such as body condition and (4) elucidate the taxo- Wildlife Health Cooperative). These fish, which were nomic status of this novel infection. Potential causes harvested by fishermen from local communities, of the symptoms reported by Inuit following the con- were submitted in response to the occurrence of var- sumption of raw fish will also be discussed. ious symptoms including vomiting and oral-tingling sensations, following consumption of raw char flesh. Similar symptoms have also been reported in people 2. MATERIALS AND METHODS fishing in the nearby Lake Françoys-Malherbe. These occurrences took place in spring (April) or summer 2.1. Study area and sampling (September). The prevalence of the parasite, its sig- nificance for the health of this population of fish and This project was realized from 1−7 May 2018, in its zoonotic potential are unknown. collaboration with regional stakeholders including Microsporidia are obligate sporulating intracellular the Makivik Corporation, the Ministère des Forêts, parasites related to Fungi. This group includes over de la Faune et des Parc (MFFP) and Raglan Mine. 1000 species able to infect a broad spectrum of hosts, Fish were obtained from Lake Duquet (Tasialujjuaq) from unicellular organisms to vertebrates, including (62° 03’ 18’’ N, 74° 31’ 51’’ W) and Lake Françoys- humans (Lom 2002, Stentiford et al. 2016). Although Malherbe (Pangaligiak) (62° 00’ 06’’ N, 74° 15’ 25’’ W). infections by these organisms are relatively common These lakes, which are 7.7 × 1 km and 25 × 1−1.5 km in fish, most species are poorly described and new in size, respectively, are located in proximity to the species are regularly discovered. Species in the gen- community of Salluit, Nunavik (Quebec, Canada) era Heterosporis, Pleistophora, Kabatana, Tetrami- and used by the local fishermen. Both freshwater cra, Myosporidium and in the collective group Micro - lakes outflow into Deception Bay (Hudson Strait) via sporidium are known to infect the skeletal muscles of the Deception River. Even if anadromous and land- susceptible teleost fish hosts (Kent et al. 1999, 2014, locked char populations inhabit these lakes, the Lom 2002, Ahonen 2017). It is believed that most fish present study involves char from the anadromous microsporidia complete their life cycle within a sin- population only. Anadromous Arctic char at Decep- gle host, through horizontal transmission by inges- tion Bay only feed out at sea, where they prey oppor- tion of infected tissues or spores in the water. In addi- tunistically on zooplankton and pelagic and benthic tion, some species of microsporidia include vertical fishes (Martyniuk et al. 2020). (intraovum) transmission in their life cycles (e.g. For this study, sampling took place in the spring Pseu doloma neurophilia: Sanders & Kent 2013; Ovi - when anadromous Arctic char are fasting (Martyniuk pleistophora ovariae: Kent et al. 2014). With horizon- et al. 2020). A total of 91 Arctic char, 61 from Lake tal transmission, microsporidia that infect muscle Duquet and 30 from Lake Françoys-Malherbe, were enter the intestinal wall and reach the muscles where captured respectively by gill nets and fishing lines they multiply (merogony) and produce new spores set under the ice cover as part of planned subsistence (sporogony) that will be released into the tissues or fishing by local elders. Once captured, the fish were the external environment (Lom 2002, Miller 2009, stunned, pithed and stored in an isolated cooler to Kent et al. 2014). The infection may cause significant prevent them from freezing. Morphological meas- muscle damage and contribute to indirect fish mor- urements and macroscopic examination were per- tality due to debilitation or increased susceptibility to formed on the day of capture. Sex, age (otolith analy- predation (Sprengel & Lüchtenberg 1991, Figueras et sis; Campana & Thorrold 2001), fork length, weight, al. 1992, Miller 2009, Kent et al. 2014, Phelps et al. and Fulton’s condition factor K were determined for 2015). In addition, heavy infections of the muscle each fish. Fulton’s condition factor was defined by often cause macroscopic changes that diminish the K = 100 × total weight / (fork length)3 with the weight value of the fish for human consumption (Toma - in grams and the fork length in centimeters (Ricker michel et al. 2018). 1975). Characteristics of the sampled fish are pre- Here we describe a microsporidian infection in Arc- sented in Table 1. A complete post-mortem examina- tic char in 2 lakes in Nunavik. The objectives of this tion, including thorough inspections of filleted mus- Jalenques et al.: Muscular microsporidian infection in Arctic char 211 Table 1. Characteristics of the Arctic char Salvelinus alpinus sampled in this study. Arctic char were captured respectively by gill nets and jig fishing lines set under the ice cover from Lake Duquet and Lake Françoys-Malherbe, located near the com- munity of Salluit, Nunavik, Canada. Fulton’s condition factor defined as: K = 100 × total weight / (fork length)3, with total weight in grams and fork length in centimeters Duquet (n = 61) Françoys-Malherbe (n = 30) Total (n = 91) Sex Female 36 22 58 (64%) Male 25 8 33 (36%) Age (yr)a 10 ± 1 (7−15) 9 ± 2 (5−14) 10 ± 2 (5−15) Fork length (cm)a 46.1 ± 12.9 (42.9−66.3) 51.6 ± 6.3 (19.5−70.4) 49.8 ± 9.3 (19.5−70.4) Total weight (g)a 1449 ± 583 (786−3108) 1125 ± 763 (63−2522) 1341 ± 662 (63−3108) Fulton’s K a 1.01 ± 0.10 (0.67−1.22) 0.93 ± 0.13 (0.61−1.10) 0.98 ± 0.12 (0.61−1.22) Presence of internal helminths 32 (52%) 16 (53%) 48 (53%) Coelomic helminthsb 32 (52%) 13 (43%) 45 (49%) Intestinal cestodes 2 (3%) 4 (13%) 6 (7%) Presence of copepods 14 (23%) 6 (20%) 20 (22%) aMean ± SD (minimum−maximum) bPresence of Anisakidae larvae, adult Philonema sp. or plerocercoids of cestodes encysted in the coelomic cavity, visceral serosa or muscles cles to detect areas of discoloration or texture varia- trast between affected and non-affected areas was tion, was done on each fish. To measure the micro - enhanced using Adobe Photoshop on nu merized im- sporidia spore, wet mount preparations were made ages of each histological slide (Aperio ImageScope from frozen muscular tissue of 1 specimen with gross software, version 12.4.0, Leica Biosystems Imaging).
Recommended publications
  • A Guide to Culturing Parasites, Establishing Infections and Assessing Immune Responses in the Three-Spined Stickleback
    ARTICLE IN PRESS Hook, Line and Infection: A Guide to Culturing Parasites, Establishing Infections and Assessing Immune Responses in the Three-Spined Stickleback Alexander Stewart*, Joseph Jacksonx, Iain Barber{, Christophe Eizaguirrejj, Rachel Paterson*, Pieter van West#, Chris Williams** and Joanne Cable*,1 *Cardiff University, Cardiff, United Kingdom x University of Salford, Salford, United Kingdom { University of Leicester, Leicester, United Kingdom jj Queen Mary University of London, London, United Kingdom #Institute of Medical Sciences, Aberdeen, United Kingdom **National Fisheries Service, Cambridgeshire, United Kingdom 1Corresponding author: E-mail: [email protected] Contents 1. Introduction 3 2. Stickleback Husbandry 7 2.1 Ethics 7 2.2 Collection 7 2.3 Maintenance 9 2.4 Breeding sticklebacks in vivo and in vitro 10 2.5 Hatchery 15 3. Common Stickleback Parasite Cultures 16 3.1 Argulus foliaceus 17 3.1.1 Introduction 17 3.1.2 Source, culture and infection 18 3.1.3 Immunology 22 3.2 Camallanus lacustris 22 3.2.1 Introduction 22 3.2.2 Source, culture and infection 23 3.2.3 Immunology 25 3.3 Diplostomum Species 26 3.3.1 Introduction 26 3.3.2 Source, culture and infection 27 3.3.3 Immunology 28 Advances in Parasitology, Volume 98 ISSN 0065-308X © 2017 Elsevier Ltd. http://dx.doi.org/10.1016/bs.apar.2017.07.001 All rights reserved. 1 j ARTICLE IN PRESS 2 Alexander Stewart et al. 3.4 Glugea anomala 30 3.4.1 Introduction 30 3.4.2 Source, culture and infection 30 3.4.3 Immunology 31 3.5 Gyrodactylus Species 31 3.5.1 Introduction 31 3.5.2 Source, culture and infection 32 3.5.3 Immunology 34 3.6 Saprolegnia parasitica 35 3.6.1 Introduction 35 3.6.2 Source, culture and infection 36 3.6.3 Immunology 37 3.7 Schistocephalus solidus 38 3.7.1 Introduction 38 3.7.2 Source, culture and infection 39 3.7.3 Immunology 43 4.
    [Show full text]
  • The Arctic Char (Salvelinus Alpinus) “Complex” in North America Revisited
    The Arctic char (Salvelinus alpinus) “complex” in North America revisited Eric B. Taylor Hydrobiologia The International Journal of Aquatic Sciences ISSN 0018-8158 Hydrobiologia DOI 10.1007/s10750-015-2613-6 1 23 Author's personal copy Hydrobiologia DOI 10.1007/s10750-015-2613-6 CHARR II Review Paper The Arctic char (Salvelinus alpinus) ‘‘complex’’ in North America revisited Eric B. Taylor Received: 1 July 2015 / Revised: 16 November 2015 / Accepted: 5 December 2015 Ó Springer International Publishing Switzerland 2015 Abstract The Arctic char (Salvelinus alpinus) law. This research has significantly revised what species ‘‘complex’’ has fascinated biologists for constitutes the S. alpinus species ‘‘complex’’, provided decades particularly with respect to how many species insights into the ecology and genetics of co-existence, there are and their geographic distributions. I review and promoted conservation assessment that better recent research on the species complex, focussing on represents biodiversity within Salvelinus. A geograph- biodiversity within northwestern North America, ically and genetically comprehensive analysis of which indicates (i) what was once considered a single relationships among putative taxa of Pan-Pacific taxon consists of three taxa: S. alpinus (Arctic char), S. Salvelinus is still required to better quantify the malma (Dolly Varden), and S. confluentus (bull trout), number of taxa and their origins. (ii) morphological and genetic data indicate that S. alpinus and S. malma, and S. malma and S. confluentus Keywords Dolly Varden Á Arctic char Á Bull trout Á exist as distinct biological species in sympatry, (iii) Geographic distribution Á Taxonomy Á Conservation sympatric forms of S. alpinus exist in Alaska as in other areas of the Holarctic, (iv) Dolly Varden comprises two well-differentiated subspecies, S.
    [Show full text]
  • Isolation of Intestinal Parasites of Schilbe Mystus from the Mid Cross River Flood System Southeastern Nigeria
    AASCIT Journal of Health 2015; 2(4): 26-31 Published online July 20, 2015 (http://www.aascit.org/journal/health) Isolation of Intestinal Parasites of Schilbe mystus from the Mid Cross River Flood System Southeastern Nigeria Uneke Bilikis Iyabo, Egboruche Joy Dept of Applied Biology, Faculty of Biological Sciences, Ebonyi State University, Abakaliki, Ebonyi State, Nigeria Email address [email protected] (U. B. Iyabo), [email protected] (U. B. Iyabo) Citation Keywords Uneke Bilikis Iyabo, Egboruche Joy. Isolation of Intestinal Parasites of Schilbe mystus from the Intestinal Parasites, Mid Cross River Flood System Southeastern Nigeria. AASCIT Journal of Health. Nematodes, Vol. 2, No. 4, 2015, pp. 26-31. Trematodes, Cestodes, Abstract Protozoans, A survey of Schilbe mystus of the mid Cross River flood system was conducted between Acanthocephalans, August and October, 2014 to determine the presence of parasitic infection in S. mystus . Schilbe mystus The fish were collected with gill nets, hook and line. Seventy five out of the one hundred fish examined were infected (75.0%) with parasites. The end oparasites recovered were mostly nematodes, trematodes, cestodes, protozoa and acanthocephalans. Numerical abundance of parasites showed that a total of 128 species of end oparasites occurred in Received: June 30, 2015 the fish examined. Nematodes had 33.6% (43/128), trematodes 11.7% (15/128), Revised: July 10, 2015 cestodes 24.2% (31/128), protozoa 12.5% (16/128) and acanthocephalan 18.0% Accepted: July 11, 2015 (23/128). The prevalence of end oparasites of the fish showed that parasites were most prevalent in fishes with length Class 14.1-16 cm TL with 67.2% while class 21.1-22cm had the least prevalence (1.60%).
    [Show full text]
  • Respiratory Disorders of Fish
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Disorders of the Respiratory System in Pet and Ornamental Fish a, b Helen E. Roberts, DVM *, Stephen A. Smith, DVM, PhD KEYWORDS Pet fish Ornamental fish Branchitis Gill Wet mount cytology Hypoxia Respiratory disorders Pathology Living in an aquatic environment where oxygen is in less supply and harder to extract than in a terrestrial one, fish have developed a respiratory system that is much more efficient than terrestrial vertebrates. The gills of fish are a unique organ system and serve several functions including respiration, osmoregulation, excretion of nitroge- nous wastes, and acid-base regulation.1 The gills are the primary site of oxygen exchange in fish and are in intimate contact with the aquatic environment. In most cases, the separation between the water and the tissues of the fish is only a few cell layers thick. Gills are a common target for assault by infectious and noninfectious disease processes.2 Nonlethal diagnostic biopsy of the gills can identify pathologic changes, provide samples for bacterial culture/identification/sensitivity testing, aid in fungal element identification, provide samples for viral testing, and provide parasitic organisms for identification.3–6 This diagnostic test is so important that it should be included as part of every diagnostic workup performed on a fish.
    [Show full text]
  • Distribution and Coinfection of Microparasites and Macroparasites in Juvenile Salmonids in Three Upper Willamette River Tributaries
    AN ABSTRACT OF THE THESIS OF Sean Robert Roon for the degree of Master of Science in Microbiology presented on December 9, 2014. Title: Distribution and Coinfection of Microparasites and Macroparasites in Juvenile Salmonids in Three Upper Willamette River Tributaries. Abstract approved: ______________________________________________________ Jerri L. Bartholomew Wild fish populations are typically infected with a variety of micro- and macroparasites that may affect fitness and survival, however, there is little published information on parasite distribution in wild juvenile salmonids in three upper tributaries of the Willamette River, OR. The objectives of this survey were to document (1) the distribution of select microparasites in wild salmonids and (2) the prevalence, geographical distribution, and community composition of metazoan parasites infecting these fish. From 2011-2013, I surveyed 279 Chinook salmon Oncorhynchus tshawytscha and 149 rainbow trout O. mykiss for one viral (IHNV) and four bacterial (Aeromonas salmonicida, Flavobacterium columnare, Flavobacterium psychrophilum, and Renibacterium salmoninarum) microparasites known to cause mortality of fish in Willamette River hatcheries. The only microparasite detected was Renibacterium salmoninarum, causative agent of bacterial kidney disease, which was detected at all three sites. I identified 23 metazoan parasite taxa in these fish. Nonmetric multidimensional scaling of metazoan parasite communities reflected a nested structure with trematode metacercariae being the basal parasite taxa at all three sites. The freshwater trematode Nanophyetus salmincola was the most common macroparasite observed at three sites. Metacercariae of N. salmincola have been shown to impair immune function and disease resistance in saltwater. To investigate if N. salmincola affects disease susceptibility in freshwater, I conducted a series of disease challenges to evaluate whether encysted N.
    [Show full text]
  • Stevens Point Northern Aquaculture Demonstration Facility
    University of Wisconsin- Stevens Point Northern Aquaculture Demonstration Facility • Greg Fischer • Facilities Operation Manager New Species for Wisconsin Aquaculture • Arctic Char?? WHY ARCTIC CHAR • Coldwater Species • Rapid growth – 1 kg(2.2 lbs) <17months • High quality flesh • Good market price with limited availability • High culture densities-120kg/m³(1.0lb/gal) • High fillet yield 50% + @market size 1-3 kg (2.2-6.6lbs) Comparsion between Arctic Char, Rainbow Trout, and Brook Trout in Weig ht Over Time from 20 g rams 900 800 700 600 AC -10 500 B K T-06 gms 400 R B T-08 300 200 100 0 0 30 60 90 120 150 180 210 240 270 300 330 360 390 Days of growth Days from 20 gms to 1.0 pd AC -10 R B T- 08 B K T-06 0 50 100 150 200 250 S eries2 Evaluation of photoperiod manipulation on Arctic Char growth, processing attributes, and sexual maturity in a coldwater recirculating system at UWSP-NADF Materials and Methods . The purpose of this study was to evaluate and compare arctic charr production attributes reared under two different photoperiods (24 hr and natural) in an RAS system. Troutlodge Inc. provided Nauyuk Lake (Canada) strain arctic charr eggs. Cultured 17 months from egg to market size (1.0 kg) (2.0 lbs) . Reared 10 months in RAS system . Project was conducted inside main aquatic barn at NADF. Materials and Methods Egg and Fry Culture . Eyed eggs incubated in Heath Stack .Flow thru 8.0°C(48F) degassed & aerated ground water. Fry were transferred to shallow (406 mm x 1219 mm) flow-thru fiberglass tank inserts.
    [Show full text]
  • Shellfish Diseases and Their Management in Commercial Recirculating Systems
    Shellfish Diseases and Their Management in Commercial Recirculating Systems Ralph Elston AquaTechnics & Pacific Shellfish Institute PO Box 687 Carlsborg, WA 98324 Introduction Intensive culture of early life stages of bivalve shellfish culture has been practiced since at least the late 1950’s on an experimental basis. Production scale culture emerged in the 1970’s and today, hathcheries and nurseries produce large numbers of a variety of species of oysters, clams and scallops. The early life stage systems may be entirely or partially recirculating or static. Management of infectious diseases in these systems has been a challenge since their inception and effective health management is a requisite to successful culture. The diseases which affect early life stage shellfish in intensive production systems and the principles and practice of health management are the subject of this presentation. Shellfish Diseases and Management Diseases of bivalve shellfish affecting those reared or harvested from extensive culture primarily consist of parasitic infections and generally comprise the reportable or certifiable diseases. Due to the extensive nature of such culture, intervention options or disease control are limited. In contrast, infectious diseases known from early life stages in intensive culture systems tend to be opportunistic in nature and offer substantial opportunity for management due to the control that can be exerted at key points in the systems. In marine shellfish hatcheries, infectious organisms can enter the system from three sources: brood stock, seawater source and algal food source. Once an organism is established in the system, it may persist without further introduction. Bacterial infections are the most common opportunistic infection in shellfish hatcheries.
    [Show full text]
  • Reindeer Grazing Permits on the Seward Peninsula
    U.S. Department of the Interior Bureau of Land Management Anchorage Field Office 4700 BLM Road Anchorage, Alaska 99507 http://www.blm.gov/ak/st/en/fo/ado.html Environmental Assessment: DOI-BLM-AK-010-2009-0007-EA Reindeer Grazing Permits on the Seward Peninsula Applicant: Clark Davis Case File No.: F-035186 Applicant: Fred Goodhope Case File No.: F-030183 Applicant: Thomas Gray Case File No.: FF-024210 Applicant: Nathan Hadley Case File No.: FF-085605 Applicant: Merlin Henry Case File No.: F-030387 Applicant: Harry Karmun Case File No. : F-030432 Applicant: Julia Lee Case File No.: F-030165 Applicant: Roger Menadelook Case File No.: FF-085288 Applicant: James Noyakuk Case File No.: FF-019442 Applicant: Leonard Olanna Case File No.: FF-011729 Applicant: Faye Ongtowasruk Case File No.: FF-000898 Applicant: Palmer Sagoonick Case File No.: FF-000839 Applicant: Douglas Sheldon Case File No.: FF-085604 Applicant: John A. Walker Case File No.: FF-087313 Applicant: Clifford Weyiouanna Case File No.: FF-011516 Location: Bureau of Land Management lands on the Seward Peninsula Prepared By: BLM, Anchorage Field Office, Resources Branch December 2008 DECISION RECORD and FINDING OF NO SIGNIFICANT IMPACT I. Decision: It is my decision to issue ten-year grazing permits on Bureau of Land Management lands to reindeer herders on the Seward and Baldwin peninsulas, Alaska. The permits shall be subject to the terms and conditions set forth in Alternative B of the attached Reindeer Grazing Programmatic Environmental Assessment. II. Rationale for the Decision: The Reindeer Industry Act of 1937, 500 Stat. 900, authorizes the Secretary’s regulation of reindeer grazing on Federal public lands on the peninsulas.
    [Show full text]
  • Reindeer and Caribou: Herds and Livelihoods in Transition
    The Greenland experience 6 MAGAZINE Wek'eezhii herd management 11 No. 1 Windmill power: green energy or 2011 The CirCle trampling traditional lifestyles? 19 reindeer and Caribou: herds and livelihoods in TransiTion PUBLISHED BY THE WWF GLoBaL aRCTIC PRoGRaMME The Circle 1.2011 Contents EDITORIAL MOnte HummeL Caribou: The Experience 3 In BRIEF 4 Jeff Kerby Global warming: Timing is everything 6 AnnE Gunn Fighting inertia to conserve caribou herds 8 Jody SnortlanD, Karin ClarK Balancing Expectations: The Wek’èezhìi example of herd management 11 Leonid Baskin, Tobias Kuemmerle, Volker C. Radeloff Protecting wild reindeer in Siberia 13 BRuce Forbes A lesson in global warming and gas exploitation 15 WIndmills V.S Sámi comMunities – Green colOnialism? 19–22 Lars-Anders Baer Windmill colonialism: A threat to Arctic Indigenous people 20 JOnas Lundmark Wind power – Europe’s shining star? 21 Niklas Labba Muohta with the threat of climate change 22 Philip Burgess Long distance learning 25 THE PICTuRE 28 What (herders) find harder to handle, and have little leverage to influence, is the progressive loss of traditional territories and resources they need to survive – grazing lands, campsites, sacred sites, fresh- water fish – to rapidly advancing gas development. “ Dr. Bruce Forbes, article page 15 ranGifers Photo: Jeff Kerby Photo: Jeff The Circle is published quarterly by Publisher: Editor in Chief: Clive Tesar, [email protected] CoVER: the WWF Global arctic Programme. WWF Global arctic Programme, Editor: Becky Rynor, [email protected] a young Nenets boy leads his Reproduction and quotation with appro- 30 Metcalfe Street reindeer team across the new priate credit are encouraged.
    [Show full text]
  • Disease of Aquatic Organisms 80:241
    DISEASES OF AQUATIC ORGANISMS Vol. 80: 241–258, 2008 Published August 7 Dis Aquat Org COMBINED AUTHOR AND TITLE INDEX (Volumes 71 to 80, 2006–2008) A (2006) Persistence of Piscirickettsia salmonis and detection of serum antibodies to the bacterium in white seabass Atrac- Aarflot L, see Olsen AB et al. (2006) 72:9–17 toscion nobilis following experimental exposure. 73:131–139 Abreu PC, see Eiras JC et al. (2007) 77:255–258 Arunrut N, see Kiatpathomchai W et al. (2007) 79:183–190 Acevedo C, see Silva-Rubio A et al. (2007) 79:27–35 Arzul I, see Carrasco N et al. (2007) 79:65–73 Adams A, see McGurk C et al. (2006) 73:159–169 Arzul I, see Corbeil S et al. (2006) 71:75–80 Adkison MA, see Arkush KD et al. (2006) 73:131–139 Arzul I, see Corbeil S et al. (2006) 71:81–85 Aeby GS, see Work TM et al. (2007) 78:255–264 Ashton KJ, see Kriger KM et al. (2006) 71:149–154 Aguirre WE, see Félix F et al. (2006) 75:259–264 Ashton KJ, see Kriger KM et al. (2006) 73:257–260 Aguirre-Macedo L, see Gullian-Klanian M et al. (2007) 79: Atkinson SD, see Bartholomew JL et al. (2007) 78:137–146 237–247 Aubard G, see Quillet E et al. (2007) 76:7–16 Aiken HM, see Hayward CJ et al. (2007) 79:57–63 Audemard C, Carnegie RB, Burreson EM (2008) Shellfish tis- Aishima N, see Maeno Y et al. (2006) 71:169–173 sues evaluated for Perkinsus spp.
    [Show full text]
  • Parasitic Fauna of Sardinella Aurita Valenciennes, 1847 from Algerian Coast
    Zoology and Ecology, 2020, Volume 30, Number 1 Print ISSN: 2165-8005 Online ISSN: 2165-8013 https://doi.org/10.35513/21658005.2020.2.3 PARASITIC FAUNA OF SARDINELLA AURITA VALENCIENNES, 1847 FROM ALGERIAN COAST Souhila Ramdania*, Jean-Paul Trillesb and Zouhir Ramdanea aLaboratoire de la zoologie appliquée et de l’écophysiologie animale, université Abderrahmane Mira-Bejaia, Algérie; bUniversité de Montpellier, 34000 Montpellier, France *Corresponding author. Email: [email protected] Article history Abstract. The parasitic fauna of Sardinella aurita Valenciennes, 1847 from the Gulf of Bejaia (east- Received: 10 May 2020; ern coast of Algeria) was studied. The parasites collected from 400 host fish specimens, comprised accepted 18 August 2020 10 taxa including 6 species of Digenea, 1 species of Copepoda, 1 species of Nematoda, 1 larva of Cestoda and an unidentified Microsporidian species. The Nematoda Hysterothylacium sp. and the Keywords: Copepoda Clavellisa emarginata (Krøyer, 1873) are newly reported for S. aurita. The Digenean Parasites; Clupeidae fish; parasites were numerous, diverse and constituted the most dominant group (P = 33.63%). The Gulf of Bejaia checklist of all known parasite species collected from S. aurita in the Mediterranean Sea includes 13 species, among which eight are Digeneans. INTRODUCTION disease in commercially valuable fish (Yokoyama et al. 2002; Kent et al. 2014; Phelps et al. 2015; Mansour Sardinella aurita Valenciennes, 1847, is a small widely et al. 2016). distributed pelagic fish. It frequently occurs along the The aim of this study was to identify the parasitic fauna Algerian coastline as well as in Tunisia, Egypt, Greece infecting S. aurita from the eastern coast of Algeria, and and Sicily (Dieuzeide and Roland 1957; Kartas and to establish a checklist of all known parasite species Quignard 1976).
    [Show full text]
  • Fisheries Special/Management Report 08
    llBRARY INSTITUTE FOR F1s·--~~r.s ~ESEARCH University Museums Annex • Ann Arbor, Michigan 48104 • ntoJUJol Ofr---- com mon DISEASES. PARASITES.AnD AnomALIES OF ffilCHIGAn FISHES ···········•·················································································••······ ..................................................................................................... Michigan Department Of Natural Resources Fisheries Division MICHIGAN DEPARTMENT OF NATURAL RESOURCES INTEROFFICE COMMUNICATION Lake St. Clair Great Lakes Stati.on 33135 South River Road rt!:;..,I, R.. t-1 . Mt. Clemens, Michigan 48045 . ~ve -~Av •, ~ ··-··~ ,. ' . TO: "1>ave Weaver,. Regional Fisheries Program Manager> Region. III Ron Spitler,. Fisheries Biologist~ District 14 .... Ray ·shepherd, Fis~eries Biologis.t11t District 11 ; -~ FROM: Bob Baas, Biologise In Cbarge11t Lake St. Clair Great Lakes. Stati.ou SUBJECT: Impact of the red worm parasite on. Great Lakes yellow perch I recently receive4 an interim report from the State of Ohio on red worm infestation of yellow perch in Lake Erie. The report is very long and tedious so 1·want·to summarize ·for you ·souie of the information which I think is important. The description of the red worm parasite in our 1-IDNR. disease manual is largely.outdated by this work. First,. the Nematodes or round worms. locally called "red worms",. were positively identified as Eustrongylides tubifex. The genus Eustrongylides normally completes its life cycle in the proventiculus of fish-eating birds. E. tubifex was fed to domestic mallards and the red worms successfu11y matured but did not reach patentcy (females with obvtous egg development). Later lab examination of various wild aquatic birds collected on Lake Erie.showed that the red­ breasted merganser is the primary host for the adult worms. Next,. large numbers of perch were (and are still) being examined for rate of parasitism and its pot~ntial effects.
    [Show full text]