Weed Name Bayer Code Family Genus Species Acacia ACASS Leguminosae Acacia Sp

Total Page:16

File Type:pdf, Size:1020Kb

Weed Name Bayer Code Family Genus Species Acacia ACASS Leguminosae Acacia Sp Weed Name Bayer Code Family Genus Species acacia ACASS Leguminosae Acacia sp. acacia, ACARI Leguminosae Acacia rigidula Benth. blackbrush acacia, catclaw ACAGR Leguminosae Acacia greggii A. Gray acacia, twisted ACATT Leguminosae Acacia tortuosa (L.) Willd. adonis, ADOAN Ranunculaceae Adonis annua L. emend. pheasanteye Huds. adonis, spring ADOVE Ranunculaceae Adonis vernalis L. ageratum, AGECO Compositae Ageratum conyzoides L. tropic agrimony, AGIST Rosaceae Agrimonia striata Michx. roadside air potato DIUBU Dioscoreaceae Dioscorea bulbifera L. alder ALNSS Betulaceae Alnus sp. alder, ALUGL Betulaceae Alnus glutinosa (L.) European Gaertn. alder, red ALURB Betulaceae Alnus rubra Bong. alder, speckled ALURG Betulaceae Alnus rugosa (Du Roi) Spreng. alexandergrass BRAPL Gramineae Brachiaria plantaginea (Link) A.S.Hitchc. alexandergrass, BRASU Gramineae Brachiaria subquadripara smallflowered (Trin.) A.S.Hitchc. alfalfa MEDSA Leguminosae Medicago sativa L. (volunteer) alfombrilla DRYAR Caryophyllaceae Drymaria arenarioides H.B.K. alkaliweed CSVTR Convolvulaceae Cressa truxillensis H.B.K. alligatorweed ALRPH Amaranthaceae Alternanthera philoxeroides (Mart.) Griseb. alyssum AYSSS Cruciferae Alyssum sp. alyssum, dwarf AYSDE Cruciferae Alyssum desertorum Stapf alyssum, field AYSMI Cruciferae Alyssum minus (L.) Rothm. alyssum, hoary BEFIN Cruciferae Berteroa incana (L.) DC. alyssum, sweet LOUMA Cruciferae Lobularia maritima (L.) Desv. alyssum, AYSAL Cruciferae Alyssum alyssoides (L.) L. yellow amaranth AMASS Amaranthaceae Amaranthus sp. amaranth, AMAFA Amaranthaceae Amaranthus palmeri S.Wats. Palmer amaranth, AMATO Amaranthaceae Amaranthus bigelovii Uline & Torrey Bray amaranth, AMAAU Amaranthaceae Amaranthus australis (Gray) giant J.D.Sauer amaranth, livid AMALI Amaranthaceae Amaranthus lividus L. amaranth, AMAPO Amaranthaceae Amaranthus powellii S.Wats. Powell amaranth, AMAAR Amaranthaceae Amaranthus arenicola sandhills I.M.Johnst. amaranth, AMAVI Amaranthaceae Amaranthus viridus L. slender amaranth, AMADU Amaranthaceae Amaranthus dubius Mart. ex spleen Thell amaranth, AMASP Amaranthaceae Amaranthus spinosus L. thorny ammannia, AMMTE Lythraceae Ammannia latifolia L. pink ammannia, AMMCO Lythraceae Ammannia coccinea Rottb. purple ammi, greater AMIMA Umbelliferae Ammi majus L. ammi, AMIVI Umbelliferae Ammi visnaga (L.) Lam. toothpick angelica, ANKAT Umbelliferae Angelica atropurpurea L. purplestem anoda, spurred ANVCR Malvaceae Anoda cristata (L.) Schlecht. apple of Peru NICPH Solanaceae Nicandra physalodes (L.) Gaertn. aramina-fiber- URNLO Malvaceae Urena lobata L. plant arrow-arum PETVI Araceae Peltandra virginica (L.) Schott & Endl. arrowgrass, TRLPA Juncaginaceae Triglochin palustris L. marsh arrowgrass, TRLMA Juncaginaceae Triglochin maritima L. seaside arrowhead SAGSA Alismataceae Sagittaria sagittifolia L. arrowhead, SAGMO Alismataceae Sagittaria montevidensis California Cham. & Schlecht. arrowhead, SAGLO Alismataceae Sagittaria longiloba Gregg Engelm. ex Torr. arrowhead, SAGLT Alismataceae Sagittaria latifolia Willd. common arrowhead, SAGPL Alismataceae Sagittaria graminea var. delta platyphylla Engelm. arrowhead, SAGSU Alismataceae Sagittaria subulata (L.) dwarf Buchenau arrowhead, SAGFA Alismataceae Sagittaria lancifolia L. lanceleaf arrowhead, SAGGR Alismataceae Sagittaria graminea Michx. slender arrowhead, SAGCU Alismataceae Sagittaria cuneata Sheldon wedgeleaf arthraxon, ARAHI Gramineae Arthraxon hispidus (Thunb.) jointhead Makino artichoke, HELTU Compositae Helianthus tuberosus L. Jerusalem artilleryweed PILMI Urticaceae Pilea muscosa Lindl. ash FRXSS Oleaceae Fraxinus sp. ash, green FRXPE Oleaceae Fraxinus pennsylvanica Marsh. ash, white FRXAM Oleaceae Fraxinus americana L. aspen POPTM Salicaceae Populus tremuloides Michx. aster ASTSS Compositae Aster sp. aster, New ASTNA Compositae Aster novae-angliae L. England aster, bushy ASTDU Compositae Aster dumosus L. aster, calico ASTLF Compositae Aster lateriflorus (L.) Britt. aster, heath ASTER Compositae Aster ericoides L. aster, ASTLI Compositae Aster linariifolius L. savoryleaf aster, spiny ASTSN Compositae Aster spinosus Benth. aster, white ASTPI Compositae Aster pilosus Willd. heath top Bayer Weed Name Code Family Genus Species baby's breath GYPEL Caryophyllaceae Gypsophila elegans L. baccharis, BACSR Compositae Baccharis sarothroides broom Gray baccharis, BACHA Compositae Baccharis halimifolia L. eastern baccharis, BACPC Compositae Baccharis pilularis var. kidneywort consanguinea (DC.) Ktze. baccharis, BACGL Compositae Baccharis glutinosa (R. & seepwillow P.) Pers. baccharis, BACSA Compositae Baccharis salicina T. & G. willow bahiagrass PASNO Gramineae Paspalum notatum Fluegge bahiagrass, PASNS Gramineae Paspalum notatum var. Pensacola saurae Parodi "Pensacola" balloonvine CRIHA Sapindaceae Cardiospermum halicacabum L. balm, lemon MLSOF Labiatae Melissa officinalis L. balm-of-Gilead POPBS Salicaceae Populus balsamifera L. balsam, garden IPABA Balsaminaceae Impatiens balsamina L. balsamapple MOMCH Cucurbitaceae Momordica charantia L. bamboovine SMILA Liliaceae Smilax laurifolia L. bamboovine, SMIAU Liliaceae Smilax auriculata Walt. wild baneberry, red AATSR Ranunculaceae Actaea rubra (Ait.) Willd. barberry, BEBVU Berberidaceae Berberis vulgaris L. European barberry, BEBTH Berberidaceae Berberis thunbergii DC. Japanese barley HORVX Gramineae Hordeum vulgare L. barley HORVX Gramineae Hordeum vulgare L. (volunteer) barley, Arizona HORAR Gramineae Hordeum arizonicum Covas barley, HORMG Gramineae Hordeum hystrix Roth Mediterranean barley, Stebbins HORST Gramineae Hordeum stebbinsii Covas barley, foxtail HORJU Gramineae Hordeum jubatum L. barley, hare HORLE Gramineae Hordeum leporinum Link barley, little HORPU Gramineae Hordeum pusillum Nutt. barley, meadow HORBR Gramineae Hordeum brachyantherum Nevski barley, two- HORDI Gramineae Hordeum distichon L. rowed barley, wall HORMC Gramineae Hordeum glaucum Steud. barnyardgrass ECHCG Gramineae Echinochloa crus-galli (L.) Beauv. bartsia, red ODOVU Scrophulariaceae Odontites vulgaris Moench basil, wild STIVU Labiatae Clinopodium vulgare L. bassia, fivehook BAFHY Chenopodiaceae Bassia hyssopifolia (Pallas) Ktze. basswood TILSS Tiliaceae Tilia sp. bayberry, MYRPE Myricaceae Myrica pensylvanica northern Loisel. beachgrass, AMOAR Gramineae Ammophila arenaria (L.) European Link beakrush, RHCCN Cyperaceae Rhynchospora corniculata horned (Lam.) Gray beakrush, RHCGL Cyperaceae Rhynchospora globularis pinehill (Chapm.) Small bean, phasey PSHLY Fabaceae Phaseolus lathyroides L. bean, precatory ABRPR Leguminosae Abrus precatorius L. beancaper, ZYGFA Zygophyllaceae Zygophyllum fabago L. Syrian beardgrass ANOSS Gramineae Bothriochloa sp. beardgrass, ANOBA Gramineae Bothriochloa barbinodis cane (Lag.) Herter beardgrass, ANOPE Gramineae Bothriochloa pertusa (L.) pitted A.Camus beardgrass, ANOSA Gramineae Bothriochloa saccharoides silver (Sw.) Rydb. bearmat CHMFO Rosaceae Chamaebatia foliolosa Benth. bedstraw GALSS Rubiaceae Galium sp. bedstraw, GALAP Rubiaceae Galium aparine L. catchweed bedstraw, GALBO Rubiaceae Galium boreale L. northern bedstraw, rough GALAS Rubiaceae Galium asprellum Michx. bedstraw, GALMO Rubiaceae Galium mollugo L. smooth bedstraw, GALTC Rubiaceae Galium tricornutum threehorn Dandy bedstraw, GALVE Rubiaceae Galium verum L. yellow beebalm, lemon MOACI Labiatae Monarda citriodora Cerv. ex Lag. beebalm, MOAPU Labiatae Monarda punctata L. spotted beech FAUSS Fagaceae Fagus sp. beech, FAUGR Fagaceae Fagus grandifolia American EHRH. beefwood CSUCU Casuarinaceae Casuarina cunninghamiana Miq. beeplant, Rocky CLESE Capparidaceae Cleome serrulata Pursh Mountain beggarticks BIDSS Compositae Bidens sp. beggarticks, BIDBG Compositae Bidens bigelovii Gray Bigelow beggarticks, BIDAR Compositae Bidens aristosa bearded (Michx.) Britt. beggarticks, bur BIDTR Compositae Bidens tripartita L. beggarticks, BIDCN Compositae Bidens connata Muhl. connate beggarticks, BIDPO Compositae Bidens polylepis Blake coreopsis beggarticks, BIDFR Compositae Bidens frondosa L. devils beggarticks, BIDPI Compositae Bidens pilosa L. hairy beggarticks, BIDMI Compositae Bidens mitis (Michx.) marsh Sherff beggarticks, BIDCE Compositae Bidens cernua L. nodding beggarticks, tall BIDVU Compositae Bidens vulgata Greene beggarweed DEDSS Leguminosae Desmodium sp. beggarweed, DEDTO Leguminosae Desmodium tortuosum (Sw.) Florida DC. beggarweed, DEDCA Leguminosae Desmodium canum creeping (J.F.Gmel.) Schinz & Thellung beggarweed, DEDTR Leguminosae Desmodium triflorum (L.) threeflower DC. bellflower, CMPAM Campanulaceae Campanula americana L. American bellflower, WAHMA Campanulaceae Wahlenbergia marginata asiatic (Thunb.) DC. bellflower, CMPGL Campanulaceae Campanula glomerata L. clustered bellflower, CNPRA Campanulaceae Campanula rapunculoides creeping L. bellwort, little UVLSE Liliaceae Uvularia sessilifolia L. bentgrass AGSSS Gramineae Agrostis sp. bentgrass, AGSPE Gramineae Agrostis perennans autumn (Walt.) Tuckerm. bentgrass, AGSTE Gramineae Agrostis tenuis Sibth. colonial bentgrass, AGSST Gramineae Agrostis stolonifera L. creeping bentgrass, MOICO Gramineae Molinia caerulea (L.) flying Moench bentgrass, AGSPL Gramineae Agrostis palustris Huds. marsh bentgrass, AGSCA Gramineae Agrostis canina L. velvet bentgrass, AGSHI Gramineae Agrostis hyemalis (Walt.) winter B.S.P. bergamot, wild MOAFI Labiatae Monarda fistulosa L. bermudagrass CYNDA Gramineae Cynodon dactylon (L.) Pers. bermudagrass, CYNTR Gramineae Cynodon transvaalensis African Burtt-Davy betony, Florida STAFL Labiatae
Recommended publications
  • The Relation Between Road Crack Vegetation and Plant Biodiversity in Urban Landscape
    Int. J. of GEOMATE, June, 2014, Vol. 6, No. 2 (Sl. No. 12), pp. 885-891 Geotech., Const. Mat. & Env., ISSN:2186-2982(P), 2186-2990(O), Japan THE RELATION BETWEEN ROAD CRACK VEGETATION AND PLANT BIODIVERSITY IN URBAN LANDSCAPE Taizo Uchida1, JunHuan Xue1,2, Daisuke Hayasaka3, Teruo Arase4, William T. Haller5 and Lyn A. Gettys5 1Faculty of Engineering, Kyushu Sangyo University, Japan; 2Suzhou Polytechnic Institute of Agriculture, China; 3Faculty of Agriculture, Kinki University, Japan; 4Faculty of Agriculture, Shinshu University, Japan; 5Center for Aquatic and Invasive Plants, University of Florida, USA ABSTRACT: The objective of this study is to collect basic information on vegetation in road crack, especially in curbside crack of road, for evaluating plant biodiversity in urban landscape. A curbside crack in this study was defined as a linear space (under 20 mm in width) between the asphalt pavement and curbstone. The species composition of plants invading curbside cracks was surveyed in 38 plots along the serial National Route, over a total length of 36.5 km, in Fukuoka City in southern Japan. In total, 113 species including native plants (83 species, 73.5%), perennial herbs (57 species, 50.4%) and woody plants (13 species, 11.5%) were recorded in curbside cracks. Buried seeds were also obtained from soil in curbside cracks, which means the cracks would possess a potential as seed bank. Incidentally, no significant differences were found in the vegetation characteristics of curbside cracks among land-use types (Kolmogorov-Smirnov Test, P > 0.05). From these results, curbside cracks would be likely to play an important role in offering habitat for plants in urban area.
    [Show full text]
  • Medicinal and Aromatic Plants of Azerbaijan – Naiba Mehtiyeva and Sevil Zeynalova
    ETHNOPHARMACOLOGY – Medicinal and Aromatic Plants of Azerbaijan – Naiba Mehtiyeva and Sevil Zeynalova MEDICINAL AND AROMATIC PLANTS OF AZERBAIJAN Naiba Mehtiyeva and Sevil Zeynalova Institute of Botany, Azerbaijan National Academy of Sciences, Badamdar sh. 40, AZ1073, Baku, Azerbaijan Keywords: Azerbaijan, medicinal plants, aromatic plants, treatments, history, biological active substances. Contents 1. Introduction 2. Historical perspective of the traditional medicine 3. Medicinal and aromatic plants of Azerbaijan 4. Preparation and applying of decoctions and infusions from medicinal plants 5. Conclusion Acknowledgement Bibliography Biographical Sketches Summary Data on the biological active substances and therapeutical properties of more than 131 medicinal and aromatic (spicy-aromatic) plants widely distributed and frequently used in Azerbaijan are given in this chapter. The majority of the described species contain flavonoids (115 sp.), vitamin C (84 sp.), fatty oils (78 sp.), tannins (77 sp.), alkaloids (74 sp.) and essential oils (73 sp.). A prevalence of these biological active substances defines the broad spectrum of therapeutic actions of the described plants. So, significant number of species possess antibacterial (69 sp.), diuretic (60 sp.), wound healing (51 sp.), styptic (46 sp.) and expectorant (45 sp.) peculiarities. The majority of the species are used in curing of gastrointestinal (89 sp.), bronchopulmonary (61 sp.), dermatovenerologic (61 sp.), nephritic (55 sp.) and infectious (52 sp.) diseases, also for treatment of festering
    [Show full text]
  • FLORA from FĂRĂGĂU AREA (MUREŞ COUNTY) AS POTENTIAL SOURCE of MEDICINAL PLANTS Silvia OROIAN1*, Mihaela SĂMĂRGHIŢAN2
    ISSN: 2601 – 6141, ISSN-L: 2601 – 6141 Acta Biologica Marisiensis 2018, 1(1): 60-70 ORIGINAL PAPER FLORA FROM FĂRĂGĂU AREA (MUREŞ COUNTY) AS POTENTIAL SOURCE OF MEDICINAL PLANTS Silvia OROIAN1*, Mihaela SĂMĂRGHIŢAN2 1Department of Pharmaceutical Botany, University of Medicine and Pharmacy of Tîrgu Mureş, Romania 2Mureş County Museum, Department of Natural Sciences, Tîrgu Mureş, Romania *Correspondence: Silvia OROIAN [email protected] Received: 2 July 2018; Accepted: 9 July 2018; Published: 15 July 2018 Abstract The aim of this study was to identify a potential source of medicinal plant from Transylvanian Plain. Also, the paper provides information about the hayfields floral richness, a great scientific value for Romania and Europe. The study of the flora was carried out in several stages: 2005-2008, 2013, 2017-2018. In the studied area, 397 taxa were identified, distributed in 82 families with therapeutic potential, represented by 164 medical taxa, 37 of them being in the European Pharmacopoeia 8.5. The study reveals that most plants contain: volatile oils (13.41%), tannins (12.19%), flavonoids (9.75%), mucilages (8.53%) etc. This plants can be used in the treatment of various human disorders: disorders of the digestive system, respiratory system, skin disorders, muscular and skeletal systems, genitourinary system, in gynaecological disorders, cardiovascular, and central nervous sistem disorders. In the study plants protected by law at European and national level were identified: Echium maculatum, Cephalaria radiata, Crambe tataria, Narcissus poeticus ssp. radiiflorus, Salvia nutans, Iris aphylla, Orchis morio, Orchis tridentata, Adonis vernalis, Dictamnus albus, Hammarbya paludosa etc. Keywords: Fărăgău, medicinal plants, human disease, Mureş County 1.
    [Show full text]
  • Biology and Management of Horseweed and Hairy Fleabane in California
    University of California Division of Agriculture and Natural Resources http://anrcatalog.ucdavis.edu Publication 8314 / September 2008 Biology and Management of Horseweed and Hairy Fleabane in California ANIL SHRESTHA, Department of Plant Science, California State University, Fresno; KURT HEMBREE, University of California Cooperative Extension Farm Advisor, Fresno County; and STEVEN WRIGHT, University of California Cooperative Extension Farm Advisor, Tulare and Kings Counties In recent years, increasing populations of horseweed, or mare’s tail, (Conyza canadensis) and hairy, or flax-leaved, fleabane (Conyza bonariensis) have been observed in vineyards, orchards, canal banks, and roadsides in California, especially in the Central Valley. Numerous growers, pest control consultants, and managers have complained that the recommended rates of some postemergent herbicides, such as glyphosate, are no longer effective on these weeds. Since glyphosate-resistant biotypes of these species have now been confirmed (Shrestha et al., 2007), alternative integrated techniques need to be employed to effectively manage resistant and nonresistant biotype populations and to prevent the further development of herbicide resistance. A basic understanding of the biology of these weeds is essential to develop an integrated management approach. Biology of Horseweed and Hairy Fleabane Horseweed and hairy fleabane are summer annuals belonging to the Asteraceae (sunflower) family. The temperature and light requirements for germination, soil type preference, and depth of soil emergence of these two species are fairly similar. The optimal temperature for germination of both species ranges from 65ºF to 75ºF, and they can germinate under moderate (0.4 MPa) water stress. However, hairy fleabane can germinate at lower temperatures than horseweed (Karlsson and Milberg 2007).
    [Show full text]
  • STREAKED ARROWGRASS Triglochin Striatum
    TREAKED RROWGRASS H10 © photos G. Sainty & DPI Hamilton S A SALTdeck Series Triglochin striatum HERB 2cm 2mm Sustainable STREAKED ARROWGRASS Grazing on SALTdeck Series Triglochin striatum Saline Land © AWI & CRC Salinity 2006 Family: Juncaginaceae. H10 Description: Erect perennial often less than 30 cm tall, but occasionally to 50 cm. Leaves in tufts on an extensive rhizome. Flowerhead an erect spike to 15 cm long. Flowers green. Fruit round to egg-shaped, 1.5–3 mm long, on a short stalk, spirally arranged on a spike (see photo). Flowers spring to autumn. Key features: Absence of tubers (other species of Triglochin usually with tubers), presence of a sheath and a membranous ligule, and narrow leaves that are cylindrical or flat and strap-like. Value: Palatable to sheep, moderate feed energy value, but recovers slowly from grazing. Remains green during summer where it has access to groundwater. May form large patches but usually part of the salt tolerant mix of plants in saline land. Rhizomatous habit and dense cover reduces the potential for erosion. Salinity and waterlogging tolerance: High tolerance to salt and waterlogging. Notes: Native to all States, North and South America and southern Africa. Useful indicator of salinity. Grows widely along the coast and in Victoria is widespread inland. Thrives in coastal saltmarsh and common in the low marsh inundated zone. Flowers in summer, and produces much seed from which it is easy to propagate. A good pioneer plant. References: Flora of South Australia, Jessop and Toelken (eds), Part 4, 4th edition, 1986. Flora of Victoria, Walsh and Entwisle H (eds), Vol.
    [Show full text]
  • New Records of Agromyzidae (Diptera) from Western Turkey
    INSECTA MUNDI, Vol. 16, No. 1-3, March-September, 2002 49 New records of Agromyzidae (Diptera) from Western Turkey Hasan Sungur Civelek Mugla University, Ortaca Vocational School 48600 Ortaca, Mugla, Turkey [email protected] Abstract. Specimens were collected once a week from Mugla province, western Turkey, in 2000 and 2001 from cultured and non-cultured plants. During this study Ophiomyia pulicaria (Meigen, 1830); Aulagromyza buhri (de Meijere, 1938); Chromatomyia scolopendri (Robineau-Desvoidy, 1851); Liriomyza flaveola (Fallen 1823); Liriomyza sativae Blanchard, 1938; Phytomyza angelicae Kaltenbach, 1872; Phytomyza conyzae Hering, 1920; Phytomyza rufipes Meigen, 1830; Phytomyza thysselinivora Hering, 1924 are newly recorded for the Turkish leafminer fauna. Morphological descriptions, hosts and their general distributions are given. Key Words: Agromyzidae, leafminer, new records, Turkey. Introduction four subareas for the convenience of the collection of specimens. The specimens were collected from With more than 2,500 described species belong­ both cultured and non-cultured plants once a week. ing to 26 genera in the world, Agromyzidae (leaf­ The adults of leafminers were obtained by sweep­ mining flies) is one of the largest fly families. From ing or by rearing specimens from infested leaves in this family, 776 species were identified in Europe. the laboratory. Due to the fact that the male geni­ Adults can be minute, with wing length of little talia are important characters for identification of more than 1 mm. The maximum size known is 6.5 leafminers, they were removed from the fly, chem­ mm. The majority of species are in the range of 2 to icallytreated, and slide preparations were made for 3 mm.
    [Show full text]
  • Eutaxia Microphylla Common Eutaxia Dillwynia Hispida Red Parrot-Pea Peas FABACEAE: FABOIDEAE Peas FABACEAE: FABOIDEAE LEGUMINOSAE LEGUMINOSAE
    TABLE OF CONTENTS Foreword iv printng informaton Acknowledgements vi Introducton 2 Using the Book 3 Scope 4 Focus Area Reserve Locatons 5 Ground Dwellers 7 Creepers And Twiners 129 Small Shrubs 143 Medium Shrubs 179 Large Shrubs 218 Trees 238 Water Lovers 257 Grasses 273 Appendix A 290 Appendix B 293 Resources 300 Glossary 301 Index 303 ii iii Ground Dwellers Ground dwellers usually have a non-woody stem with most of the plant at ground level They sometmes have a die back period over summer or are annuals They are usually less than 1 metre high, provide habitat and play an important role in preventng soil erosion Goodenia blackiana, Kennedia prostrata, Glossodia major, Scaevola albida, Arthropodium strictum, Gonocarpus tetragynus Caesia calliantha 4 5 Bulbine bulbosa Bulbine-lily Tricoryne elator Yellow Rush-lily Asphodel Family ASPHODELACEAE Day Lily Family HEMEROCALLIDACEAE LILIACEAE LILIACEAE bul-BINE (bul-BEE-nee) bul-bohs-uh Meaning: Bulbine – bulb, bulbosa – bulbous triek-uhr-IEN-ee ee-LAHT-ee-or Meaning: Tricoryne – three, club shaped, elator – taller General descripton A small perennial lily with smooth bright-green leaves and General descripton Ofen inconspicuous, this erect branched plant has fne, yellow fowers wiry stems and bears small clusters of yellow star-like fowers at the tps Some Specifc features Plants regenerate annually from a tuber to form a tall longish leaves present at the base of the plant and up the stem stem from a base of feshy bright-green Specifc features Six petaled fowers are usually more than 1 cm across,
    [Show full text]
  • Native Plant List, Pdf Format
    Appendix A: City of Bellingham Native Plant List December 2020 The City of Bellingham Native Plant List (Figure 1) includes plant species that are native to Bellingham watersheds (Figure 2). The native plant list applies to all habitat types, including riparian, upland, and wetland areas. The list was developed using specimen records from the Consortium of Pacific Northwest Herbaria and Bellingham plant checklists curated by Don Knoke, a volunteer at the University of Washington Herbarium. To improve plant establishment and protect the genetic resources of our local plant populations, the City recommends using native plants that were grown from seeds or cuttings collected from the Puget Trough Ecoregion (Figure 3). Obtaining native plants grown from material collected from the Puget Trough Ecoregion will help ensure the plants are adapted to the unique environmental conditions of Bellingham watersheds and are genetically similar to our local plant populations. A more thorough discussion of the rational and selection process is provided in the City of Bellingham Public Works Department Native Plant Materials Selection Guidelines, December 2020. Figure 1. City of Bellingham Native Plant List Ferns Common Name Scientific Name Family Bracken fern Pteridium aquilinum var. pubescens Dennstaedtiaceae Bristle-like quillwort Isoetes tenella Isoetaceae Common horsetail Equisetum arvense Equisetaceae Deer fern Struthiopteris spicant (Blechnum spicant) Blechnaceae Dream fern Aspidotis densa Pteridaceae Giant horsetail Equisetum telmateia ssp. braunii
    [Show full text]
  • Doctorat De L'université De Toulouse
    En vue de l’obt ention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par : Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier) Discipline ou spécialité : Ecologie, Biodiversité et Evolution Présentée et soutenue par : Joeri STRIJK le : 12 / 02 / 2010 Titre : Species diversification and differentiation in the Madagascar and Indian Ocean Islands Biodiversity Hotspot JURY Jérôme CHAVE, Directeur de Recherches CNRS Toulouse Emmanuel DOUZERY, Professeur à l'Université de Montpellier II Porter LOWRY II, Curator Missouri Botanical Garden Frédéric MEDAIL, Professeur à l'Université Paul Cezanne Aix-Marseille Christophe THEBAUD, Professeur à l'Université Paul Sabatier Ecole doctorale : Sciences Ecologiques, Vétérinaires, Agronomiques et Bioingénieries (SEVAB) Unité de recherche : UMR 5174 CNRS-UPS Evolution & Diversité Biologique Directeur(s) de Thèse : Christophe THEBAUD Rapporteurs : Emmanuel DOUZERY, Professeur à l'Université de Montpellier II Porter LOWRY II, Curator Missouri Botanical Garden Contents. CONTENTS CHAPTER 1. General Introduction 2 PART I: ASTERACEAE CHAPTER 2. Multiple evolutionary radiations and phenotypic convergence in polyphyletic Indian Ocean Daisy Trees (Psiadia, Asteraceae) (in preparation for BMC Evolutionary Biology) 14 CHAPTER 3. Taxonomic rearrangements within Indian Ocean Daisy Trees (Psiadia, Asteraceae) and the resurrection of Frappieria (in preparation for Taxon) 34 PART II: MYRSINACEAE CHAPTER 4. Phylogenetics of the Mascarene endemic genus Badula relative to its Madagascan ally Oncostemum (Myrsinaceae) (accepted in Botanical Journal of the Linnean Society) 43 CHAPTER 5. Timing and tempo of evolutionary diversification in Myrsinaceae: Badula and Oncostemum in the Indian Ocean Island Biodiversity Hotspot (in preparation for BMC Evolutionary Biology) 54 PART III: MONIMIACEAE CHAPTER 6. Biogeography of the Monimiaceae (Laurales): a role for East Gondwana and long distance dispersal, but not West Gondwana (accepted in Journal of Biogeography) 72 CHAPTER 7 General Discussion 86 REFERENCES 91 i Contents.
    [Show full text]
  • Essential Oil Compositions of Three Invasive Conyza Species Collected in Vietnam and Their Larvicidal Activities Against Aedes A
    molecules Article Essential Oil Compositions of Three Invasive Conyza Species Collected in Vietnam and Their Larvicidal Activities against Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus Tran Minh Hoi 1, Le Thi Huong 2 , Hoang Van Chinh 3, Dang Viet Hau 4, Prabodh Satyal 5, Thieu Anh Tai 6, Do Ngoc Dai 7,8 , Nguyen Huy Hung 6,9,* , Vu Thi Hien 10 and William N Setzer 5,11,* 1 Department of Plant Resources, Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam; [email protected] 2 School of Natural Science Education, Vinh University, 182 Le Duan, Vinh City 43000, Vietnam; [email protected] 3 Faculty of Natural Sciences, Hong Duc University, 365 Quang Trung, Thanh Hoa 440000, Vietnam; [email protected] 4 Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam; [email protected] 5 Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA; [email protected] 6 Department of Pharmacy, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam; [email protected] 7 Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi, 100000 Vietnam; [email protected] 8 Faculty of Agriculture, Forestry and Fishery, Nghe An College of Economics, 51-Ly Tu Trong, Vinh City 460000, Vietnam 9 Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
    [Show full text]
  • The Vascular Flora of Rarău Massif (Eastern Carpathians, Romania). Note Ii
    Memoirs of the Scientific Sections of the Romanian Academy Tome XXXVI, 2013 BIOLOGY THE VASCULAR FLORA OF RARĂU MASSIF (EASTERN CARPATHIANS, ROMANIA). NOTE II ADRIAN OPREA1 and CULIŢĂ SÎRBU2 1 “Anastasie Fătu” Botanical Garden, Str. Dumbrava Roşie, nr. 7-9, 700522–Iaşi, Romania 2 University of Agricultural Sciences and Veterinary Medicine Iaşi, Faculty of Agriculture, Str. Mihail Sadoveanu, nr. 3, 700490–Iaşi, Romania Corresponding author: [email protected] This second part of the paper about the vascular flora of Rarău Massif listed approximately half of the whole number of the species registered by the authors in their field trips or already included in literature on the same area. Other taxa have been added to the initial list of plants, so that, the total number of taxa registered by the authors in Rarău Massif amount to 1443 taxa (1133 species and 310 subspecies, varieties and forms). There was signaled out the alien taxa on the surveyed area (18 species) and those dubious presence of some taxa for the same area (17 species). Also, there were listed all the vascular plants, protected by various laws or regulations, both internal or international, existing in Rarău (i.e. 189 taxa). Finally, there has been assessed the degree of wild flora conservation, using several indicators introduced in literature by Nowak, as they are: conservation indicator (C), threat conservation indicator) (CK), sozophytisation indicator (W), and conservation effectiveness indicator (E). Key words: Vascular flora, Rarău Massif, Romania, conservation indicators. 1. INTRODUCTION A comprehensive analysis of Rarău flora, in terms of plant diversity, taxonomic structure, biological, ecological and phytogeographic characteristics, as well as in terms of the richness in endemics, relict or threatened plant species was published in our previous note (see Oprea & Sîrbu 2012).
    [Show full text]
  • MUL Tl-ELEMENT COMPOSITION of TRIGLOCHIN MARITIMA L
    MULTl-ELEMENT COMPOSITION OF TRIGLOCHIN MARITIMA L. FROM CONTRASTING HABITATS INCLUDING HOT SPRINGS AND METAL ENRICHED AREAS A Dissertation Submitted to the Graduate Faculty of the North Dakota State University of Graduate and Interdisciplinary Studies By Sharmila Sunwar In Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Program: Environmental and Conservation Sciences March 2011 Fargo, North Dakota North Dakota State University Graduate School Title MULTl-ELEMENT COMPOSITION OF TRIGLOCHIN MARITIMA L. FROM CONTRASTING HABITATS INCLUDING HOT SPRINGS AND METAL ENRICHED AREAS By SHARMILA SUNWAR The Supervisory Committee certifies that this disquisition complies with North Dakota State University's regulations and meets the accepted standards for the degree of DOCTOR OF PHILOSOPHY North Dakota State University Libraries Addendum To protect the privacy of individuals associated with the document, signatures have been removed from the digital version of this docmnent. ABSTRACT Sunwar, Sharmila, PhD, Environmental and Conservation Sciences Program, College of Graduate and Interdisciplinary Studies, North Dakota State University, March 2011. Multi-element Composition of Triglochin maritima L. from Contrasting Habitats Including Hot Springs and Metal Enriched Areas. Major Professor: Dr. Marinus L. Otte. The aim of this PhD research was to study multi-element composition in wetland plants from contrasting habitats, including hot springs, temporary wetlands, and metal-rich areas. Triglochin maritima L. (seaside arrowgrass) was chosen for the study because this species is common in alkaline/saline soils and is adapted to diverse habitats. Eleocharis rostellata, Juncus balticus, Salix exigua, S. boothii, and S. wolfii were also included in the study. Field studies and greenhouse experiments were conducted to study the multi-element composition in plants.
    [Show full text]