How Can Radioactive Elements Help Us?

Total Page:16

File Type:pdf, Size:1020Kb

How Can Radioactive Elements Help Us? HOW CAN RADIOACTIVE ELEMENTS HELP US? RADIOCHEMISTRY INVOLVES MAKING MOLECULES WITH FRÉDÉRIC RADIOACTIVE ATOMS. DR DAVIDE AUDISIO OF THE JOLIOT INSTITUTE FOR LIFE SCIENCES, PART OF THE FRENCH ALTERNATIVE ENERGIES AND ATOMIC ENERGY COMMISSION, IS FINDING NEW WAYS TO USE THEM MORE EFFICIENTLY TALK LIKE A RADIOCHEMIST – and so pharmaceuticals and chemicals can be developed and monitored, and safety ensured. Davide explains, “FASTLabEx RADIOCHEMISTRY – the chemistry of will help the pharmaceutical industry to natural and man-made unstable isotopes PROTONS – positively charged subatomic apply the new labelling methods to drugs particles found in the nucleus of the atom currently in development in order to provide ISOTOPE – variants of a chemical element solutions to the most pressing problems in that have the same number of protons but NEUTRONS – neutral particles found in drug innovation.” But the impact of Davide’s different numbers of neutrons the nucleus of the atom work does not stop there – his project and his expertise as a radiochemist also has RADIOLABELS – the addition of a METABOLISM – the chemical processes applications in crop science and food safety. radioactive isotope to a molecule so that it in cells that break down chemical can be traced and imaged compounds like food or medicine RADIOLABELLING In pharmaceutical compounds, most drugs have what is called an active ingredient. The When did you last take a tablet? Perhaps, it part of The French Alternative Energies and active ingredient is the molecule that has was when you needed to ease a headache or Atomic Energy Commission (CEA), in France. the desired medicinal effect. However, what control an allergy? From time to time, most of “It is, therefore, of fundamental importance happens between swallowing a tablet and the us do take tablets, but how often do we think to detect and quantify the fate of organic active ingredient entering our bloodstream and about what happens to them after we have compounds and provide a precise risk/benefit reaching its target is very complicated. swallowed them? More importantly, how do assessment, before they reach the market and pharmaceutical companies assess the effects large public exposure.” This is because the molecules that we take in of the drugs they produce and what happens to the tablet can be metabolised by our cells and them when they enter our bodies? Davide is a radiochemist whose work is enzymes – broken down and changed into evidence of the positive and profound impact lots of other different molecules. Hopefully, “The impact of synthetic organic molecules the science behind radioactive materials molecules will be made that have the desired on health, life quality and lifestyle is beyond can have on our lives. He is working on the healing effect. However, sometimes other doubt,” says Dr Davide Audisio, of the FASTLabEX project, making molecules that compounds are made that have unwanted Frédéric Joliot Institute for Life Sciences, contain radiolabels so that they can be traced side effects. DR DAVIDE AUDISIO Research Scientist, Frédéric Joliot Institute for Life Sciences, The French Alternative Energies and Atomic Energy Commission (CEA), France FIELD OF RESEARCH Radiochemistry When new drugs are being designed and tested Fortunately for radiochemists like Davide, RESEARCH PROJECT for safety, Davide and many other researchers carbon-14 can be made. Nuclear reactors are Developing FASTLabEx, a novel will find ways to make radiolabelled versions of not just for energy but can also be used to technique to synthesise radiolabelled the molecules. Because the chemistry in our produce the radioisotopes we use for medical molecules bodies is so complex, trying to piece together imaging as well. what has happened is very challenging. FUNDER However, a radiolabelled compound acts like This makes carbon-14 a very expensive element a GPS for the molecule – we can work out to use and so Davide needs to be very efficient The European Union where in the body a molecule has gone and and effective in how he makes molecules whether it has reacted to form something new. containing his radiotracer. As part of the EU- This work is supported by the European Research funded project, FASTLabEx, he is working on Council, under award number ERC-2019-COG CARBON-14 new strategies to add radiolabels to molecules. 864576. The most common form of carbon on earth is carbon-12. Carbon-12 has six protons and six A FAST STRATEGY neutrons, giving an overall atomic mass number Normally, to synthesise a molecule with a carbon-12 for a carbon-14. While this might of 12. Isotopes of carbon, like carbon-14, have radiolabel, the carbon-14 source would be sound easy, targeting the right bonds and the same number of protons as carbon-12 included at the beginning of the process, which doing this in a single step needs some highly but a different number of neutrons. When is very inefficient and generates radioactive sophisticated chemistry tricks. it comes to their chemistry, carbon-12 and waste. What Davide is trying to do is to add the carbon-14 are very alike. They will react in radiolabel to a molecule that has already been If Davide and his colleagues are able similar ways and can be used to make the same made – using a phenomenon called ‘carbon to overcome this, the potential impact molecules. The key difference is that carbon-14 isotope exchange’. of FASTLabEx is huge. It would mean is radioactive and, with time, will emit radiation. radiolabelled compounds could be made in This radiation can be used to track what Carbon is not the only element with isotopes. a day, rather than weeks or months. With happens with the particular element it came Hydrogen also has several, including deuterium current methods, it costs 25 000 Euros from. If a drug is synthesised with a radiolabel and tritium. Tritium is much more common for less than a gram of radiolabelled carbon like carbon-14, researchers like Davide can than carbon-14 and one way to radiolabel dioxide. In addition, a lot of the carbon-14 follow how that drug is distributed inside a compounds with tritium is to shake the is lost in the complex, multi-step synthesis, patient’s body or, in agrochemical contexts, in molecule in T2 – a molecule hydrogen gas producing radioactive waste along the way. the environment. where both hydrogens have been replaced with tritium, in presence of a catalyst. The tritium Radiochemists like Davide play a very THE CHALLENGES in the heavy hydrogen will then exchange with important role in helping medicinal chemists Although radiochemistry is a powerful tool the hydrogens on the molecule, making the design and develop effective medicines. They for understanding how medicines work, it radiolabelled version. also help produce other radioisotopes of can be very challenging to make radiolabelled elements like iodine, which are used to treat compounds. In the natural world, carbon-14 is Unfortunately, swapping carbon-12 for many thyroid disorders. Davide’s project will a trillion times less common than carbon-12. carbon-14 is not quite so straightforward. also help chemists all over the world learn new That means the probability of finding Davide’s idea is to take carbon-carbon bonds ways to make and break very specific carbon carbon-14 in the pharmaceutical molecule of in a finished molecule and come up with bonds, meaning even more exciting molecules interest naturally is nearly zero. new ways to break that one bond and swap a can be made. ABOUT RADIOCHEMISTRY Radiochemistry is the study of radioactive using different isotopes to help treat WHAT ISSUES WILL BE FACING THE materials. Most of the elements in the patients, and some may work at nuclear NEXT GENERATION OF CHEMISTS? periodic table have several isotopes reactors, helping to find safe ways to deal “The next generation of chemists will have and many of these are radioactive. with waste or make new isotopes. to face a series of challenges. In organic Radiochemists work with those isotopes in chemistry, there are still plenty of unsolved a variety of different ways. Radiochemistry is a diverse field and many fundamental problems. In particular, they other professions rely on the knowledge will need to find new solutions for making Some radiochemists, like Davide, are and skills of radiochemists to support chemicals that will be environmentally working to synthesise molecules with their work. friendly – they will need to harness radioactive isotopes in them. While this ‘green chemistry’.” is similar in some ways to the job of a WHAT DOES DAVIDE FIND MOST synthetic chemist in a pharmaceutical FASCINATING/REWARDING DOES THE FRÉDÉRIC company or university, these molecules are ABOUT CHEMISTRY? JOLIOT INSTITUTE FOR LIFE much more complicated to work with and “The ability to construct organic molecules SCIENCES OFFER ANY PUBLIC radiochemists need to be trained in how to by breaking and creating new bonds is a OUTREACH SCHEMES? handle radioactive materials. very charming concept to me. The idea of “One of our duties at CEA is to being able to imitate nature is fascinating. teach our expertise to young people Other researchers work with archaeologists For me, the most rewarding thing about and so we regularly have internship or oceanographers who use the information chemistry is the teamwork involved. I programmes with students. These can from radioisotopes to age objects and track have the privilege of working with a very vary in format: programme lengths range how the ocean moves. Their work differs to talented group of people. Interacting from a short period of two weeks for Davide’s as they measure the radioactivity with my colleagues is very enriching and high school students, to 6 months for but do not need to do chemistry with the constructive.
Recommended publications
  • The Radiochemistry of Tungsten
    National Academy of Sciences !National Research Council NUCLEAR SCIENCE SERIES The Radiochemistry of Tungsten — ...—- L. F. C URTISS,Chairman ROBLEY D. EVANS, Vice Chairman NationalBureau ofStandards MassachusettsInstituteofTechnology J.A. DeJUREN, Secretary WestinghouseElectricCorporation C. J.BORKOWSKI J.W. IRVINE,JR. Oak RidgeNationalLaboratory MassachusettsI&tituteofTechnology ROBERT G. COCHRAN E. D. KLEMA Texas Agriculturaland Mechanical NorthwesternUniversity College W. WAYNE MEINKE SAMUEL EPSTEIN UniversityofMichigan CaliforniaInstituteofTechnology J.J.NICKSON Memorial Hospital,New York U. FANO NationalBureau ofStandards ROBERT L. PLATZMAN Laboratoirede Chimie Physique HERBERT GOLDSTEIN NuclearDevelopmentCorporationof D. M. VAN PATTER America BartolResearch Foundation LIAISON MEMBERS PAUL C. AEBERSOLD CHARLES K. REED Atomic Energy Commission U. S.Air Force J.HOWARD McMILLEN WILLIAM E. WRIGHT NationalScienceFoundation OfficeofNavalResearch SUBCOMMITTEE ON RADIOCHEMISTRY W. WAYNE MEINKE, Chai~man HAROLD KIRBY UniversityofMichigan Mound Laboratory GREGORY R. CHOPPIN GEORGE LEDDICOTTE FloridaStateUniversity Oak RidgeNationalLaboratory GEORGE A. COWAN JULIAN NIELSEN Los Alamos ScientificLaboratory HanfordLaboratories ARTHUR W. FAIRHALL ELLIS P. STEINBERG UniversityofWashington Argonne NationalLaboratory JEROME HUDIS PETER C. STEVENSON BrookhavenNationalLaboratory UniversityofCalifornia(Livermore) EARL HYDE LEO YAFFE UniversityofC slifornia(Berkeley) McGillUniversity CONSULTANTS NATHAN BALLOU JAMES DeVOE NavalRadiologicalDefenseLaboratory
    [Show full text]
  • Radiochemistry and Uranium Laboratories
    HAZEN RESEARCH, INC. Analytical Department Superfun4Recoi er SITE: J 4601 Indiana St., Golden, CO 80403 303-279-4501 BREAK: OTHER: QUALITY MANUAL Radiochemistry and Uranium Laboratories Policies and Procedures Established to meet NELAC Quality Systems Standards Reviewed, Acknowledged, and Approved by: Signature Date Bill Youngclaus Bench Chemist Richard Oberto Senior Chemist Ann Strapac Lab Technician Eve DelaFuente Group Supervisor s* 'A*/ Robert Rostad Laboratory Manager John C. Jarvis Laboratory Director QA Officer Eleventh Revision, 3/8/2000 Quality Manual Page 1 Radiochemistry Laboratory Revision 11 Hazen Research Inc. 3/8/2000 TABLE of CONTENTS 1.0 Laboratory Description and Quality Statement 1.1 Laboratory Profile 4 1.2 Management Quality Statement 4 1.3 Laboratory Organization 5 2.0 Personnel 2.1 Job Descriptions and Responsibilities 5 2.2 Training 5 2.3 Resumes 6 2.4 Director's Certifications 6 2.5 Employee Signatures and Initials 6 3.0 Facilities 3.1 General Description 6 3.2 Hazen Campus Map 7 3.3 Analytical Department Floor Plan 7 4.0 Licenses and Laboratory Certifications 7 5.0 Methodology 5.1 Standard Operating Procedures 8 5.2 Radium-226 (ZnS scintillation counting) 8 5.3 Radium-226 (alpha spectrometry) 8 5.4 Radium-228 8 5.5 Thorium-230 9 5.6 Polonium-210. 9 5.7 Lead-210 10 5.8 Gross Alpha, Beta 10 5.9 Uranium 10 5.10 Radiocesium 11 5.11 Radiostrontium. 11 5.12 Tritium 12 5.13 Radon 12 5.14 Method Exceptions and Departures 12 5.15 Employee SOP Certification 13 continued next page Quality Manual Page 2 Radiochemistry Laboratory Revision 11 Hazen Research Inc.
    [Show full text]
  • Chemistry (CHEM) 1
    Chemistry (CHEM) 1 CHEM 6A. Introduction to General Chemistry. 5 Units CHEMISTRY (CHEM) Prerequisite(s): One year high school algebra; high school chemistry recommended. CHEM 1A. General Chemistry I. 5 Units General Education Area/Graduation Requirement: Laboratory (B3), Prerequisite(s): High school chemistry and college algebra; sufficient Physical Science (B1) performance on the college algebra diagnostic test, or equivalent; Term Typically Offered: Fall, Spring passing score on a standardized Chemistry diagnostic exam given prior to each semester, or a minimum grade of "C" in CHEM 4. Structure of atoms, molecules and ions; their interactions including General Education Area/Graduation Requirement: Physical Science (B1), stoichiometry, equilibria, and oxidation-reduction. Does not fulfill the Laboratory (B3) requirements for more advanced study in chemistry and cannot be Term Typically Offered: Fall, Spring counted toward a major or minor in chemistry. Lecture three hours, discussion one hour, laboratory three hours. Fundamental principles and concepts of chemistry, including CHEM 6B. Introduction to Organic and Biological Chemistry. 5 Units stoichiometry; thermochemistry; atomic and molecular structure; Prerequisite(s): CHEM 1A or CHEM 6A, or a high school chemistry course solution chemistry, including acid-base chemistry; quantum theory; and passing a qualifying exam given in the first laboratory period. bonding and intermolecular forces; and chemical kinetics. Lecture three General Education Area/Graduation Requirement: Further Studies in Area hours, laboratory three hours, discussion one hour. B (B5) Note: Not open to enrollment by engineering majors, who should take Term Typically Offered: Fall, Spring CHEM 1E, General Chemistry for Engineering. Introduction to structure and properties of the major classes of organic CHEM 1B.
    [Show full text]
  • Chemistry (CHEM) 1
    Chemistry (CHEM) 1 CHEMISTRY (CHEM) GenEd Learning Objective: Key Literacies CHEM 5: Kitchen Chemistry CHEM 1: Molecular Science 3 Credits 3 Credits CHEM 5 Kitchen Chemistry (3) (GN)(BA) CHEM 5 focuses on an Selected concepts and topics designed to give non-science majors an elementary discussion of the chemistry associated with foods and appreciation for how chemistry impacts everyday life. Students who cooking. It incorporates lectures and videos, reading, problem-solving, have received credit for CHEM 3, 101, 130, or 110 may not schedule and "edible"; home experiments to facilitate students' understanding of this course. CHEM 1 is designed for students who want to gain a better chemical concepts and scientific inquiry within the context of food and appreciation of chemistry and how it applies to everyone's everyday cooking. Please note that this is a chemistry class presented in a real life. You are expected to have an interest in understanding the nature of world interactive way, not a cooking class! The course will start from a science, but not necessarily to have any formal training in the sciences. primer on food groups and cooking, proceed to the structures of foods, During the course, you will explore important societal issues that can be and end with studies of the physical and chemical changes observed in better understood knowing some concepts in chemistry. The course is foods. Students will develop an enhanced understanding of the chemical largely descriptive, though occasionally a few simple calculations will principles involved in food products and common cooking techniques. be done to illuminate specific information.
    [Show full text]
  • The Radiochemistry of Gold COMMITTEE on NUCLEAR SCIENCE
    National Academy v of Sciences National Research Council I NUCLEAR SCIENCE SERIES The Radiochemistry of Gold COMMITTEE ON NUCLEAR SCIENCE L. F. CURTISS,Chairman ROBLEY D. EVANS, Vice Chairman NationalBureauofStandards MassachusettsInstituteofTechnology J.A. DeJUREN, Secretary WestinghouseElectricCorporation C. J.BORKOWSKI J.W. IRVINE,JR. Oak RidgeNationalLaboratory MassachusettsInstituteofTechnology ROBERT G. COCHRAN E. D. KLEMA Texas Agriculturaland Mechanical NorthwesternUniversity College W. WAYNE MEINKE SAMUEL EPSTEIN UniversityofMichigan CaliforniaInstituteofTechnology J.J.NICKSON U. FANO MemorialHospital,New York NationalBureauofStandards ROBERT L. PLATZMAN Laboratoirede ChimiePhysique HERBERT GOLDSTEIN NuclearDevelopmentCorporationof D. M. VAN PATTER America BartolResearchFoundation LIAISON MEMBERS PAUL C. AEBERSOLD CHARLES K. REED AtomicEnergyCommission U. S.Air Force J.HOWARD McMILLEN WILLIAM E. WRIGHT NationalScienceFoundation OfficeofNavalResearch SUBCOMMITTEE ON RADIOCHEMISTRY W. WAYNE ME INKE, Chairman HAROLD KIRBY UniversityofMichigan Mound Laboratory GREGORY R. CHOPPIN GEORGE LEDDICOTTE FloridaStateUniversity Oak RidgeNationalLaboratory GEORGE A. COWAN JULfAN NIELSEN Los Alamos ScientificLaboratory HanfordLaboratories ARTHUR W. FAIRHALL ELLIS P. STEINBERG lJniversityofWashington ArgonneNationalLaboratory JEROME HUDIS PETER C. STEVENSON BrookhavenNationalLaboratory UniversityofCalifornia(Livermore) EARL HYDE LEO YAFFE UniversityofCalifornia(Berkeley) McGillUniversity CONSULTANTS NATHAN BALLOU JAMES DeVOE NavalRadiologicalDefenseLaboratory
    [Show full text]
  • Quality, Isotopes, and Radiochemistry of Water Sampled from the Upper Moenkopi Village Water-Supply Wells, Coconino County, Arizona
    Prepared in cooperation with the Hopi Tribe Quality, Isotopes, and Radiochemistry of Water Sampled from the Upper Moenkopi Village Water-Supply Wells, Coconino County, Arizona Open-File Report 2013–1162 U.S. Department of the Interior U.S. Geological Survey FRONT COVER Overview of Upper and Lower Moenkopi Villages from the south looking north across Moenkopi Wash. Photograph taken by D.J. Bills, Fall 2008. Quality, Isotopes, and Radiochemistry of Water Sampled from the Upper Moenkopi Village Water-Supply Wells, Coconino County, Arizona By Robert L. Carruth, Kimberly Beisner, and Greg Smith Prepared in cooperation with the Hopi Tribe Open-File Report 2013–1162 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2013 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Carruth, R.L., Beisner, Kimberly, and Smith, Greg, 2013, Qualilty, isotopes, and radiochemistry of water sampled from the Upper Moenkopi Village water-supply wells, Coconino County, Arizona: U.S.
    [Show full text]
  • Γ Spectroscopy System for Teaching and Research
    γ Spectroscopy System for Teaching and Research PI: Nathalie Wall- Washington State Collaborators: NA University Program: General Scientific Infrastructure ABSTRACT: The project objective is to improve the technical capability of the Washington State University (WSU) Department of Chemistry in the field of radiochemistry, allowing for enhancement of WSU’s capacity to attract and teach high quality students interested in nuclear energy-related studies. The specific aim of this project is to purchase and setup the equipment pieces necessary for a new up-to-date γ spectroscopy system. One of the flagship academic programs at WSU is radiochemistry, administratively located in the Chemistry Department. Six (6) faculty members of the Department of Chemistry are involved in different aspects of nuclear sciences, including environmental radiochemistry, separation, nuclear forensics, radiopharmacology, and computational chemistry. In addition to academic radiochemistry program, WSU is home to the Nuclear Radiation Center (WSU-NRC), which includes a 1 MW TRIGA-fueled research reactor and associated radiochemistry laboratory space. WSU nuclear science program at the Department of Chemistry has shown a considerable growth in the last decade. Out of the 48 students currently integrated in the program (only 5 graduate students were enrolled in this program in 2000), 36 are currently conducting experimental work requiring radioanalytical equipment. Although the program currently features adequate counting systems and α spectroscopy, there is a lack of an up-to- date γ spectroscopy system that is readily available for both R&D work and laboratory instruction. The only γ spectroscopy system owned by the radiochemistry faculty in the chemistry department is a 17 years-old HPGe detector currently used for low-level and long term (months) measurements, rendering its application to other projects nearly impossible.
    [Show full text]
  • RADIOCHEMISTRY and NUCLEAR CHEMISTRY – Vol
    RADIOCHEMISTRY AND NUCLEAR CHEMISTRY – Vol. I - Radiochemistry and Nuclear Chemistry - Sándor Nagy RADIOCHEMISTRY AND NUCLEAR CHEMISTRY Sándor Nagy Laboratory of Nuclear Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary Keywords: activation, activity, aftereffects, annihilation, attenuation, binding energy, bremsstrahlung, charts of nuclides, cross section, decay chains, decay schemes, equilibrium, exponential law, half-life, half-thickness, isobar, isotone, isotope, lethargy, mass excess, moderator, nuclear isomer, nuclear reactions, nuclide, nuclidic mass, radiation–matter interactions, range, recoil, separation energy, X-rays Contents 1. Introduction 2. The beginnings of RC&NC and the timeline of nuclear science 3. Nuclides and nuclei – isotopes, isobars, isotones, and isomers 4. Nuclear starter – concepts, quantities and units 5. Kinetics of radioactive decay and activation 6. Aftereffects of radioactive decay and nuclear reactions 7. Interaction of nuclear radiations with matter 8. Conclusions Acknowledgements Appendices Glossary Bibliography Biographical Sketch Summary This chapter outlines the field of radiochemistry and nuclear chemistry (RC&NC). It gives a short summary of the early history of RC&NC as well as a detailed timeline of the development of subatomic concepts, nuclear science and technology. The basic nuclear concepts, units and relationships are also introduced here. The chapter explains in some detailUNESCO radioactive decay, nuclear reac –tions, EOLSS and radiation–matter interactions to serve with necessary background to related chapters on a selection of the applications of RC&NC written by specialists of their fields. 1. IntroductionSAMPLE CHAPTERS The “official” definitions of radiochemistry (RC) and nuclear chemistry (NC) in the “IUPAC Gold Book” (http://goldbook.iupac.org/index-alpha.html) read as follows: Radiochemistry: “That part of chemistry which deals with radioactive materials.
    [Show full text]
  • Fundamental Research on Radiochemistry of Geological Nuclear Waste Disposal
    1000 CHIMIA 2020, 74, No. 12 RadiochemistRy in switzeRland doi:10.2533/chimia.2020.1000 Chimia 74 (2020) 1000–1009 © S. V. Churakov, W. Hummel, M. Marques Fernandes Fundamental Research on Radiochemistry of Geological Nuclear Waste Disposal Sergey V. Churakovab*, Wolfgang Hummela, and Maria Marques Fernandesa Abstract: Currently, 5⋅1019 Bq of radioactive waste originating from the use of nuclear power for energy produc- tion, and medicine, industry and research, is maintained in Switzerland at intermediate storage facilities.[1] Deep geological disposal of nuclear waste is considered as the most reliable and sustainable long-term solution world- wide. Alike the other European countries, the Swiss waste disposal concept embarks on the combination of en- gineered and geological barriers. The disposal cell is a complex geochemical system. The radionuclide mobility and consequently radiological impact depend not only on their chemical speciation but also on the background concentration of other stable nuclides and their behaviour in the natural environment. The safety assessment of the repository is thus a complex multidisciplinary problem requiring knowledge in chemical thermodynamics, structural chemistry, fluid dynamics, geo- and radiochemistry. Broad aspects of radionuclide thermodynamics and geochemistry are investigated in state-of-the-art radiochemical laboratories at the Paul Scherrer Institute. The research conducted over the last 30 years has resulted in a fundamental understanding of the radionuclides release, retention and transport mechanism in the repository system. Keywords: Nuclear waste disposal · Radionuclide geochemistry · Radionuclide retention and transport Sergey V. Churakov is Head of Laboratory Maria Marques Fernandes is head of the of Waste Management in the Department Clay Sorption group in the Laboratory for of Nuclear Energy and Safety at the Paul Waste Management in the Department Scherrer Institute (PSI) and Full Professor of Nuclear Energy and Safety at the in the Institute of Geological Sciences at Paul Scherrer Institute (PSI).
    [Show full text]
  • Chemistry (CHE) 1
    Chemistry (CHE) 1 CHE 122 Intro to Chemical Systems 3 Credits CHEMISTRY (CHE) A continuation of CHE 120. For students majoring in the sciences but may be taken by others. Chemical systems in which the study of kinetics, CHE 100 Intro to College Chemistry 3 Credits thermodynamics, equilibrium, and radiochemistry are emphasized. Three Open to all students, but designed primarily for those who wish to major hours of lecture per week. Prerequisite(s): CHE 120, MTH 105 or higher. in a science which requires chemistry but whose chemistry background Corequisite(s): CHE 123. is not sufficient to allow entrance into Chemistry 120. It focuses on the nomenclature used in chemistry including the symbols used to designate CHE 123 Quantitative Methods Lab 1 Credits the chemical elements, the construction of chemical formulas, and the Usually taken concurrently with CHE 122. Primarily for students majoring writing and balancing of chemical equations. Other topics will include in the sciences. A number of quantitative classical and instrumental interpreting the Periodic Table, the valences of the elements, the mole methods of analysis are used to determine thermodynamic properties concept, and simple stoichiometry. In addition, chemical calculations and reaction mechanisms. One three-hour lab per week. Prerequisite(s): involving units, scientific notation, significant figures, and the algebraic CHE 121. manipulations of simple equations will be included. Three hours of Corequisite(s): CHE 122. lecture per week. This course does not satisfy the requirements for the biochemistry or chemistry degree, but does satisfy the core requirements CHE 211 Organic Chemistry I 4 Credits for liberal arts, education and business majors.
    [Show full text]
  • The Radiochemistry of Plutonium
    National v Academy of Sciences National1Research Council . E The Radiocheunistry of Plutonium ,“. m COMMlllEE ON NUCLEAR SCIENCE ~. A. Bromley, Chainmm R. D. Evans, Vice Cluri7man Yale University Massachusetts Institute of Technology Lewis Slack, Secrekq National Rese=ch COunCtl E. C. Anderson Jerry B. Marion Los Afamo6 Scientific Laboratory University of Maryland N. E. Baflou R. L. PLatman U. S. Naval Radiological Defense Argonne National Laboratory Labomto~ Ernest C. Pollard Martin J. Barger Pennsylvania State University , National Bureau of Standards Katharine Way C. J. Borkowski Oak Ridge National Laboratory Oak Ridge National Laboratory George W. Wetherill Herbert Goldstein University of California Columbia Uoivereity Marvin E. Wyman Bemd Kahn University of Illinois Taft Sanitary Engineering Center Harold Glsser William S. Rodney Office of Navsl Reeearch National Science Foundation George A. Kolstad Atomic Energy Commission SllWllMMITIEEON RADIOCNEMiSTSY Nathao E. Ballou, Chaivman Julian M. Nielsen U. S. Naval Radiolostcal Defense Battefle Pacific Northwest Lain-atow G. D. O’Ke!.ley G. R. Chq@n Oak Ridge National Laboratory Florida State University E. P. Steinberg Herbert M. Clark Argonne Nationaf Laboratory Rensselaer Polytechnic Institute D. N. Sunderman Richard M. Diamond Battelle Memoriel Institute IJmrence Radiation Laboratory John W. Winchester Jerome Hudla Massachusetts Institute of Technology Brookhaven National Laboratory R. P. Schuman, Consultant Jere D. Knight Sri Venkateswara University Los Alsmos Scientific Laboratow Tirupati, AndhI= Pradesh, India W. E. Nervik Lawrence Radiation Laborstory The Radiochemistry of Plutonium. George” H. Coleman September 1, 1965 UN17JERSITY OF CALIFORNIA Lawrence Radiation Laboratory Livermore, California AEC Contract No. W-7405 -eng-48 Subcommittee on Radiochemistry National Academy of Sciences—National Reaearcb Council Prfmtedin USA.
    [Show full text]
  • The Radiochemistry of Tellurium
    . (L22&QJv?k) National Academy ‘ v of Sciences 1“National Research Council m NUCLEAR SCIENCE SERIES The Radiochemistry of Tellurium i COMMITTEE ON NUCLEAR SCIENCE L. F. C URTISS,Chaiwzan ROBLEY D. EVANS, Vice Chairman NationalBureauofStandards MassachusettsInstituteofTechnology J.A. DeJUREN, Secrefa~y WestinghouseElectricCorporation C. J.BORKOWSKI J.W. IRVINE,JR. Oak RidgeNationalLaboratory MassachusettsInstituteofTechnology ROBERT G. COCHRAN E. D. KLEMA TexasAgriculturaland Mechanical NorthwesternUniversity College W. WAYNE MEINKE SAMUEL EPSTEIN UniversityofMichigan CaliforniaInstituteofTechnology J.J.NICKSON U. FANO MemorialHospital,New York NationalBureauofStandards ROBERT L. PLATZMAN Laboratoirede ChimiePhysique HERBERT GOLDSTEIN NuclearDevelopmentCorporationof D. M. VAN PATTER America BartolResearchFoundation LIAISON MEMBERS PAUL C. AEBERSOLD CHARLES K. REED Atomic EnergyCommission U. S.Air Force J.HOWARD McMILLEN WILLIAM E. WRIGHT NationalScienceFoundation OfficeofNavalResearch SUBCOMMITTEE ON RADIOCHEMISTRY W. WAYNE ME INKE, Chairman HAROLD KIRBY UniversityofMichigan Mound Laboratory GREGORY R. CHOPPIN GEORGE LEDDICOTTE FloridaStateUniversity Oak RidgeNationalLaboratory GEORGE A. COWAN JULIAN NIELSEN Los Alamos ScientificLaboratory HanfordLaboratories ARTHUR W. FAIRHALL ELLIS P. STEINBERG universityofWashington ArgonneNationalLaboratory JEROME HUDIS PETER C. STEVENSON BrookhavenNationalLaboratory UniversityofCalifornia(Livermore) EARL HYDE LEO YAFFE UniversityofCalifornia(Berkeley) McGillUniversity CONSLJLTANTS NATHAN BALLOU JAMES
    [Show full text]