August 2021 Issue No
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
FINAL REPORT 2019 Canna Reserve
FINAL REPORT 2019 Canna Reserve This project was supported by NACC NRM and the Shire of Morawa through funding from the Australian Government’s National Landcare Program Canna Reserve BioBlitz 2019 Weaving and wonder in the wilderness! The weather may have been hot and dry, but that didn’t stop everyone having fun and learning about the rich biodiversity and conservation value of the wonderful Canna Reserve during the highly successful 2019 BioBlitz. On the 14 - 15 September 2019, NACC NRM together with support from Department of Biodiversity Conservation and Attractions and the Shire of Morawa, hosted their third BioBlitz at the Canna Reserve in the Shire of Morawa. Fifty professional biologists and citizen scientists attended the event with people travelling from near and far including Morawa, Perenjori, Geraldton and Perth. After an introduction and Acknowledgement of Country from organisers Jessica Stingemore and Jarna Kendle, the BioBlitz kicked off with participants separating into four teams and heading out to explore Canna Reserve with the goal of identifying as many plants, birds, invertebrates, and vertebrates as possible in a 24 hr period. David Knowles of Spineless Wonders led the invertebrate survey with assistance from, OAM recipient Allen Sundholm, Jenny Borger of Jenny Borger Botanical Consultancy led the plant team, BirdLife Midwest member Alice Bishop guided the bird survey team and David Pongracz from Department of Biodiversity Conservation and Attractions ran the vertebrate surveys with assistance from volunteer Corin Desmond. The BioBlitz got off to a great start identifying 80 plant species during the first survey with many more species to come and even a new orchid find for the reserve. -
On the Flora of Australia
L'IBRARY'OF THE GRAY HERBARIUM HARVARD UNIVERSITY. BOUGHT. THE FLORA OF AUSTRALIA, ITS ORIGIN, AFFINITIES, AND DISTRIBUTION; BEING AN TO THE FLORA OF TASMANIA. BY JOSEPH DALTON HOOKER, M.D., F.R.S., L.S., & G.S.; LATE BOTANIST TO THE ANTARCTIC EXPEDITION. LONDON : LOVELL REEVE, HENRIETTA STREET, COVENT GARDEN. r^/f'ORElGN&ENGLISH' <^ . 1859. i^\BOOKSELLERS^.- PR 2G 1.912 Gray Herbarium Harvard University ON THE FLORA OF AUSTRALIA ITS ORIGIN, AFFINITIES, AND DISTRIBUTION. I I / ON THE FLORA OF AUSTRALIA, ITS ORIGIN, AFFINITIES, AND DISTRIBUTION; BEIKG AN TO THE FLORA OF TASMANIA. BY JOSEPH DALTON HOOKER, M.D., F.R.S., L.S., & G.S.; LATE BOTANIST TO THE ANTARCTIC EXPEDITION. Reprinted from the JJotany of the Antarctic Expedition, Part III., Flora of Tasmania, Vol. I. LONDON : LOVELL REEVE, HENRIETTA STREET, COVENT GARDEN. 1859. PRINTED BY JOHN EDWARD TAYLOR, LITTLE QUEEN STREET, LINCOLN'S INN FIELDS. CONTENTS OF THE INTRODUCTORY ESSAY. § i. Preliminary Remarks. PAGE Sources of Information, published and unpublished, materials, collections, etc i Object of arranging them to discuss the Origin, Peculiarities, and Distribution of the Vegetation of Australia, and to regard them in relation to the views of Darwin and others, on the Creation of Species .... iii^ § 2. On the General Phenomena of Variation in the Vegetable Kingdom. All plants more or less variable ; rate, extent, and nature of variability ; differences of amount and degree in different natural groups of plants v Parallelism of features of variability in different groups of individuals (varieties, species, genera, etc.), and in wild and cultivated plants vii Variation a centrifugal force ; the tendency in the progeny of varieties being to depart further from their original types, not to revert to them viii Effects of cross-impregnation and hybridization ultimately favourable to permanence of specific character x Darwin's Theory of Natural Selection ; — its effects on variable organisms under varying conditions is to give a temporary stability to races, species, genera, etc xi § 3. -
Species List
Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations. -
Rangelands, Western Australia
Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations. -
Woodland Watch 2004 Survey of Wheatbelt Woodlands
Woodland Watch 2004 Survey of Wheatbelt Woodlands Western Australian Herbarium Woodland Watch, 2004 Survey of Wheatbelt Woodlands Contents Introduction 2 Methodology 3 Results 4 Collections of Note 5 Likely New Species 5 DRF and Priority Taxa (confirmed) 6 Significant Range Extensions 7 Other Collections of Interest 8 Conclusion 11 Acknowledgements 12 References 12 Map of Survey Sites 13 Species Lists 14 Species recorded to Genus 45 Published Tuesday 31th April 2005 © Western Australian Herbarium Department of Conservation and Land Management Locked Bag 104 Bentley Delivery Centre Western Australia 6983 1 Woodland Watch, 2004 Survey of Wheatbelt Woodlands Introduction Woodland Watch is a woodlands conservation project launched in 2000 by WWF- Australia, in collaboration with the Herbarium of the Department of Conservation and Land Management, and with the assistance of funding from the Natural Heritage Trust and Alcoa Australia. One of the major objectives of the project was to carry out floristic surveys of selected remnant eucalypt woodlands of the Avon Wheatbelt region – on private farmlands and other lands not within the conservation estate. The Avon Wheatbelt bioregion is situated in the South West Botanical Province of Western Australia, which roughly corresponds to one of WWF’s Global 200 priority ecoregions - the Southwest Australia Ecoregion. It is bound by Jarrah forest in the southwest, and the Eremaean Botanical Province –the Murchison and goldfields districts, to the northeast. It encompasses an area of 93,520 square kms, of which 93% has been cleared – predominantly for agriculture (Beard 1990). Four woodland types considered by WWF-Australia to be amongst the most threatened eucalypt woodland communities of the Avon Wheatbelt region were selected for the research and conservation project: those dominated by salmon gum (Eucalyptus salmonophloia), gimlet (E. -
Flora & Vegetation Assessment
FLORA & VEGETATION ASSESSMENT ARROWSMITH NORTH SURVEY AREA Prepared By Prepared For VRX Silica Limited Date February 2021 DOCUMENT STATUS DOCUMENT REFERENCE: VRX2021/06/21 VERSION TYPE AUTHOR/S REVIEWER/S DATE DISTRIBUTED V1 Internal review S. Ruoss E.M. Mattiske - V2 Draft for client S. Ruoss E.M. Mattiske 18/03/2019 Revised report including J. Rogers V3 E.M. Mattiske 30/01/2020 updated survey area /L. Taaffe/S. Ruoss V4 Initial Report E. M. Mattiske E.M. Mattiske 16/04/2020 V5 Draft E.M. Mattiske E.M. Mattiske 21/12/2020 V6 Draft E.M. Mattiske E.M. Mattiske 3/02/2021 V7 Revised Report S. Ruoss E.M. Mattiske 18/02/2021 (ACN 063 507 175, ABN 39 063 507 175) PO Box 437 Kalamunda WA 6926 Phone: +61 8 9257 1625 Email: [email protected] COPYRIGHT AND DISCLAIMER Copyright The information contained in this report is the property of Mattiske Consulting Pty Ltd. The use or copying of the whole or any part of this report without the written permission of Mattiske Consulting Pty Ltd is not permitted. Disclaimer This report has been prepared on behalf of and for the exclusive use of VRX Silica Ltd, and is subject to and issued in accordance with the agreement between VRX Silica Ltd and Mattiske Consulting Pty Ltd. This report is based on the scope of services defined by VRX Silica Ltd, the budgetary and time constraints imposed by VRX Silica Ltd, and the methods consistent with the preceding. Mattiske Consulting Pty Ltd has utilised information and data supplied by VRX Silica Ltd (and its agents), and sourced from government databases, literature, departments and agencies in the preparation of this report. -
Integrative and Comparative Biology Integrative and Comparative Biology, Volume 59, Number 3, Pp
Integrative and Comparative Biology Integrative and Comparative Biology, volume 59, number 3, pp. 517–534 doi:10.1093/icb/icz089 Society for Integrative and Comparative Biology SYMPOSIUM The Evolution of CAM Photosynthesis in Australian Calandrinia Reveals Lability in C3þCAM Phenotypes and a Possible Constraint Downloaded from https://academic.oup.com/icb/article-abstract/59/3/517/5510550 by Yale University user on 17 January 2020 to the Evolution of Strong CAM Lillian P. Hancock,1,*,† Joseph A. M. Holtum† and Erika J. Edwards*,‡ *Department of Ecology and Evolutionary Biology, Brown University, Box G-W, Providence, RI 02912, USA; †Terrestrial Ecosystems and Climate Change, College of Marine and Environmental Sciences, James Cook University, Townsville, 4811, Queensland, Australia; ‡Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT PO Box 208105, 06520, USA From the symposium “Integrative Plant Biology” presented at the annual meeting of the Society for Integrative and Comparative Biology, January 3–7, 2019 at Tampa, Florida. 1E-mail: [email protected] Synopsis Australian Calandrinia has radiated across the Australian continent during the last 30 Ma, and today inhabits most Australian ecosystems. Given its biogeographic range and reports of facultative Crassulacean acid metabolism (CAM) photosynthesis in multiple species, we hypothesized (1) that CAM would be widespread across Australian Calandrinia and that species, especially those that live in arid regions, would engage in strong CAM, and (2) that Australian Calandrinia would be an important lineage for informing on the CAM evolutionary trajectory. We cultivated 22 Australian Calandrinia species for a drought experiment. Using physiological measurements and d13C values we characterized photosynthetic mode across these species, mapped the resulting character states onto a phylogeny, and characterized the climatic envelopes of species in their native ranges. -
Calandrinia Granulifera Benth., Fl
CalandriniaListing statement for Calandrinia granulifer granulifera (pygmy purslanea) pygmy purslane T A S M A N I A N T H R E A T E N E D S P E C I E S N O T E S H E E T Image by Tim Rudman Scientific name: Calandrinia granulifera Benth., Fl. Austral. 1: 176 (1863 Common name: pygmy purslane (Wapstra et al. 2005) Group: vascular plant, dicotyledon, family Portulacaeae Name history: Calandrinia neesiana Status: Threatened Species Protection Act 1995: rare Environment Protection and Biodiversity Conservation Act 1999: Not listed Distribution: Endemic status: not endemic to Tasmania Tasmanian NRM regions: North Figure 1. Distribution of Calandrinia granulifera in Plate 1. Calandrinia granulifera: habit Tasmania, showing NRM regions (image by Richard Schahinger) Threatened Species Section – Department of Primary Industries, Parks, Water and Environment Listing statement for Calandrinia granulifera (pygmy purslane) SUMMARY: Calandrinia granulifera (small obovoid to almost globular, the largest up to 10 purslane) is a small succulent annual herb that mm long and 5 mm wide. Flowers up to 10 per occurs on a variety of substrates in Tasmania, branch; pedicels 1 to 2 mm long, stout, erect in mostly in near-coastal areas in the northeast, fruit. Sepals 2, broad-ovate to orbicular, very with an outlying occurrence in the Northern thick, usually 1.5 to 3 mm long, not persistent Midlands. Available information suggests that in fruit. Petals 5 to 7, free, pink fading to white, subpopulations are small and relatively 2.5 to 4 mm long, broad-oblong to localised; the total population is estimated to be oblanceolate (to lanceolate to elliptic). -
Biodiversity Summary: Western, New South Wales
Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations. -
Rumicastrum Ulbrich (Montiaceae): a Beautiful Name for the Australian Calandrinias
116 Phytologia (Sep 21, 2020) 102(3) Rumicastrum Ulbrich (Montiaceae): a beautiful name for the Australian calandrinias Mark A. Hershkovitz Santiago, Chile [email protected] ABSTRACT: For more than 30 years, Montiaceae specialists have agreed that Australian species classified in Calandrinia Kunth pertain to a distinct and divergent lineage whose oldest validly published name is Rumicastrum Ulbrich. In 1998, more than half of accepted species were transferred erroneously to a new genus, Parakeelya Hershk. However, taxonomists and databases have continued to classify the species in Calandrinia, confounding the taxonomy of the latter. Here, 65 Australian species classified in Calandrinia are transferred to Rumicastrum. This consummates the phylogenetic revision of Montiaceae taxonomy initiated more 30 years ago. Published on-line www.phytologia.org Published on-line www.phytologia.org Phytologia 102(3): 116-123 (Sept 21, 2020). ISSN 030319430. KEY WORDS: Rumicastrum, Calandrinia, Parakeelya, Montiaceae, Australia. Carolin (1987) published a seminal analysis of classical Portulacaceae (including Montiaceae) that found, among other things, polyphyly of the classical circumscription of the genus Calandrinia Kunth, which then included ca.120 accepted species. He determined that the 30–35 accepted Australian species then classified in Calandrinia represented a lineage distinct and divergent from other members of Calandrinia s. lato. He also determined that the monotypic Australian genus Rumicastrum Ulbrich [TYPE: R. chamaecladum (Diels) Ulbrich]), originally classified in Chenopodiaceae, pertained to this lineage. He prepared but did not publish a manuscript that recombined all named Australian calandrinias in Rumicastrum. Hershkovitz (1993) substantially revised Carolin’s (1987) analysis and established the current circumscription of Calandrinia (see Hershkovitz, 2019), comprising then only ca. -
Notes on the Presentation of the Species Lists for the Sites Studied
Woodland Watch 2003 Survey of Wheatbelt Woodlands Western Australian Herbarium Woodland Watch, 2003 Survey of Wheatbelt Woodlands Contents Introduction 3 Methodology 4 Results 5 Collections of Note 6 Rare and Priority Listed Taxa 6 Other Notable Collections 7 Notes on the Species Lists 9 Conclusion 10 Acknowledgements 11 References 11 Map of Survey Sites 12 Species Lists 13 Published Tuesday 31th April 2005 © Western Australian Herbarium Department of Conservation and Land Management Locked Bag 104 Bentley Delivery Centre Western Australia 6983 2 Woodland Watch, 2003 Survey of Wheatbelt Woodlands Introduction Woodland Watch is a woodlands conservation project launched in 2000 by WWF- Australia, in collaboration with the Herbarium of the Department of Conservation and Land Management, and with the assistance of funding from the Natural Heritage Trust and Alcoa Australia. One of the major objectives of the project was to carry out floristic surveys of selected remnant eucalypt woodlands of the Avon Wheatbelt region – on private farmlands and other lands not within the conservation estate. The Avon Wheatbelt bioregion is situated in the South West Botanical Province of Western Australia, which roughly corresponds to one of WWF’s Global 200 priority ecoregions - the Southwest Australia Ecoregion. It is bound by Jarrah forest in the southwest, and the Eremaean Botanical Province –the Murchison and goldfields districts, to the northeast. It encompasses an area of 93,520 square kms, of which 93% has been cleared – predominantly for agriculture (Beard 1990). Four woodland types considered by WWF-Australia to be amongst the most threatened eucalypt woodland communities of the Avon Wheatbelt region were selected for the research and conservation project: those dominated by salmon gum (Eucalyptus salmonophloia), gimlet (E. -
Biodiversity Summary: Swan, Western Australia
Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.