The Radiochemistry of Gold COMMITTEE on NUCLEAR SCIENCE

Total Page:16

File Type:pdf, Size:1020Kb

The Radiochemistry of Gold COMMITTEE on NUCLEAR SCIENCE National Academy v of Sciences National Research Council I NUCLEAR SCIENCE SERIES The Radiochemistry of Gold COMMITTEE ON NUCLEAR SCIENCE L. F. CURTISS,Chairman ROBLEY D. EVANS, Vice Chairman NationalBureauofStandards MassachusettsInstituteofTechnology J.A. DeJUREN, Secretary WestinghouseElectricCorporation C. J.BORKOWSKI J.W. IRVINE,JR. Oak RidgeNationalLaboratory MassachusettsInstituteofTechnology ROBERT G. COCHRAN E. D. KLEMA Texas Agriculturaland Mechanical NorthwesternUniversity College W. WAYNE MEINKE SAMUEL EPSTEIN UniversityofMichigan CaliforniaInstituteofTechnology J.J.NICKSON U. FANO MemorialHospital,New York NationalBureauofStandards ROBERT L. PLATZMAN Laboratoirede ChimiePhysique HERBERT GOLDSTEIN NuclearDevelopmentCorporationof D. M. VAN PATTER America BartolResearchFoundation LIAISON MEMBERS PAUL C. AEBERSOLD CHARLES K. REED AtomicEnergyCommission U. S.Air Force J.HOWARD McMILLEN WILLIAM E. WRIGHT NationalScienceFoundation OfficeofNavalResearch SUBCOMMITTEE ON RADIOCHEMISTRY W. WAYNE ME INKE, Chairman HAROLD KIRBY UniversityofMichigan Mound Laboratory GREGORY R. CHOPPIN GEORGE LEDDICOTTE FloridaStateUniversity Oak RidgeNationalLaboratory GEORGE A. COWAN JULfAN NIELSEN Los Alamos ScientificLaboratory HanfordLaboratories ARTHUR W. FAIRHALL ELLIS P. STEINBERG lJniversityofWashington ArgonneNationalLaboratory JEROME HUDIS PETER C. STEVENSON BrookhavenNationalLaboratory UniversityofCalifornia(Livermore) EARL HYDE LEO YAFFE UniversityofCalifornia(Berkeley) McGillUniversity CONSULTANTS NATHAN BALLOU JAMES DeVOE NavalRadiologicalDefenseLaboratory UniversityofMichigan WILLIAM MARLOW NationalBureauofStandards CHEMLSTRY The Radiochemistry bf Gold J. F. EMERY and G. W. LEDDICOTTE Oak Ridge National Laboratory Oak Ridge, Tennessee IssuanceDateMay1961 Subcommittee on RadioChemistry National Academy of Sciences —National Research Council PrintedinUSA. Price$0.50.AvailablefromtbeOfficeofTecbnicnl Services,DeprtmentofCommerce,Wne.blngton25,D.C. FOREWORD The Subcommittee on Radiochemistry is one of a number of subcommittees working under the Committee on Nuclear Science within the National Academy of Sciences - National Research Council. Its members represent government, industrial, and university laboratories in the areas of nuclear chemistry and analytical chemistry, The Subcommittee has concerned itself with those areas of nuclear science which involve the chemist, such as the collec- tion and distribution of radiochemical procedures, the estab- lishment of specifications for radiochemically pure reagenks, availability of cyclotron time for service irradiations, the place of radiochemistry in the undergraduate college program, etc . This series of monographs has grown out of the need for up-to-date compilations of radiochemical information and pro- cedures. The Subcommittee has endeavored to present a series which will be of maximum use to the working scientist and which contains the latest available information. Each mono- .ma~h collects in one volume the wertinent information reauired ~or-radiocbemical work with an individual element or a grotip of closely related elements. .Anexpert in the radiochemistry of the particular element has written the monograph, following a standard format developed by the Subcommittee. The Atomic Energy Commission has sponsored the printing of the series. The Subcommittee is confident these publications will be useful.not only to the radiochemist but also to the research worker in other fields such as physics, biochemistry or medicine who wishes to use radiochemical techniques ‘Gosolve a specific problem. W. Wasme Meinke, Chairman Subcobittee on-Radiochemistry iii INTRODUCTION This volume which deals with the.,radlochemistry of gold 1s one of a series of monographs on radiochemlstry of the elements. There Is included a review of the nuclear and chemical features of particular interest to the radiochemist, a discussion of problems of dissolution of a sample and counting techniques, and finally, a collection of radlochemlcal procedures for the element as found In the literature. The series of monographs will cover all elements for which radiochemical procedures are pertinent. Plans Include revision of the monograph periodically as new techniques and procedures warrant. The reader Is therefore encouraged to call to the attention of the author any published or unpublished material on the radlochemistry of gold which might be Included In a revised version of the monograph. iv CONTENTS 3.. GeneralReferenceso= Vne Inorganicand. Analytical Chemistry of Gold . 1 11. Radioactive Nuclides of’Gold . 1 III. The Cnemistryof Gold and Its Applicationto the Radiochemistryof Gold.Radionuclides. ~ A. Reviewof the Chemistryof Gold . 1+ 1. MetallicGold . <. 5 2. The Compoundsof Gold . .,> 6 s,. The Oxideand OxyacidCom~ounds of Gold . 6 b. The Halide Compounds of Gold . 7 c. The Sulfide Compounds of Go3.d . 10 d. The Cyanide and.Cyanoaurate Compounds of Gold . 11 e. The Organometallic Compounds of Gold. 12 . B. Analytical Methods for Gold . 12 1. Separation by Reduction to Metal . 12 2. Volatilization . 13 3. Separation by Electrolytic Methods . 13 4. Separ:%tionby Solvent Extraction . 13 a. Ion Association Systems . 14 b. Chelate Complex Systems . 15 5. Separations by Ion Exchww Resins . 15 6. Se~arations b; PaperChrornatowaPhY and Electrophores~s . 16 IV. Decomposition of Materiak Containing Gold . 17 v. SSfety Practices . 17 VI. Counting Techniques for Radioactive Gold Isotopes . 17 VII . Collection of Detailed Radiochemical Procedures for GOld. 18 References . 31 Appendix A . , 34 v The Radiochemistry of Gold J. F. EMERY and G. W. LEDDICOTTE Oak Ridge Nationul Laboratory* Oak Ridge, Tennessee I. GENERALREFERENCESON THE INORGANICAND AIJALYTICALCHEMISTRYOF GOLD 1. Kleinberg,J., Argersinger,W. J., Jr., and Griswold, E., Inor- ganic Chemistry, p. 589-606, Heath, Boston (1960). 2. Sidgwick, N. V., The Chemical Elements and Their Compounds, p. 103-92, Oxford UniversityPress, ‘Iondon (1950). 3. Sneed, M. C., Maynard, J. L., and Brasted, R. C., Comprehensive Inorganic Chemistry, Volume II, Van Nostrand, New York (1954). 4. Remy, H., Treatise on Inorganic Chemistry, vol. I, p. h9-422, FAsevier, Amsterdam (1956). 5. Latimer, W. M., The Oxidation States of the Elements and Their Potentials in Aqueous Solutions, 2nd Edition, Prentice-Hall, Inc., NewYork (1952). 6. Chariot, G. and Bezier, D., Quantitative Inorganic Analysis, Jo’hnWiley and Sons, Inc., New York (1957). 7. Hillebrand, W. F., Lundell, G. E. F., Bright, H. A. and Hoffman, J. I., Applied Inorganic Analysisj John Wiley and Sons, Inc., New York, 1953. 8. Treadwell, F. P, and Hall, W. T., Analytical Chemistry, Vol. II, John Wiley and Sons, Inc., New York, 19k2. IT. RADIOACTIVE NUCLIDES OF GOLD The radioactive nuclides of gold that are of interest in the radio- chemistry of gold are given in Table I. This table has been compiled from * Operated for U. S. Atomic Energy Conmrissionby Union Carbide Nuclear Company. 1 (l-) informationappe~ in reports by Stromi~r, et”al., and by Hughee Table 1. ~OaCtive hC~deE Of Oold Radio- Mode of nucllde.e Half-1ife Decay Ener#ee ti R41atlon ProducedBy ~191 3.0 h m 7: 0.3;0.1L; O.60 Ir(a#n)~igi Pt(d,3n) AU191 ~lg2 h ‘ 4,7 -EC,‘p --:--“73ol~7#.* “ Ir(a,3U)q1& Pt(d,2n)&l ~u193m 3.8 e IT- j: 0.257 ;0.0*- Ir(q2n)fu&3 Pt(d,n)Au ~193 16h EC 7: 0.112;0.i73;0.l&j W(d,3n)Au193 hw 39.5 n EC, p 7: 0.327 ;0.291;0.611 Ir(a,3n)Au~~~ pt(wn AU@ 1 7t[:n7i3* ~ulg% 30s IT 7: o.261;o.om;o.318 ~~95 U35 d N 7: o.031;o.ogg;o.130 *ulgiul 14.0 h EC orIT #6 5.60 a m, B- 13-0.30 7: o.331;o.35L ~uwb 7.L B m 7: o.130;o.m;o.44J7 *ulg8 2.70 d P- 13- 0.959; 0.28;1.37 7: o.u77;o.676;lmo8g @9 3.15 d P- 13- 0.30; 0.25;0.46 7: 0.209 ;0.050 Au~ Mm P- p- 2.2 7: 1.13;0.39 @l 26 m r p-1.5 7: 0.55 @2 25 EI &03 55 B if B-.1.9 “2 . III. TEE CHEMI~OF GOLD ANO ITS APPLICATIONTO THE RADIOCHR41SFRYOF GOLD RADIONUCLIDES Radiochemlstryie probably best desctibedas being au analysie tech- nique used primarily either (1) to assist in obtaining a pure radionuc~de in some fomn BO that au *solute measurementof its rsdioactivlty,radia- tion ener@es and half-life can be mede, or (2) to determine the amount of radioactivity of a particularrailioelenentin a radionucliderdxture, or (3) to complete a radioactivatlonmlysis being used to detemine the concentmtion of a specific stable element in a particular sample material. In order to.be an ald in accomplishingw one of the above interests, radiochemistryusually considersthe isolationof the desired radlonuclide by either carrier or carrier-freereparationmethods. Generally,carriermethods are used most frequentlyin rsdiochemlstry. &ey involve the eddltion of a small mount of tiactive stable element to a solution of the irtiiated material to serve as a carrier of the rsdlo- nuclide of that element through the sepa=tion method. In carrier-free separations,I.e., those rsdiochemlcaltechniquesused umstly for absolute radioactivitymeasurements, it is required that the raclloelementbe iso- lated in a manner capable of giving either no amount or a minimal amount of stable elemnt in the final form to be ueed in the radi.wctlvity measurements. In most instances,emalyticalmillochemistryts dependent upon more conventionalidea6 in analyticalchemistryinvolvlngseparationsby such methods as precipitation,solvent extraction,ch&nato~aphy, volatiliza- tion, and/or electromalysis and the subsequentpresentitlonof the isolated radloelementIn a fomn suitable for a measurementof the radloelementis radioactivity. One major differenceexists between carrier rsdlochemistry
Recommended publications
  • The Radiochemistry of Tungsten
    National Academy of Sciences !National Research Council NUCLEAR SCIENCE SERIES The Radiochemistry of Tungsten — ...—- L. F. C URTISS,Chairman ROBLEY D. EVANS, Vice Chairman NationalBureau ofStandards MassachusettsInstituteofTechnology J.A. DeJUREN, Secretary WestinghouseElectricCorporation C. J.BORKOWSKI J.W. IRVINE,JR. Oak RidgeNationalLaboratory MassachusettsI&tituteofTechnology ROBERT G. COCHRAN E. D. KLEMA Texas Agriculturaland Mechanical NorthwesternUniversity College W. WAYNE MEINKE SAMUEL EPSTEIN UniversityofMichigan CaliforniaInstituteofTechnology J.J.NICKSON Memorial Hospital,New York U. FANO NationalBureau ofStandards ROBERT L. PLATZMAN Laboratoirede Chimie Physique HERBERT GOLDSTEIN NuclearDevelopmentCorporationof D. M. VAN PATTER America BartolResearch Foundation LIAISON MEMBERS PAUL C. AEBERSOLD CHARLES K. REED Atomic Energy Commission U. S.Air Force J.HOWARD McMILLEN WILLIAM E. WRIGHT NationalScienceFoundation OfficeofNavalResearch SUBCOMMITTEE ON RADIOCHEMISTRY W. WAYNE MEINKE, Chai~man HAROLD KIRBY UniversityofMichigan Mound Laboratory GREGORY R. CHOPPIN GEORGE LEDDICOTTE FloridaStateUniversity Oak RidgeNationalLaboratory GEORGE A. COWAN JULIAN NIELSEN Los Alamos ScientificLaboratory HanfordLaboratories ARTHUR W. FAIRHALL ELLIS P. STEINBERG UniversityofWashington Argonne NationalLaboratory JEROME HUDIS PETER C. STEVENSON BrookhavenNationalLaboratory UniversityofCalifornia(Livermore) EARL HYDE LEO YAFFE UniversityofC slifornia(Berkeley) McGillUniversity CONSULTANTS NATHAN BALLOU JAMES DeVOE NavalRadiologicalDefenseLaboratory
    [Show full text]
  • SAFETY DATA SHEET According to Regulation (EC) No
    SAFETY DATA SHEET according to Regulation (EC) No. 1907/2006 Revision Date 21.11.2010 Version 8.6 1. Identification of the substance/mixture and of the company/undertaking 1.1 Product identifier Catalogue No. 101582 Product name Tetrachloroauric(III) acid trihydrate 99.5% GR for analysis REACH Registration Number A registration number is not available for this substance as the substance or its use are exempted from registration according to Article 2 REACH Regulation (EC) No 1907/2006, the annual tonnage does not require a registration or the registration is envisaged for a later registration deadline. 1.2 Relevant identified uses of the substance or mixture and uses advised against Identified uses Reagent for analysis For additional information on uses please refer to the Merck Chemicals portal (www.merck-chemicals.com). 1.3 Details of the supplier of the safety data sheet Company Merck KGaA * 64271 Darmstadt * Germany * Phone:+49 6151 72-0 Responsible Department EQ-RS * e-mail: [email protected] 1.4 Emergency telephone Please contact the regional company representation in your country. number 2. Hazards identification 2.1 Classification of the substance or mixture Classification (REGULATION (EC) No 1272/2008) Skin corrosion, Category 1B, H314 Skin sensitization, Category 1, H317 For the full text of the H-Statements mentioned in this Section, see Section 16. Classification (67/548/EEC or 1999/45/EC) C; R34 R43 For the full text of the R-phrases mentioned in this Section, see Section 16. 2.2 Label elements Labelling (REGULATION (EC) No 1272/2008) Hazard pictograms Signal word Danger The Safety Data Sheets for catalogue items are available at www.merck-chemicals.com Page 1 of 8 SAFETY DATA SHEET according to Regulation (EC) No.
    [Show full text]
  • Mesoporous Gold Nanospheres Via Thiolate-Au(I) Intermediates Hao Lv,A,§ Dongdong Xu,A,§Joel Henzie,B,C Ji Feng,D Aaron Lopes,E Yusuke Yamauchi,B,F,G,* and Ben Liua,*
    Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2019 Electronic Supplementary Information (ESI) Mesoporous gold nanospheres via thiolate-Au(I) intermediates Hao Lv,a,§ Dongdong Xu,a,§Joel Henzie,b,c Ji Feng,d Aaron Lopes,e Yusuke Yamauchi,b,f,g,* and Ben Liua,* a.Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China §H.L. and D.X. contributed equally to this work. *Email: [email protected] b.Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China c.International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan d.Department of Chemistry, University of California, Riverside, California 92521, United States e.Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States f.School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia *Email: [email protected] (Y. Yamauchi) g.Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South Korea S1 1. Chemicals and Materials Chloroauric acid (HAuCl4), silver nitrate (AgNO3), hexadecyltrimethylammonium Chloride (CTAC), dioctadecyldimethylammonium chloride (DODAC), and thiourea was purchased from Alfa Aesar. Hydrochloric acid, isopropanol, methanol, acetonitrile, hydrazine hydrate (N2H4, 50%), and diethyl ether were obtained from Sinopharm Chemical Reagent Co.
    [Show full text]
  • Safety Data Sheet
    SAFETY DATA SHEET Creation Date 01-Sep-2010 Revision Date 18-Jan-2021 Revision Number 2 SECTION 1: IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING 1.1. Product identifier Product Description: Hydrogen tetrachloroaurate(III) trihydrate Cat No. : 36400 Synonyms Gold trichloride acid trihydrate; Chloroauric acid trihydrate; Hydrogen tetrachloroaurate(III) trihydrate CAS-No 16961-25-4 Molecular Formula H Au Cl4 . 3 H2 O Reach Registration Number - 1.2. Relevant identified uses of the substance or mixture and uses advised against Recommended Use Laboratory chemicals. Uses advised against No Information available 1.3. Details of the supplier of the safety data sheet Company Alfa Aesar . Avocado Research Chemicals, Ltd. Shore Road Port of Heysham Industrial Park Heysham, Lancashire LA3 2XY United Kingdom Office Tel: +44 (0) 1524 850506 Office Fax: +44 (0) 1524 850608 E-mail address [email protected] www.alfa.com Product Safety Department 1.4. Emergency telephone number Call Carechem 24 at +44 (0) 1865 407333 (English only); +44 (0) 1235 239670 (Multi-language) SECTION 2: HAZARDS IDENTIFICATION 2.1. Classification of the substance or mixture CLP Classification - Regulation (EC) No 1272/2008 Physical hazards Based on available data, the classification criteria are not met ______________________________________________________________________________________________ ALFAA36400 Page 1 / 10 SAFETY DATA SHEET Hydrogen tetrachloroaurate(III) trihydrate Revision Date 18-Jan-2021 ______________________________________________________________________________________________ Health hazards Acute oral toxicity Category 4 (H302) Skin Corrosion/Irritation Category 1 B (H314) Serious Eye Damage/Eye Irritation Category 1 (H318) Skin Sensitization Category 1 (H317) Environmental hazards Based on available data, the classification criteria are not met Full text of Hazard Statements: see section 16 2.2.
    [Show full text]
  • Design and Characteristics of an Optical Nanosensor Based On
    Design and Characteristics of an Optical Nanosensor Based on Immobilization of MWCNTs-g-PCA-Au on a Triacetylcellulose Membrane for Determination Trace Amounts of Thiourea Nahid Sarlak* a,b,c, Zeynab Sameria , Thomas J. Meyerb, Keyvan Shaabanic and Reza Pourrahimd *[email protected] aDepartment of Chemistry, Faculty of Sciences, University of Lorestan, khorram Abad, I.R.Iran bDepartment of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516 USA cEngineering Research Institute, Tehran, I.R.Iran dDepartment of Plant Virus Research, Plant Pets and Diseases Research Institute (PPDRI), Ewin-Tabnak 19395-1454, Tehran, I.R. Iran ABSTRACT sorptive property of CNT is an important factor in its sensing behavior [14]. The development of optical sensors The characterization of an optical absorption based one- is of great interest because of their possible application in shot sensor is described for the determination of thiourea biology, biotechnology and ecology [15-18]. In this work based on the immobilization of new nanocomposite of for the first time, we used the optical sensor for MWCNT-graft-poly(citric acid)/Au on a triacetylcellulose measurement of thiourea. So Multiwalled carbon membrane. MWCNT-g-PCA/Au is covalently bonded to a nanotubes were functionalized and gold nanoparticles transparent triacetylcellulose film. Thiourea reacts with the were encapsulated on CNT-g-PCA. Then we discuss the immobilized nanocomposite and causes a decrease in the application of MWCNTs-g-PCA-Au as a reagent which absorbance of the film at 300 nm. The response time of immobilized on a triacetylcellose membrane for sensing phase is within 5 min depending on the fabrication of an optical absorption based one-shot sensor concentration of thiourea.
    [Show full text]
  • A Method for Determining Small Amounts of Gold, and Its Use in Ascertaining the Thick
    U. S. DEPARTMENT OP COMMERCE NATIONAL BUREAU OP STANDARDS RESEARCH PAPER RP1694 Part of Journal of Research of the 7'{ational Bureau of Standards, Volume 36, February 1946 A METHOD FOR DETERMINING SMALL AMOUNTS OF GOLD, AND ITS USE IN ASCERTAINING THE THICK. NESS OF ELECTRODEPOSITED GOLD COATINGS By W. Stanley Clabaugh ABSTRACT This paper presents a method for the determination of the thickness of gold electroplate, using a punch and die to obtain samples of known small area. Amounts of gold up to 10 micrograms (0.010 mg), corresponding to a thickness of 0.00050 mm (0.00002 in.) or less on 1 mm2 (0.00155 in.2) of surface, are determined directly by means of the color produced with o-tolidine. Results are reported for thicknesses of gold plate on experimentally plated samples and on commercially plated products. CONTENTS Page I. Introduction ___ ______ ___ _______-- -- -- -- - ------ -- - - - - - - -- _ - ______ 119 II. Colorimetrictolidine ____________ determination_______ of small__ ________ amounts__ _ ___of _gold__ __ _____by means____ _of__ _0-_ 120 1. Preparation and stability of the reagent solution of o-tolidine and of dilute solutions of gold_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ 120 2. Preparation and measurement of the color of the o-tolidine-gold solution _________________ __ ________________ ___ ___ ____ __ 121 III. Application of the colorimetric method to the determination of the thickness of electrodeposited gold plate_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ 123 1.
    [Show full text]
  • Ion-Pair Based Liquid–Liquid Extraction of Gold(III) from Malonate Media Using 2-Octylaminopyridine As an Extractant: Analysis of Alloys, Minerals, and Drug Samples
    Turkish Journal of Chemistry Turk J Chem (2018) 42: 1032 – 1044 http://journals.tubitak.gov.tr/chem/ © TÜBİTAK Research Article doi:10.3906/kim-1712-34 Ion-pair based liquid–liquid extraction of gold(III) from malonate media using 2-octylaminopyridine as an extractant: analysis of alloys, minerals, and drug samples Vishal SURYAVANSHI1;2,, Arjun KOKARE2,, Sunil ZANJE2,, Abhijeet MULIK1,, Rupali PAWAR1,, Makrand PATIL1,, Ashwini GAIKWAD2,, Mansing ANUSE2,, Ganpatrao MULIK1;∗, 1P. G. Department of Chemistry, Balwant College, Vita, Sangli, Maharashtra, India 2Analytical Chemistry Laboratory, Department of Chemistry, Shivaji University Kolhapur, Maharashtra, India Received: 15.12.2017 • Accepted/Published Online: 02.04.2018 • Final Version: 03.08.2018 Abstract: Liquid–liquid extraction of Au(III) from aqueous sodium malonate medium using 2-octylaminopyridine (2-OAP) as an extractant in xylene was achieved. The current work explored the influence of several experimental parameters such as pH, weak acid concentration, extractant concentration, equilibrium time, stripping agents, and aqueous:organic volume ratio on the extraction of Au(III). The experimental results showed that the Au(III) was quantitatively extracted to about 99.5% by 0.05 M 2-OAP in 0.05 M malonate at 5.0 pH. Ammonia solution was used to strip the gold-loaded organic phase and about 99.5% of Au(III) was reversibly extracted into the aqueous phase. + − Gold(III) was extracted into the organic phase via formation of ion-pair complex [2-OAPH .Au (C 3 H 2 O 4)2 ]. The stoichiometry of the extracted species was 1:2:1 (metal: acid: extractant) determined by slope analysis.
    [Show full text]
  • Radiochemistry and Uranium Laboratories
    HAZEN RESEARCH, INC. Analytical Department Superfun4Recoi er SITE: J 4601 Indiana St., Golden, CO 80403 303-279-4501 BREAK: OTHER: QUALITY MANUAL Radiochemistry and Uranium Laboratories Policies and Procedures Established to meet NELAC Quality Systems Standards Reviewed, Acknowledged, and Approved by: Signature Date Bill Youngclaus Bench Chemist Richard Oberto Senior Chemist Ann Strapac Lab Technician Eve DelaFuente Group Supervisor s* 'A*/ Robert Rostad Laboratory Manager John C. Jarvis Laboratory Director QA Officer Eleventh Revision, 3/8/2000 Quality Manual Page 1 Radiochemistry Laboratory Revision 11 Hazen Research Inc. 3/8/2000 TABLE of CONTENTS 1.0 Laboratory Description and Quality Statement 1.1 Laboratory Profile 4 1.2 Management Quality Statement 4 1.3 Laboratory Organization 5 2.0 Personnel 2.1 Job Descriptions and Responsibilities 5 2.2 Training 5 2.3 Resumes 6 2.4 Director's Certifications 6 2.5 Employee Signatures and Initials 6 3.0 Facilities 3.1 General Description 6 3.2 Hazen Campus Map 7 3.3 Analytical Department Floor Plan 7 4.0 Licenses and Laboratory Certifications 7 5.0 Methodology 5.1 Standard Operating Procedures 8 5.2 Radium-226 (ZnS scintillation counting) 8 5.3 Radium-226 (alpha spectrometry) 8 5.4 Radium-228 8 5.5 Thorium-230 9 5.6 Polonium-210. 9 5.7 Lead-210 10 5.8 Gross Alpha, Beta 10 5.9 Uranium 10 5.10 Radiocesium 11 5.11 Radiostrontium. 11 5.12 Tritium 12 5.13 Radon 12 5.14 Method Exceptions and Departures 12 5.15 Employee SOP Certification 13 continued next page Quality Manual Page 2 Radiochemistry Laboratory Revision 11 Hazen Research Inc.
    [Show full text]
  • Molecular Recognition by Gold, Silver and Copper Nanoparticles Yannick Tauran, Arnaud Brioude, Anthony W
    Molecular recognition by gold, silver and copper nanoparticles Yannick Tauran, Arnaud Brioude, Anthony W. Coleman, Moez Rhimi, Beonjoom Kim To cite this version: Yannick Tauran, Arnaud Brioude, Anthony W. Coleman, Moez Rhimi, Beonjoom Kim. Molecular recognition by gold, silver and copper nanoparticles. World journal of biological chemistry, Baishideng Publishing Group, 2013, 4 (3), pp.35-63. 10.4331/wjbc.v4.i3.35. hal-01204488 HAL Id: hal-01204488 https://hal.archives-ouvertes.fr/hal-01204488 Submitted on 29 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. World Journal of W J B C Biological Chemistry Online Submissions: http://www.wjgnet.com/esps/ World J Biol Chem 2013 August 26; 4(3): 35-63 [email protected] ISSN 1949-8454 (online) doi:10.4331/wjbc.v4.i3.35 © 2013 Baishideng. All rights reserved. REVIEW Molecular recognition by gold, silver and copper nanoparticles Yannick Tauran, Arnaud Brioude, Anthony W Coleman, Moez Rhimi, Beonjoom Kim Yannick Tauran, Arnaud Brioude, Anthony W Coleman, Emphasis for the nucleic acids is on complementary CNRS, LMI, University of Lyon 1, F69622 Villeurbanne, France oligonucleotide and aptamer recognition. For the pro- Yannick Tauran, Anthony W Coleman, Beonjoom Kim, Insti- teins the recognition properties of antibodies form the tute of Industrial Science, University of Tokyo, Tokyo 153-0041, core of the section.
    [Show full text]
  • Chemistry (CHEM) 1
    Chemistry (CHEM) 1 CHEM 6A. Introduction to General Chemistry. 5 Units CHEMISTRY (CHEM) Prerequisite(s): One year high school algebra; high school chemistry recommended. CHEM 1A. General Chemistry I. 5 Units General Education Area/Graduation Requirement: Laboratory (B3), Prerequisite(s): High school chemistry and college algebra; sufficient Physical Science (B1) performance on the college algebra diagnostic test, or equivalent; Term Typically Offered: Fall, Spring passing score on a standardized Chemistry diagnostic exam given prior to each semester, or a minimum grade of "C" in CHEM 4. Structure of atoms, molecules and ions; their interactions including General Education Area/Graduation Requirement: Physical Science (B1), stoichiometry, equilibria, and oxidation-reduction. Does not fulfill the Laboratory (B3) requirements for more advanced study in chemistry and cannot be Term Typically Offered: Fall, Spring counted toward a major or minor in chemistry. Lecture three hours, discussion one hour, laboratory three hours. Fundamental principles and concepts of chemistry, including CHEM 6B. Introduction to Organic and Biological Chemistry. 5 Units stoichiometry; thermochemistry; atomic and molecular structure; Prerequisite(s): CHEM 1A or CHEM 6A, or a high school chemistry course solution chemistry, including acid-base chemistry; quantum theory; and passing a qualifying exam given in the first laboratory period. bonding and intermolecular forces; and chemical kinetics. Lecture three General Education Area/Graduation Requirement: Further Studies in Area hours, laboratory three hours, discussion one hour. B (B5) Note: Not open to enrollment by engineering majors, who should take Term Typically Offered: Fall, Spring CHEM 1E, General Chemistry for Engineering. Introduction to structure and properties of the major classes of organic CHEM 1B.
    [Show full text]
  • Chemistry (CHEM) 1
    Chemistry (CHEM) 1 CHEMISTRY (CHEM) GenEd Learning Objective: Key Literacies CHEM 5: Kitchen Chemistry CHEM 1: Molecular Science 3 Credits 3 Credits CHEM 5 Kitchen Chemistry (3) (GN)(BA) CHEM 5 focuses on an Selected concepts and topics designed to give non-science majors an elementary discussion of the chemistry associated with foods and appreciation for how chemistry impacts everyday life. Students who cooking. It incorporates lectures and videos, reading, problem-solving, have received credit for CHEM 3, 101, 130, or 110 may not schedule and "edible"; home experiments to facilitate students' understanding of this course. CHEM 1 is designed for students who want to gain a better chemical concepts and scientific inquiry within the context of food and appreciation of chemistry and how it applies to everyone's everyday cooking. Please note that this is a chemistry class presented in a real life. You are expected to have an interest in understanding the nature of world interactive way, not a cooking class! The course will start from a science, but not necessarily to have any formal training in the sciences. primer on food groups and cooking, proceed to the structures of foods, During the course, you will explore important societal issues that can be and end with studies of the physical and chemical changes observed in better understood knowing some concepts in chemistry. The course is foods. Students will develop an enhanced understanding of the chemical largely descriptive, though occasionally a few simple calculations will principles involved in food products and common cooking techniques. be done to illuminate specific information.
    [Show full text]
  • Quality, Isotopes, and Radiochemistry of Water Sampled from the Upper Moenkopi Village Water-Supply Wells, Coconino County, Arizona
    Prepared in cooperation with the Hopi Tribe Quality, Isotopes, and Radiochemistry of Water Sampled from the Upper Moenkopi Village Water-Supply Wells, Coconino County, Arizona Open-File Report 2013–1162 U.S. Department of the Interior U.S. Geological Survey FRONT COVER Overview of Upper and Lower Moenkopi Villages from the south looking north across Moenkopi Wash. Photograph taken by D.J. Bills, Fall 2008. Quality, Isotopes, and Radiochemistry of Water Sampled from the Upper Moenkopi Village Water-Supply Wells, Coconino County, Arizona By Robert L. Carruth, Kimberly Beisner, and Greg Smith Prepared in cooperation with the Hopi Tribe Open-File Report 2013–1162 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2013 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Carruth, R.L., Beisner, Kimberly, and Smith, Greg, 2013, Qualilty, isotopes, and radiochemistry of water sampled from the Upper Moenkopi Village water-supply wells, Coconino County, Arizona: U.S.
    [Show full text]