Chemistry (CHEM) 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Quantum Crystallography†
Chemical Science View Article Online MINIREVIEW View Journal | View Issue Quantum crystallography† Simon Grabowsky,*a Alessandro Genoni*bc and Hans-Beat Burgi*de Cite this: Chem. Sci.,2017,8,4159 ¨ Approximate wavefunctions can be improved by constraining them to reproduce observations derived from diffraction and scattering experiments. Conversely, charge density models, incorporating electron-density distributions, atomic positions and atomic motion, can be improved by supplementing diffraction Received 16th December 2016 experiments with quantum chemically calculated, tailor-made electron densities (form factors). In both Accepted 3rd March 2017 cases quantum chemistry and diffraction/scattering experiments are combined into a single, integrated DOI: 10.1039/c6sc05504d tool. The development of quantum crystallographic research is reviewed. Some results obtained by rsc.li/chemical-science quantum crystallography illustrate the potential and limitations of this field. 1. Introduction today's organic, inorganic and physical chemistry. These tools are usually employed separately. Diffraction and scattering Quantum chemistry methods and crystal structure determina- experiments provide structures at the atomic scale, while the Creative Commons Attribution 3.0 Unported Licence. tion are highly developed research tools, indispensable in techniques of quantum chemistry provide wavefunctions and aUniversitat¨ Bremen, Fachbereich 2 – Biologie/Chemie, Institut fur¨ Anorganische eUniversitat¨ Zurich,¨ Institut fur¨ Chemie, Winterthurerstrasse 190, CH-8057 Zurich,¨ Chemie und Kristallographie, Leobener Str. NW2, 28359 Bremen, Germany. Switzerland E-mail: [email protected] † Dedicated to Prof. Louis J. Massa on the occasion of his 75th birthday and to bCNRS, Laboratoire SRSMC, UMR 7565, Vandoeuvre-l`es-Nancy, F-54506, France Prof. Dylan Jayatilaka on the occasion of his 50th birthday in recognition of their cUniversit´e de Lorraine, Laboratoire SRSMC, UMR 7565, Vandoeuvre-l`es-Nancy, F- pioneering contributions to the eld of X-ray quantum crystallography. -
Quantum Reform
feature Quantum reform Leonie Mueck Quantum computers potentially offer a faster way to calculate chemical properties, but the exact implications of this speed-up have only become clear over the last year. The first quantum computers are likely to enable calculations that cannot be performed classically, which might reform quantum chemistry — but we should not expect a revolution. t had been an exhausting day at the 2012 International Congress of Quantum IChemistry with countless presentations reporting faster and more accurate methods for calculating chemical information using computers. In the dry July heat of Boulder, Colorado, a bunch of young researchers decided to end the day with a cool beer, but the scientific discussion didn’t fade away. Thoughts on the pros and cons of all the methods — the approximations they involved and the chemical problems that they could solve — bounced across the table, until somebody said “Anyway, in a few years we will have a quantum computer and our approximate methods will be obsolete”. An eerie silence followed. What a frustrating thought! They were devoting their careers to quantum chemistry — working LIBRARY PHOTO RICHARD KAIL/SCIENCE tirelessly on applying the laws of quantum mechanics to treat complex chemical of them offering a different trade-off between cannot do on a ‘classical’ computer, it does problems with a computer. And in one fell accuracy and computational feasibility. not look like all the conventional quantum- swoop, would all of those efforts be wasted Enter the universal quantum computer. chemical methods will become obsolete or as chemists turn to quantum computers and This dream machine would basically work that quantum chemists will be out of their their enormous computing power? like a normal digital computer; it would jobs in the foreseeable future. -
The Radiochemistry of Tungsten
National Academy of Sciences !National Research Council NUCLEAR SCIENCE SERIES The Radiochemistry of Tungsten — ...—- L. F. C URTISS,Chairman ROBLEY D. EVANS, Vice Chairman NationalBureau ofStandards MassachusettsInstituteofTechnology J.A. DeJUREN, Secretary WestinghouseElectricCorporation C. J.BORKOWSKI J.W. IRVINE,JR. Oak RidgeNationalLaboratory MassachusettsI&tituteofTechnology ROBERT G. COCHRAN E. D. KLEMA Texas Agriculturaland Mechanical NorthwesternUniversity College W. WAYNE MEINKE SAMUEL EPSTEIN UniversityofMichigan CaliforniaInstituteofTechnology J.J.NICKSON Memorial Hospital,New York U. FANO NationalBureau ofStandards ROBERT L. PLATZMAN Laboratoirede Chimie Physique HERBERT GOLDSTEIN NuclearDevelopmentCorporationof D. M. VAN PATTER America BartolResearch Foundation LIAISON MEMBERS PAUL C. AEBERSOLD CHARLES K. REED Atomic Energy Commission U. S.Air Force J.HOWARD McMILLEN WILLIAM E. WRIGHT NationalScienceFoundation OfficeofNavalResearch SUBCOMMITTEE ON RADIOCHEMISTRY W. WAYNE MEINKE, Chai~man HAROLD KIRBY UniversityofMichigan Mound Laboratory GREGORY R. CHOPPIN GEORGE LEDDICOTTE FloridaStateUniversity Oak RidgeNationalLaboratory GEORGE A. COWAN JULIAN NIELSEN Los Alamos ScientificLaboratory HanfordLaboratories ARTHUR W. FAIRHALL ELLIS P. STEINBERG UniversityofWashington Argonne NationalLaboratory JEROME HUDIS PETER C. STEVENSON BrookhavenNationalLaboratory UniversityofCalifornia(Livermore) EARL HYDE LEO YAFFE UniversityofC slifornia(Berkeley) McGillUniversity CONSULTANTS NATHAN BALLOU JAMES DeVOE NavalRadiologicalDefenseLaboratory -
Quantum Chemistry and Spectroscopy – Spring 2018
CHE 336 – Quantum Chemistry and Spectroscopy – Spring 2018 Instructor: Dr. Jessica Sarver Email: [email protected] Office: HSC 364 (email hours: 8 am – 10 pm) Office Hours: 10am-12pm Tuesday, 2-3pm Wednesday, 10:30-11:30am Friday, or by appointment Course Description (from Westminster undergraduate catalog) Quantum chemistry and spectroscopy is the study of the microscopic behavior of matter and its interaction with electromagnetic radiation. Topics include the formulation and application of quantum mechanical models, atomic and molecular structure, and various spectroscopic techniques. Laboratory activities demonstrate the fundamental principles of physical chemistry. Methods that will be used during the laboratory portion include: polarimetry, UV-Vis and fluorescence spectroscopies, electrochemistry, and computational/molecular modeling. Prerequisites: C- grade in CHE 117 and MTH 152 and PHY 152. Course Outcomes The chemistry major outcomes are: • Describe and explain quantum theory and the three quantum mechanical models of motion. • Describe and explain how these theories/models are applied and incorporated to applications of atomic/molecular structure and spectroscopy. • Describe and explain the principles of four major types of spectroscopy and their applications. • Describe and explain the measurable thermodynamic parameters for physical and chemical processes and equilibria. • Describe and explain how chemical kinetics can be used to investigate time-dependent processes. • Solve mathematical problems based on physical chemical principles and connect the numerical results with these principles. Textbook The text for this course is Physical Chemistry, 10th Ed. by Atkins and de Paula. Readings and problem set questions will be assigned from this text. You are strongly urged to get a copy of this textbook and complete all the assigned readings and homework. -
Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Harvard University - DASH Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Rappoport, Dmitrij, Cooper J. Galvin, Dmitry Zubarev, and Alán Aspuru-Guzik. 2014. “Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry.” Journal of Chemical Theory and Computation 10 (3) (March 11): 897–907. Published Version doi:10.1021/ct401004r Accessed February 19, 2015 5:14:37 PM EST Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:12697373 Terms of Use This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP (Article begins on next page) Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry Dmitrij Rappoport,∗,† Cooper J Galvin,‡ Dmitry Yu. Zubarev,† and Alán Aspuru-Guzik∗,† Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA, and Pomona College, 333 North College Way, Claremont, CA 91711, USA E-mail: [email protected]; [email protected] Abstract While structures and reactivities of many small molecules can be computed efficiently and accurately using quantum chemical methods, heuristic approaches remain essential for mod- eling complex structures and large-scale chemical systems. Here we present heuristics-aided quantum chemical methodology applicable to complex chemical reaction networks such as those arising in metabolism and prebiotic chemistry. -
Introduction to Quantum Chemistry
Chem. 140B Dr. J.A. Mack Introduction to Quantum Chemistry Why as a chemist, do you need to learn this material? 140B Dr. Mack 1 Without Quantum Mechanics, how would you explain: • Periodic trends in properties of the elements • Structure of compounds e.g. Tetrahedral carbon in ethane, planar ethylene, etc. • Bond lengths/strengths • Discrete spectral lines (IR, NMR, Atomic Absorption, etc.) • Electron Microscopy & surface science Without Quantum Mechanics, chemistry would be a purely empirical science. (We would be no better than biologists…) 140B Dr. Mack 2 1 Classical Physics On the basis of experiments, in particular those performed by Galileo, Newton came up with his laws of motion: 1. A body moves with a constant velocity (possibly zero) unless it is acted upon by a force. 2. The “rate of change of motion”, i.e. the rate of change of momentum, is proportional to the impressed force and occurs in the direction of the applied force. 3. To every action there is an equal and opposite reaction. 4. The gravitational force of attraction between two bodies is proportional to the product of their masses and inversely proportional to the square of the distance between them. m m F = G × 1 2 r 2 140B Dr. Mack 3 The Failures of Classical Mechanics 1. Black Body Radiation: The Ultraviolet Catastrophe 2. The Photoelectric Effect: Einstein's belt buckle 3. The de Broglie relationship: Dude you have a wavelength! 4. The double-slit experiment: More wave/particle duality 5. Atomic Line Spectra: The 1st observation of quantum levels 140B Dr. Mack 4 2 Black Body Radiation Light Waves: Electromagnetic Radiation Light is composed of two perpendicular oscillating vectors waves: A magnetic field & an electric field As the light wave passes through a substance, the oscillating fields can stimulate the movement of electrons in a substance. -
Radiochemistry and Uranium Laboratories
HAZEN RESEARCH, INC. Analytical Department Superfun4Recoi er SITE: J 4601 Indiana St., Golden, CO 80403 303-279-4501 BREAK: OTHER: QUALITY MANUAL Radiochemistry and Uranium Laboratories Policies and Procedures Established to meet NELAC Quality Systems Standards Reviewed, Acknowledged, and Approved by: Signature Date Bill Youngclaus Bench Chemist Richard Oberto Senior Chemist Ann Strapac Lab Technician Eve DelaFuente Group Supervisor s* 'A*/ Robert Rostad Laboratory Manager John C. Jarvis Laboratory Director QA Officer Eleventh Revision, 3/8/2000 Quality Manual Page 1 Radiochemistry Laboratory Revision 11 Hazen Research Inc. 3/8/2000 TABLE of CONTENTS 1.0 Laboratory Description and Quality Statement 1.1 Laboratory Profile 4 1.2 Management Quality Statement 4 1.3 Laboratory Organization 5 2.0 Personnel 2.1 Job Descriptions and Responsibilities 5 2.2 Training 5 2.3 Resumes 6 2.4 Director's Certifications 6 2.5 Employee Signatures and Initials 6 3.0 Facilities 3.1 General Description 6 3.2 Hazen Campus Map 7 3.3 Analytical Department Floor Plan 7 4.0 Licenses and Laboratory Certifications 7 5.0 Methodology 5.1 Standard Operating Procedures 8 5.2 Radium-226 (ZnS scintillation counting) 8 5.3 Radium-226 (alpha spectrometry) 8 5.4 Radium-228 8 5.5 Thorium-230 9 5.6 Polonium-210. 9 5.7 Lead-210 10 5.8 Gross Alpha, Beta 10 5.9 Uranium 10 5.10 Radiocesium 11 5.11 Radiostrontium. 11 5.12 Tritium 12 5.13 Radon 12 5.14 Method Exceptions and Departures 12 5.15 Employee SOP Certification 13 continued next page Quality Manual Page 2 Radiochemistry Laboratory Revision 11 Hazen Research Inc. -
Computational Analysis of the Mechanism of Chemical Reactions
Computational Analysis of the Mechanism of Chemical Reactions in Terms of Reaction Phases: Hidden Intermediates and Hidden Transition States ELFI KRAKA* AND DIETER CREMER Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314 RECEIVED ON JANUARY 9, 2009 CON SPECTUS omputational approaches to understanding chemical reac- Ction mechanisms generally begin by establishing the rel- ative energies of the starting materials, transition state, and products, that is, the stationary points on the potential energy surface of the reaction complex. Examining the intervening spe- cies via the intrinsic reaction coordinate (IRC) offers further insight into the fate of the reactants by delineating, step-by- step, the energetics involved along the reaction path between the stationary states. For a detailed analysis of the mechanism and dynamics of a chemical reaction, the reaction path Hamiltonian (RPH) and the united reaction valley approach (URVA) are an effi- cient combination. The chemical conversion of the reaction complex is reflected by the changes in the reaction path direction t(s) and reaction path curvature k(s), both expressed as a function of the path length s. This information can be used to partition the reaction path, and by this the reaction mech- anism, of a chemical reaction into reaction phases describing chemically relevant changes of the reaction complex: (i) a contact phase characterized by van der Waals interactions, (ii) a preparation phase, in which the reactants prepare for the chemical processes, (iii) one or more transition state phases, in which the chemical processes of bond cleavage and bond formation take place, (iv) a product adjustment phase, and (v) a separation phase. -
Six Phases of Cosmic Chemistry
Six Phases of Cosmic Chemistry Lukasz Lamza The Pontifical University of John Paul II Department of Philosophy, Chair of Philosophy of Nature Kanonicza 9, Rm. 203 31-002 Kraków, Poland e-mail: [email protected] 1. Introduction The steady development of astrophysical and cosmological sciences has led to a growing appreciation of the continuity of cosmic history throughout which all known phenomena come to being. This also includes chemical phenomena and there are numerous theoretical attempts to rewrite chemistry as a “historical” science (Haken 1978; Earley 2004). It seems therefore vital to organize the immense volume of chemical data – from astrophysical nuclear chemistry to biochemistry of living cells – in a consistent and quantitative fashion, one that would help to appreciate the unfolding of chemical phenomena throughout cosmic time. Although numerous specialist reviews exist (e.g. Shaw 2006; Herbst 2001; Hazen et al. 2008) that illustrate the growing appreciation for cosmic chemical history, several issues still need to be solved. First of all, such works discuss only a given subset of cosmic chemistry (astrochemistry, chemistry of life etc.) using the usual tools and languages of these particular disciplines which does not facilitate drawing large-scale conclusions. Second, they discuss the history of chemical structures and not chemical processes – which implicitly leaves out half of the totality chemical phenomena as non-historical. While it may now seem obvious that certain chemical structures such as aromatic hydrocarbons or pyrazines have a certain cosmic “history”, it might cause more controversy to argue that chemical processes such as catalysis or polymerization also have their “histories”. -
Chemistry (CHEM) 1
Chemistry (CHEM) 1 CHEM 6A. Introduction to General Chemistry. 5 Units CHEMISTRY (CHEM) Prerequisite(s): One year high school algebra; high school chemistry recommended. CHEM 1A. General Chemistry I. 5 Units General Education Area/Graduation Requirement: Laboratory (B3), Prerequisite(s): High school chemistry and college algebra; sufficient Physical Science (B1) performance on the college algebra diagnostic test, or equivalent; Term Typically Offered: Fall, Spring passing score on a standardized Chemistry diagnostic exam given prior to each semester, or a minimum grade of "C" in CHEM 4. Structure of atoms, molecules and ions; their interactions including General Education Area/Graduation Requirement: Physical Science (B1), stoichiometry, equilibria, and oxidation-reduction. Does not fulfill the Laboratory (B3) requirements for more advanced study in chemistry and cannot be Term Typically Offered: Fall, Spring counted toward a major or minor in chemistry. Lecture three hours, discussion one hour, laboratory three hours. Fundamental principles and concepts of chemistry, including CHEM 6B. Introduction to Organic and Biological Chemistry. 5 Units stoichiometry; thermochemistry; atomic and molecular structure; Prerequisite(s): CHEM 1A or CHEM 6A, or a high school chemistry course solution chemistry, including acid-base chemistry; quantum theory; and passing a qualifying exam given in the first laboratory period. bonding and intermolecular forces; and chemical kinetics. Lecture three General Education Area/Graduation Requirement: Further Studies in Area hours, laboratory three hours, discussion one hour. B (B5) Note: Not open to enrollment by engineering majors, who should take Term Typically Offered: Fall, Spring CHEM 1E, General Chemistry for Engineering. Introduction to structure and properties of the major classes of organic CHEM 1B. -
Chemistry (CHEM) 1
Chemistry (CHEM) 1 CHEMISTRY (CHEM) GenEd Learning Objective: Key Literacies CHEM 5: Kitchen Chemistry CHEM 1: Molecular Science 3 Credits 3 Credits CHEM 5 Kitchen Chemistry (3) (GN)(BA) CHEM 5 focuses on an Selected concepts and topics designed to give non-science majors an elementary discussion of the chemistry associated with foods and appreciation for how chemistry impacts everyday life. Students who cooking. It incorporates lectures and videos, reading, problem-solving, have received credit for CHEM 3, 101, 130, or 110 may not schedule and "edible"; home experiments to facilitate students' understanding of this course. CHEM 1 is designed for students who want to gain a better chemical concepts and scientific inquiry within the context of food and appreciation of chemistry and how it applies to everyone's everyday cooking. Please note that this is a chemistry class presented in a real life. You are expected to have an interest in understanding the nature of world interactive way, not a cooking class! The course will start from a science, but not necessarily to have any formal training in the sciences. primer on food groups and cooking, proceed to the structures of foods, During the course, you will explore important societal issues that can be and end with studies of the physical and chemical changes observed in better understood knowing some concepts in chemistry. The course is foods. Students will develop an enhanced understanding of the chemical largely descriptive, though occasionally a few simple calculations will principles involved in food products and common cooking techniques. be done to illuminate specific information. -
The Radiochemistry of Gold COMMITTEE on NUCLEAR SCIENCE
National Academy v of Sciences National Research Council I NUCLEAR SCIENCE SERIES The Radiochemistry of Gold COMMITTEE ON NUCLEAR SCIENCE L. F. CURTISS,Chairman ROBLEY D. EVANS, Vice Chairman NationalBureauofStandards MassachusettsInstituteofTechnology J.A. DeJUREN, Secretary WestinghouseElectricCorporation C. J.BORKOWSKI J.W. IRVINE,JR. Oak RidgeNationalLaboratory MassachusettsInstituteofTechnology ROBERT G. COCHRAN E. D. KLEMA Texas Agriculturaland Mechanical NorthwesternUniversity College W. WAYNE MEINKE SAMUEL EPSTEIN UniversityofMichigan CaliforniaInstituteofTechnology J.J.NICKSON U. FANO MemorialHospital,New York NationalBureauofStandards ROBERT L. PLATZMAN Laboratoirede ChimiePhysique HERBERT GOLDSTEIN NuclearDevelopmentCorporationof D. M. VAN PATTER America BartolResearchFoundation LIAISON MEMBERS PAUL C. AEBERSOLD CHARLES K. REED AtomicEnergyCommission U. S.Air Force J.HOWARD McMILLEN WILLIAM E. WRIGHT NationalScienceFoundation OfficeofNavalResearch SUBCOMMITTEE ON RADIOCHEMISTRY W. WAYNE ME INKE, Chairman HAROLD KIRBY UniversityofMichigan Mound Laboratory GREGORY R. CHOPPIN GEORGE LEDDICOTTE FloridaStateUniversity Oak RidgeNationalLaboratory GEORGE A. COWAN JULfAN NIELSEN Los Alamos ScientificLaboratory HanfordLaboratories ARTHUR W. FAIRHALL ELLIS P. STEINBERG lJniversityofWashington ArgonneNationalLaboratory JEROME HUDIS PETER C. STEVENSON BrookhavenNationalLaboratory UniversityofCalifornia(Livermore) EARL HYDE LEO YAFFE UniversityofCalifornia(Berkeley) McGillUniversity CONSULTANTS NATHAN BALLOU JAMES DeVOE NavalRadiologicalDefenseLaboratory