LECTURE 9 Evolution, Speciation, and Extinction I. Evolution and Speciation A. Some Basic Genetics B. Natural Selection C. Isola

Total Page:16

File Type:pdf, Size:1020Kb

LECTURE 9 Evolution, Speciation, and Extinction I. Evolution and Speciation A. Some Basic Genetics B. Natural Selection C. Isola LECTURE 9 Evolution, Speciation, and Extinction I. Evolution and Speciation A. Some Basic Genetics B. Natural Selection C. Isolation and Speciation II. Geography and Evolution III. Extinction LECTURE 9 I. Evolution and Speciation Evolution: Genetically controlled changes in physiology, anatomy, and behavior that occur to a species over time. Speciation: The development of two or more genetially differentiable species from a single common ancsetor. 1 LECTURE 9 I. Evolution and Speciation DNA LECTURE 9 I. Evolution and Speciation Alleles and polymorphism. 2 LECTURE 9 I. Evolution and Speciation Natural Selection: The process by which the genes for genetically controlled traits become more common in a population over time because individuals with those traits are reproductively more successful than other individuals. Charles Darwin Alfred Russel Wallace (1809-1882) (1823-1913) LECTURE 9 I. Evolution and Speciation Isolation and Speciation: 3 LECTURE 9 I. Evolution and Speciation Isolation and Speciation: LECTURE 9 I. Evolution and Speciation Isolation and Speciation: 4 LECTURE 9 I. Evolution and Speciation Isolation and Speciation: LECTURE 9 I. Evolution and Speciation Genetic Drift: Stochastic changes in the genetic composition of a population that occur over time as new genes arise via mutation and other genes are lost through chance processes. (ex. Bottleneck and Founder Effect) 5 LECTURE 9 II. Geography and Evolution Founder Effect: LECTURE 9 II. Geography and Evolution 6 LECTURE 9 II. Geography and Evolution Adaptive Radiation: The development of many species from a single founding species. LECTURE 9 II. Geography and Evolution Convergent Evolution: The development of similar morphological or physiological traits in unrelated species living in geographically separated regions that have similar environments. 7 LECTURE 9 II. Geography and Evolution Coevolution: Two unrelated species evolve traits that are tied to their interactions. LECTURE 9 II. Extinction Extinction: The loss of all individuals in the population of a given species, genus, family, or order. Ex. Local Extinction 8 LECTURE 9 II. Extinction Ex. Global Extinction LECTURE 9 II. Extinction Trophic Cascade 9 LECTURE 9 Mass Extinctions: II. Extinction Extinction of megafauna Extinction of marine mammals Extinction of dinosaurs Extinction of 50-90% plants and animals Extinction of 50% animals LECTURE 9 II. Extinction What factors contribute to extinction? • Complex behavioral, physiological, or morphological adaptations • Species that are large in size • Predators • Small population size • Confined to a small geographic area 10.
Recommended publications
  • Extinction Patterns, Δ18 O Trends, and Magnetostratigraphy from a Southern High-Latitude Cretaceous–Paleogene Section: Links with Deccan Volcanism
    Palaeogeography, Palaeoclimatology, Palaeoecology 350–352 (2012) 180–188 Contents lists available at SciVerse ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Extinction patterns, δ18 O trends, and magnetostratigraphy from a southern high-latitude Cretaceous–Paleogene section: Links with Deccan volcanism Thomas S. Tobin a,⁎, Peter D. Ward a, Eric J. Steig a, Eduardo B. Olivero b, Isaac A. Hilburn c, Ross N. Mitchell d, Matthew R. Diamond c, Timothy D. Raub e, Joseph L. Kirschvink c a University of Washington, Earth and Space Sciences, Box 351310, Seattle WA 98195, United States b CADIC-CONICET, Bernardo Houssay, V9410CAB, Ushuaia, Tierra del Fuego, Argentina c California Institute of Technology, Geological and Planetary Sciences, 1200 E. California Blvd. Pasadena CA 91125, United States d Yale University, Geology & Geophysics, 230 Whitney Ave. New Haven, CT 06511, United States e University of St. Andrews, Department of Earth Sciences, St. Andrews KY16 9AL, UK article info abstract Article history: Although abundant evidence now exists for a massive bolide impact coincident with the Cretaceous–Paleogene Received 19 April 2012 (K–Pg) mass extinction event (~65.5 Ma), the relative importance of this impact as an extinction mechanism is Received in revised form 27 May 2012 still the subject of debate. On Seymour Island, Antarctic Peninsula, the López de Bertodano Formation yields one Accepted 8 June 2012 of the most expanded K–Pg boundary sections known. Using a new chronology from magnetostratigraphy, and Available online 10 July 2012 isotopic data from carbonate-secreting macrofauna, we present a high-resolution, high-latitude paleotemperature record spanning this time interval.
    [Show full text]
  • Convergent Evolution
    Exploring the KU Natural History Museum Convergent Evolution Target Audience: Middle school and above Differentiated Instruction Summary Strategy Levels Content/Process/Product Grouping(s) Learning modalities Whole group • Level 1 – Visual (spatial) Small groups Process Cubing Level 2 – Kinesthetic (physical) Peer partners • Product • Level 3 – Verbal (linguistic) Homogeneous Heterogeneous * Varied grouping options can be used for this activity, depending on student needs and chaperone ability. Objectives: Explore examples of convergent evolution in vertebrates. Pre-assessment/Prior Knowledge: Prior to their visit, students should be familiar with the idea of convergent evolution, overall evolutionary relationships/classification of vertebrate groups and basic anatomy of those groups. Activity Description: Students explore the idea of convergent evolution through museum exhibits through different learning modalities. Materials Needed: • Student o Cubes (three levels, see attached) o Paper and pencils (alternatively you could use flipchart paper and markers, whiteboards and dry erase markers) o Optional (cell phones or other recording device for visual or kinesthetic levels) Note: Format to record/present findings determined by individual teacher. Provide clear instructions about expectations for documenting participation, particularly for verbal/spatial and body/kinesthetic levels (e.g. stage direction, audio/video recording). • Teacher o Content Outline o Cube labels o Cube template Content: Convergence Overview Convergent evolution refers to the similarities in biological traits that arise independently in organisms that are not closely related, e.g. wings in birds, bats and insects. Similarity among organisms and their structures that was not inherited from a common ancestor is considered to be homoplasy. This can be contrasted with homology, which refers to similarity of traits due to common ancestry.
    [Show full text]
  • The Genetic Causes of Convergent Evolution
    Nature Reviews Genetics | AOP, published online 9 October 2013; doi:10.1038/nrg3483 REVIEWS The genetic causes of convergent evolution David L. Stern Abstract | The evolution of phenotypic similarities between species, known as convergence, illustrates that populations can respond predictably to ecological challenges. Convergence often results from similar genetic changes, which can emerge in two ways: the evolution of similar or identical mutations in independent lineages, which is termed parallel evolution; and the evolution in independent lineages of alleles that are shared among populations, which I call collateral genetic evolution. Evidence for parallel and collateral evolution has been found in many taxa, and an emerging hypothesis is that they result from the fact that mutations in some genetic targets minimize pleiotropic effects while simultaneously maximizing adaptation. If this proves correct, then the molecular changes underlying adaptation might be more predictable than has been appreciated previously. (FIG. 1) Fitness Different species often evolve similar solutions to envi­ introgression . It is worth distinguishing between The potential evolutionary ronmental challenges. Insects, birds and bats evo­ these scenarios because each provides evidence for a dif­ success of a genotype, defined lved wings, and octopi, vertebrates and spiders ferent evolutionary path3. The first case, the independent as the reproductive success or evolved focusing eyes. Phenotypic convergence provides origin and spread of mutations, has been called parallel the proportion of genes that an individual leaves in the gene compelling evidence that ecological circumstances can genetic evolution. I suggest that the evolution of alleles 1,2 pool of the next generation in a select for similar evolutionary solutions .
    [Show full text]
  • SARS-Cov-2 Convergent Evolution As a Guide to Explore Adaptive Advantage
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.24.445534; this version posted May 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. SARS-CoV-2 convergent evolution as a guide to explore adaptive advantage Jiří Zahradník1, Jaroslav Nunvar2,3, and Gideon Schreiber1* 1 Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel 2 Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague 12844, Czech Republic 3 BIOCEV - Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University, Vestec 25250, Czech Republic * Corresponding author email: [email protected] Author Contributions: Author contributions: J.Z. and G.S. conceived the project; J.Z., J.N. and G.S. performed experiments; J.Z., J.N. and G.S. wrote the manuscript. Competing Interest Statement: Authors declare no competing interests. Keywords: SARS-CoV-2, Convergent Evolution, Mutations bioRxiv preprint doi: https://doi.org/10.1101/2021.05.24.445534; this version posted May 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Much can be learned from 1.2 million sequences of SARS-CoV-2 generated during the last 15 months. Out of the overwhelming number of mutations sampled so far, only few rose to prominence in the viral population. Many of these emerged recently and independently in multiple lineages. Such a textbook example of convergent evolution at the molecular level is not only curiosity but a guide to uncover the basis for adaptive advantage behind these events.
    [Show full text]
  • Estimating Rates of Local Species Extinction, Colonization, and Turnover in Animal Communities
    Ecological Applications, 8(4), 1998, pp. 1213±1225 q 1998 by the Ecological Society of America ESTIMATING RATES OF LOCAL SPECIES EXTINCTION, COLONIZATION, AND TURNOVER IN ANIMAL COMMUNITIES JAMES D. NICHOLS,1 THIERRY BOULINIER,2 JAMES E. HINES,1 KENNETH H. POLLOCK,3 AND JOHN R. SAUER1 1U.S. Geological Survey, Biological Resources Division, Patuxent Wildlife Research Center, Laurel, Maryland 20708 USA 2North Carolina Cooperative Fish and Wildlife Research Unit, North Carolina State University, Raleigh, North Carolina 27695 USA 3Institute of Statistics, North Carolina State University, Box 8203, Raleigh, North Carolina 27695-8203 USA Abstract. Species richness has been identi®ed as a useful state variable for conservation and management purposes. Changes in richness over time provide a basis for predicting and evaluating community responses to management, to natural disturbance, and to changes in factors such as community composition (e.g., the removal of a keystone species). Prob- abilistic capture±recapture models have been used recently to estimate species richness from species count and presence±absence data. These models do not require the common assumption that all species are detected in sampling efforts. We extend this approach to the development of estimators useful for studying the vital rates responsible for changes in animal communities over time: rates of local species extinction, turnover, and coloni- zation. Our approach to estimation is based on capture±recapture models for closed animal populations that permit heterogeneity in detection probabilities among the different species in the sampled community. We have developed a computer program, COMDYN, to compute many of these estimators and associated bootstrap variances.
    [Show full text]
  • Addressing the Mammoth in the Room: the Ethical and Political Implications of De- Extinction
    Addressing the Mammoth in the room: The ethical and political implications of de- extinction (Ashlock, 2013) Lowieke Vermeulen (S4374452) Political Science: Political Theory Radboud University, Nijmegen, Netherlands Supervisor: prof. dr. Marcel Wissenburg Date: August 12, 2019 Word count: 23590 1 Table of Contents Chapter 1: Introduction...............................................................................................................3 1.2 Thesis structure............................................................................................................................6 Chapter 2: De-extinction and species selection..........................................................8 2.1 Extinction........................................................................................................................................9 2.2 Approaches to de-extinction.................................................................................................10 2.2.1 Back-breeding.........................................................................................................................10 2.2.2 Cloning.......................................................................................................................................12 2.2.3 Genetic engineering..............................................................................................................12 2.2.4 Mixed approaches..................................................................................................................13 2.3
    [Show full text]
  • Convergent Adaptation and Ecological Speciation Result from Unique Genomic Mechanisms in Sympatric Extremophile Fishes
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.28.450104; this version posted June 28, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Convergent adaptation and ecological speciation result from unique genomic mechanisms in sympatric extremophile fishes Ryan Greenway1‡, Anthony P. Brown2,3, Henry Camarillo1,4, Cassandra Delich1, Kerry L. McGowan2, Joel Nelson2, Lenin Arias-Rodriguez5, Joanna L. Kelley2‡, and Michael Tobler1‡ 1 Division of Biology, Kansas State University, Manhattan, KS, USA 2 School of Biological Sciences, Washington State University, Pullman, WA, USA 3 Current address: California National Primate Research Center, University of California, Davis, Davis, CA, USA 4 Current address: Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA 5 División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico ‡ Corresponding authors: [email protected]; [email protected]; [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.28.450104; this version posted June 28, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Significance Statement Divergent lineages that coexist in sympatry and are exposed to the same sources of natural selection provide a unique opportunity to study convergent evolution across levels of organization because confounding factors associated with geographic replications are eliminated. Using three sympatric lineages of livebearing fishes inhabiting toxic and adjacent nontoxic habitats, we show that the convergent evolution of phenotypic adaptation and reproductive isolation can evolve in the absence of substantial convergence at the genomic level.
    [Show full text]
  • Convergent Evolution, Evolving Evolvability, and the Origins of Lethal Cancer
    Author Manuscript Published OnlineFirst on March 31, 2020; DOI: 10.1158/1541-7786.MCR-19-1158 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. TITLE Convergent evolution, evolving evolvability, and the origins of lethal cancer AUTHORS Kenneth J. Pienta1, Emma U. Hammarlund2, Robert Axelrod3, Sarah R. Amend1 and Joel S. Brown4 AFFILIATIONS 1The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287 USA 2Nordic Center for Earth Evolution, University of Southern Denmark, Odense, Denmark and Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden. 3Gerald R. Ford School of Public Policy, University of Michigan, Ann Arbor, MI 48109 USA 4Cancer Biology and Evolution Program and Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, 33612 USA RUNNING TITLE Evolving evolvability and the origins of lethal cancer KEYWORDS Cancer clade, cancer speciation, evolvability, convergent evolution, cancer ecology, polyploid giant cancer cell (PGCC), poly-aneuploid cancer cell (PACC) FUNDING This work was funded by Swedish Research Council grant 2015-04693, The Crafoord Foundation, and The Swedish Royal Physiograpic Society of Lund to EUH; European Union's Horizon 2020 research and innovation program (Marie Sklodowska-Curie grant agreement No 690817), NIH/National Cancer Institute (NCI) R01CA170595, and NIH/NCI U54CA143970-05 to JSB; the Patrick C. Walsh Prostate Cancer Research Fund and the Prostate Cancer Foundation to SRA; and NCI grants U54CA143803, CA163124, CA093900, and CA143055, and the Prostate Cancer Foundation to KJP. This work was also supported by the William and Carolyn Stutt Research Fund, Ronald Rose, MC Dean, Inc., William and Marjorie Springer, Mary and Dave Stevens, Louis Dorfman, and the Jones Family Foundation.
    [Show full text]
  • Probabilistic Models of Geographic Range Evolution Will Freyman 10 SYSTEMATIC BIOLOGY VOL
    Probabilistic Models of Geographic Range Evolution Will Freyman 10 SYSTEMATIC BIOLOGY VOL. 57 IB200, Spring 2016 Downloaded from http://sysbio.oxfordjournals.org/ at University of California School Law (Boalt Hall) on April 12, 2016 Image: Richard H Ree and Stephen A Smith. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Systematic Biology, 57(1):4–14, 2008. FIGURE 3. Copyedited by: TRJ MANUSCRIPT CATEGORY: Article 2013 LANDIS ET AL.—BAYESIAN BIOGEOGRAPHY FOR MANY AREAS 3 A) B) There are an infinite number of biogeographic 1234011001 010 011 histories that can explain the observed geographic 011 001 ranges. When calculating the probability of the observed Biogeographic histories on geographic ranges at the tips of the phylogenetic tree, 010 a phylogeny: 5 011 it is unreasonable to condition on a specific history 001 101 of biogeographic change. After all, the past history 101 of biogeographic change is not observable. Instead, 6 111 011 the usual approach is to marginalize over all possible 111 histories of biogeographic change that could give rise 7 to the observed geographic ranges. The standard way 111 Downloaded from 101 to do this is to assume that events of colonization or local extinction occur according to a continuous- 8 101 time Markov chain (Ree et al. 2005). Marginalizing over histories of biogeographic change is accomplished C) D) 011101 010 011 011001 010 011 using two procedures. First, exponentiation of the 010 instantaneous-rate matrix, Q, gives the probability http://sysbio.oxfordjournals.org/ 011 010 011 011 011 011 111 111 001 density of all possible biogeographic changes along a 011 010 branch 111 010 101 011 011 111 011 001 Qt 111 101 011 p(y z t,Q) e− , 111 101 → ; = yz 001 % & 101 111 111 011 where y is the ancestral geographic range, z is the 011 001 current geographic range, and t is the duration of the 001 011 branch on the tree.
    [Show full text]
  • Extreme Mammals
    One of the first giant mammals, Uintatherium A mammoth skull and endocast help demonstrate a comparison of sports such oddities as bony horns, dagger-like mammal brain sizes; behind them, an examination of unusual teeth. teeth, and a tiny brain. OVERVIEW HIGHLIGHTS • Amazing life-like models of In Extreme Mammals: The Biggest, extinct mammals such as Ambulocetus, the “walking Smallest, and Most Amazing Mammals whale” of All Time, the American Museum of • Fossils of Dimetrodon, Natural History explores the surprising Astrapotherium, Onychonycteris finneyi, and more and extraordinary world of mammals. • Taxidermy and skeletons of Featuring spectacular fossils, skele- exotic modern mammals tons, taxidermy, vivid reconstructions, • Touchable samples such as porcupine quills and skunk fur and live animals, the exhibition ex- • Interactives demonstrating amines the ancestry and evolution of a the amazing variety of mammal teeth, skin, and locomotion vast array of species, living and extinct. • Live marsupials—adorable It showcases creatures both tiny and sugar gliders huge who sport such weird features as • A dazzling diorama packed with detailed models and oversized claws, massive fangs, reproductions of mammals and plants from 50 million years ago bizarre snouts, and amazing horns, • A cast of the newly unveiled and it includes what might be the most “missing link,” Darwinius extreme mammals of all—ourselves. masillae, known as Ida Platypus Taxidermy A model Macrauchenia shows how scientists Visitors enter the gallery by walking under the massive Indricotherium, can tell what extinct mammals looked like by an ancient rhinoceros relative that was the largest mammal to walk the Earth. comparing their fossils to modern animals.
    [Show full text]
  • Convergence in Multispecies Interactions
    Review Convergence in Multispecies Interactions 1,2, 1,2 Leonora S. Bittleston, * Naomi E. Pierce, 1,3 4 Aaron M. Ellison, and Anne Pringle The concepts of convergent evolution and community convergence highlight Trends how selective pressures can shape unrelated organisms or communities in We present a framework for exploring similar ways. We propose a related concept, convergent interactions, to how selection shapes multispecies associations. describe the independent evolution of multispecies interactions with similar physiological or ecological functions. A focus on convergent interactions clari- We provide examples of functional fi es how natural selection repeatedly favors particular kinds of associations convergence in species interactions. among species. Characterizing convergent interactions in a comparative con- Convergent interactions can be used text is likely to facilitate prediction of the ecological roles of organisms (including to predict the ecology of unknown microbes) in multispecies interactions and selective pressures acting in poorly symbioses. understood or newly discovered multispecies systems. We illustrate the con- Convergent interactions can help elu- cept of convergent interactions with examples: vertebrates and their gut bac- cidate the ecological roles of microbes. teria; ectomycorrhizae; insect–fungal–bacterial interactions; pitcher-plant food webs; and ants and ant–plants. Convergence in Evolution and Ecology The word convergence typically describes convergent evolution, the independent evolution of similar traits in different lineages resulting from strong selective pressures: ‘[a]nimals, belonging to two most distinct lines of descent, may readily become adapted to similar conditions, and thus assume a close external resemblance’ [1]. Although convergent evolution is primarily a descrip- tor of morphological features of animals and plants, it can be used to describe microbes and physiological processes as well (e.g., convergent evolution of transcriptional regulation of gene circuits in bacteria and fungi; see [2]).
    [Show full text]
  • Convergent Evolution in the Genomics Era: New Insights and Directions Royalsocietypublishing.Org/Journal/Rstb Timothy B
    Convergent evolution in the genomics era: new insights and directions royalsocietypublishing.org/journal/rstb Timothy B. Sackton1 and Nathan Clark2 1Informatics Group, Harvard University, Cambridge, MA, USA 2Computational and Systems Biology, University of Pittsburgh, PA, USA Introduction TBS, 0000-0003-1673-9216 Cite this article: Sackton TB, Clark N. 2019 Convergent evolution—in which distinct lineages independently evolve similar traits—has fascinated evolutionary biologists for centuries [1], in large part Convergent evolution in the genomics era: new because convergent evolution is often thought to represent a visible manifes- insights and directions. Phil. Trans. R. Soc. B tation of the power of natural selection. Intuitively, what could explain 374: 20190102. convergent echolocation ability in bats and toothed whales except natural selec- http://dx.doi.org/10.1098/rstb.2019.0102 tion in response to foraging and hunting in environments with minimal visibility? Many other examples of phenotypic convergence—including limb- less body plans in burrowing species [2], drug resistance in pathogens [3], Accepted: 18 April 2019 and antifreeze proteins in arctic and antarctic fishes [4]—have similarly intuitive explanations as the result of adaptation to shared environments. Convergent One contribution of 16 to a theme issue evolution, then, can serve as a valuable proxy for repeated experiments in evol- ‘Convergent evolution in the genomics era: ution, and understanding how convergent traits evolve, especially at the new insights and directions’. molecular level, has the potential to inform general rules about adaptation [5,6]. In the past decade, low-cost, high-throughput sequencing has ushered in an era of widespread genome sequencing in model and non-model organ- Subject Areas: isms alike, bringing vast new data to bear on understanding convergence at evolution, genomics the molecular level.
    [Show full text]