Adec Preview Generated PDF File
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Solar River Project the Solar River Project Pty
Solar River Project The Solar River Project Pty Ltd Data Report - Appendices Cnr Dartmoor Road and Bower Boundary Road, Maude, South Australia 8 March 2018 Solar River Project Data Report - Appendices Cnr Dartmoor Road and Bower Boundary Road, Maude, South Australia Kleinfelder Document Number: NCA18R71494 Project No: 20183040 All Rights Reserved Prepared for: THE SOLAR RIVER PROJECT PTY LTD 10 PULTENEY STREET ADELAIDE, SA, 5000 Only The Solar River Project Pty Ltd, its designated representatives or relevant statutory authorities may use this document and only for the specific project for which this report was prepared. It should not be otherwise referenced without permission. Document Control: Version Description Date Author Technical Reviewer Peer Reviewer P. Fagan and P. 1.0 Draft Data Report 7 March 2018 P. Barron S. Schulz Barron P. Fagan and P. 2.0 Final Data Report 8 March 2018 P. Barron S. Schulz Barron Kleinfelder Australia Pty Ltd Newcastle Office 95 Mitchell Road Cardiff NSW 2285 Phone: (02) 4949 5200 ABN: 23 146 082 500 Ref: NCA18R71494 Page i 8 March 2018 Copyright 2018 Kleinfelder APPENDIX 1. FLORA SPECIES LIST Transmission No. Family Common Name Main Site Scientific Name Line Easement 1. Aizoaceae Tetragonia eremaea Desert Spinach Y 2. Anacardiaceae *Schinus molle Pepper-tree Y 3. Asteraceae *Onopordum acaulon Stemless Thistle Y Y 4. Asteraceae *Carthamus lanatus Saffron Thistle Y Y 5. Asteraceae *Xanthium spinosum Bathurst Burr Y 6. Asteraceae Brachyscome ciliaris Variable Daisy Y Cratystylis 7. Asteraceae Bluebush Daisy Y conocephala 8. Asteraceae Leiocarpa websteri Narrow Plover-daisy Y Y Crinkle-leaf Daisy- 9. Asteraceae Y Olearia calcarea bush 10. -
Kalannie Region Its Closest Relative Is A
Botanical name Acacia merrallii F.Muell., Proc. Linn. Soc. New South Wales ser. 2, 5: 18 (1890) The botanical name commemorates Edwin Merrall who collected the type specimen from near Lake Brown in 1890 (see Hall 1984 for biographical details). Common name Merrall’s Wattle. Characteristic features Shrubs low and spreading. Phyllodes short and broad, smooth, thick and sub-fleshy, minutely hairy when young but glabrous with age, obscurely 1-nerved on each face, apical point distinct. Heads globular. Pods sub-terete, small, strongly curved to irregularly coiled, dark brown to black. Aril bright orange (rarely yellow), conspicuous and partially sheathing the seed. Description Habit. Low-domed or flat-topped, multi-stemmed shrubs (0.2-)0.3-1.5(-2.5) m tall, often +/- circular in plane view and the dense crown spreading 1-4 m wide. Bark. Smooth and grey from base of main stems to the branchlets. New shoots. Grey-green due to a dense layer of hairs. Branchlets. Usually minutely hairy. Phyllodes. Variable in shape and size, obliquely obovate to elliptic-orbicular or oblong-elliptic, rarely ovate, usually 8-25 mm long and 5-17 mm wide with l:w = 1.2-3, smooth, thick and sub-fleshy, green, grey-green or sub-glaucous, finely appressed- hairy when young but becoming glabrous with age; with 1 obscure longitudinal nerve (midrib) on each face, lateral nerves +/- absent; marginal nerves prominent and yellowish; apices ending in a small, curved or straight point which varies from innocuous to +/- pungent; gland situated on the upper margin of the phyllode (on its lower half), not raised. -
Botanical Name. Acacia
Botanical name Acacia colletioides Benth., London J. Bot. 1: 336 (1842) The botanical name is derived from Colletia (a genus in the family Rhamnaceae) and the Greek suffix -oides (like). Some species referred to Colletia have a resemblance to the spiny, rigid foliage of this Acacia. Common names Wait-a-while, Pin-bush, Spine Bush. Characteristic features Large, prickly, much-branched shrubs. Phyllodes +/- terete, sessile, rigid, straight to shallowly curved, widely spreading, finely 8-nerved (with a distinct inter-nerve space between each nerve), narrowed to needle-like points. Heads sub-globular on short peduncles. Pods strongly curved to openly coiled or twisted. Seeds black and 2/3 sheathed by a conspicuous, orange or yellow aril. Description Habit. Harsh, rigid, prickly, much-branched, dense, rounded, usually multi-stemmed shrubs (0.5)1-3 m tall and about the same across, maturing to single-stemmed small trees 3-4 m tall with a dense canopy occupying 50% of the total plant height, in open sites (e.g. roadverges) it grows as a domed plant with the canopy extending to ground level, in dense vegetation it can grow as a small, erect plant with spindly stems and non-spreading crowns (however, these forms are not common in the Kalannie region). Branchlets. Glabrous or sparsely hairy, scarred where phyllodes have fallen. Phyllodes. More or less terete, sessile, inserted on distinct, yellow stem projections, 1.5-3(-4) cm long, 1-1.5 mm in diameter, rigid, widely spreading, straight to shallowly curved, green, glabrous; longitudinal nerves 8, widely spaced and distinct; apices narrowed to rigid, needle-like points. -
Table 5.8 – Descriptions of Priority Flora Recorded in the Project Area Species, Family and Rank Descriptio
Oakajee Port and Rail OPR Rail Proposal – Vegetation and Flora Assessment Table 5.8 – Descriptions of Priority Flora Recorded in the Project Area No of No of Plants Species, Family and Locations Description Typical Habitat Recorded by Distribution Photographs Rank Recorded by ecologia ecologia A dense, rounded shrub growing from 0.5 m to 2 m in height. Its phyllodes are erect and the yellow, globular flowers are produced from June to August. Acacia lineolata Mullewa, east of subsp. multilineata (Photograph on right by S.J. Patrick. Image used Mingenew, Arrino with the permission of the Western Australian Sandplains. 1 1 (FABACEAE) and the locality of Herbarium, Department of Environment and Yuna. Priority 1 Conservation (http://florabase.dec.wa.gov.au/help/copyright). Accessed on Thursday, 3 December 2009) and growth habit again (right) (Photography: ecologia). Chamelaucium sp. 73 km south of Yalgoo (Y. Chadwick A bushy low shrub to 1.5 m high. This species Yalgoo, near Blue 1816) produces white/pink/purple flowers during Granite outcrops. 2 3 Hills, along Morawa‐ (MYRTACEAE) August and September. Yalgoo Road, and Wurarga. Priority 1 An upright, leafless, semi‐succulent herb that grows to between 0.4 and 1 m, although it has been recorded as growing to 2 m. The stems are Robinson Ranges, Euphorbia light green, and have a bluish‐grey waxy light Sandstone and Mount Augustus sarcostemmoides covering. When broken a white sap is exuded quartzite hills but Station. Also East from the stems. The rarely present leaves are has been located 67 254 Chewing Ranges, (EUPHORBIACEAE) narrow, lanceolate, opposite and are held on flat plains at Mount Giles and Priority 1 horizontally. -
Identifying Climate Refugia for Key Species in New South Wales - Final Report from the Bionode of the NSW Adaptation Hub
Identifying Climate Refugia for Key Species in New South Wales - Final Report from the BioNode of the NSW Adaptation Hub Linda J. Beaumont, John B. Baumgartner, Manuel Esperón-Rodríguez, David Nipperess 1 | P a g e Report prepared for the NSW Office of Environment and Heritage as part of a project funded by the NSW Adaptation Research Hub–Biodiversity Node. While every effort has been made to ensure all information within this document has been developed using rigorous scientific practice, readers should obtain independent advice before making any decision based on this information. Cite this publication as: Beaumont, L. J., Baumgartner, J. B., Esperón-Rodríguez, M, & Nipperess, D. (2019). Identifying climate refugia for key species in New South Wales - Final report from the BioNode of the NSW Adaptation Hub, Macquarie University, Sydney, Australia. For further correspondence contact: [email protected] 2 | P a g e Contents Acknowledgements ................................................................................................................................. 5 Abbreviations .......................................................................................................................................... 6 Glossary ................................................................................................................................................... 7 Executive summary ................................................................................................................................. 8 Highlights -
FINAL REPORT 2019 Canna Reserve
FINAL REPORT 2019 Canna Reserve This project was supported by NACC NRM and the Shire of Morawa through funding from the Australian Government’s National Landcare Program Canna Reserve BioBlitz 2019 Weaving and wonder in the wilderness! The weather may have been hot and dry, but that didn’t stop everyone having fun and learning about the rich biodiversity and conservation value of the wonderful Canna Reserve during the highly successful 2019 BioBlitz. On the 14 - 15 September 2019, NACC NRM together with support from Department of Biodiversity Conservation and Attractions and the Shire of Morawa, hosted their third BioBlitz at the Canna Reserve in the Shire of Morawa. Fifty professional biologists and citizen scientists attended the event with people travelling from near and far including Morawa, Perenjori, Geraldton and Perth. After an introduction and Acknowledgement of Country from organisers Jessica Stingemore and Jarna Kendle, the BioBlitz kicked off with participants separating into four teams and heading out to explore Canna Reserve with the goal of identifying as many plants, birds, invertebrates, and vertebrates as possible in a 24 hr period. David Knowles of Spineless Wonders led the invertebrate survey with assistance from, OAM recipient Allen Sundholm, Jenny Borger of Jenny Borger Botanical Consultancy led the plant team, BirdLife Midwest member Alice Bishop guided the bird survey team and David Pongracz from Department of Biodiversity Conservation and Attractions ran the vertebrate surveys with assistance from volunteer Corin Desmond. The BioBlitz got off to a great start identifying 80 plant species during the first survey with many more species to come and even a new orchid find for the reserve. -
Acacia Sessilispica Maiden & Blakely
WATTLE Acacias of Australia Acacia sessilispica Maiden & Blakely Source: Australian Plant Image Index Source: Australian Plant Image Index Source: Australian Plant Image Index (dig.30650). (dig.30649). (dig.30651). ANBG © M. Fagg, 2012 ANBG © M. Fagg, 2012 ANBG © M. Fagg, 2012 Source: W orldW ideW attle ver. 2. Published at: w w w .w orldw idew attle.com B.R. Maslin Source: W orldW ideW attle ver. 2. Source: W orldW ideW attle ver. 2. Published at: w w w .w orldw idew attle.com Published at: w w w .w orldw idew attle.com See illustration. See illustration. Acacia sessilispica occurrence map. O ccurrence map generated via Atlas of Living Australia (https://w w w .ala.org.au). Family Fabaceae Distribution Occurs from Ballidu SE to Ravensthorpe with one collection from near Higginsville (c. 200 km NE of Frank Hann Natl Park), south-western W.A. Description Shrub 0.8-2.5 m high, spreading, rounded. Branchlets slightly angular, glabrous, sometimes resinous. Phyllodes ascending to erect, slightly incurved, terete to slightly compressed, 5-11.5 cm long, 1-1.3 mm diam., acuminate, coarsely pungent with straight to subuncinate tip, ±rigid, glabrous, with 8 closely parallel nerves separated by deep furrows as wide as or wider than nerve-width. Inflorescences simple; spikes sessile, often tapering towards apex when in bud, 10-28 mm long, 3-5 mm diam., densely flowered, pale golden to dark golden; receptacle glabrous; bracteoles peltate. Flowers 4-merous; sepals free or rarely joined basally. Pods deflexed, linear, strongly and sharply raised over but not usually constricted between seeds, straight, to 7 cm long, (2.5-) 3-4.5 mm wide, ±chartaceous, longitudinally ±wrinkled, glabrous. -
Thesis Sci 2009 Bergh N G.Pdf
The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University Systematics of the Relhaniinae (Asteraceae- Gnaphalieae) in southern Africa: geography and evolution in an endemic Cape plant lineage. Nicola Georgina Bergh Town Thesis presented for theCape Degree of DOCTOR OF ofPHILOSOPHY in the Department of Botany UNIVERSITY OF CAPE TOWN University May 2009 Town Cape of University ii ABSTRACT The Greater Cape Floristic Region (GCFR) houses a flora unique for its diversity and high endemicity. A large amount of the diversity is housed in just a few lineages, presumed to have radiated in the region. For many of these lineages there is no robust phylogenetic hypothesis of relationships, and few Cape plants have been examined for the spatial distribution of their population genetic variation. Such studies are especially relevant for the Cape where high rates of species diversification and the ongoing maintenance of species proliferation is hypothesised. Subtribe Relhaniinae of the daisy tribe Gnaphalieae is one such little-studied lineage. The taxonomic circumscription of this subtribe, the biogeography of its early diversification and its relationships to other members of the Gnaphalieae are elucidated by means of a dated phylogenetic hypothesis. Molecular DNA sequence data from both chloroplast and nuclear genomes are used to reconstruct evolutionary history using parsimony and Bayesian tools for phylogeny estimation. -
Flora Survey on Hiltaba Station and Gawler Ranges National Park
Flora Survey on Hiltaba Station and Gawler Ranges National Park Hiltaba Pastoral Lease and Gawler Ranges National Park, South Australia Survey conducted: 12 to 22 Nov 2012 Report submitted: 22 May 2013 P.J. Lang, J. Kellermann, G.H. Bell & H.B. Cross with contributions from C.J. Brodie, H.P. Vonow & M. Waycott SA Department of Environment, Water and Natural Resources Vascular plants, macrofungi, lichens, and bryophytes Bush Blitz – Flora Survey on Hiltaba Station and Gawler Ranges NP, November 2012 Report submitted to Bush Blitz, Australian Biological Resources Study: 22 May 2013. Published online on http://data.environment.sa.gov.au/: 25 Nov. 2016. ISBN 978-1-922027-49-8 (pdf) © Department of Environment, Water and Natural Resouces, South Australia, 2013. With the exception of the Piping Shrike emblem, images, and other material or devices protected by a trademark and subject to review by the Government of South Australia at all times, this report is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. All other rights are reserved. This report should be cited as: Lang, P.J.1, Kellermann, J.1, 2, Bell, G.H.1 & Cross, H.B.1, 2, 3 (2013). Flora survey on Hiltaba Station and Gawler Ranges National Park: vascular plants, macrofungi, lichens, and bryophytes. Report for Bush Blitz, Australian Biological Resources Study, Canberra. (Department of Environment, Water and Natural Resources, South Australia: Adelaide). Authors’ addresses: 1State Herbarium of South Australia, Department of Environment, Water and Natural Resources (DEWNR), GPO Box 1047, Adelaide, SA 5001, Australia. -
Acacia Coolgardiensis Maiden
WATTLE Acacias of Australia Acacia coolgardiensis Maiden Source: W orldW ideW attle ver. 2. Source: W orldW ideW attle ver. 2. Source: W orldW ideW attle ver. 2. Source: W orldW ideW attle ver. 2. Published at: w w w .w orldw idew attle.com Published at: w w w .w orldw idew attle.com Published at: w w w .w orldw idew attle.com Published at: w w w .w orldw idew attle.com B.R. Maslin B.R. Maslin B.R. Maslin B.R. Maslin Source: W orldW ideW attle ver. 2. Source: W orldW ideW attle ver. 2. Published at: w w w .w orldw idew attle.com Published at: w w w .w orldw idew attle.com B.R. Maslin B.R. Maslin Source: W orldW ideW attle ver. 2. Source: W orldW ideW attle ver. 2. Published at: w w w .w orldw idew attle.com Published at: w w w .w orldw idew attle.com B.R. Maslin B.R. Maslin Source: Australian Plant Image Index (dig.22402). ANBG © M. Fagg, 2011 Source: W orldW ideW attle ver. 2. Source: W orldW ideW attle ver. 2. Source: W orldW ideW attle ver. 2. Published at: w w w .w orldw idew attle.com Published at: w w w .w orldw idew attle.com Published at: w w w .w orldw idew attle.com B.R. Maslin B.R. Maslin B.R. Maslin Source: Australian Plant Image Index (dig.22403). ANBG © M. Fagg, 2011 Source: W orldW ideW attle ver. 2. Source: W orldW ideW attle ver. -
Acacia Beauverdiana Ewart & Sharman
Acacia beauverdiana Ewart & Sharman Identifiants : 99/acabea Association du Potager de mes/nos Rêves (https://lepotager-demesreves.fr) Fiche réalisée par Patrick Le Ménahèze Dernière modification le 01/10/2021 Classification phylogénétique : Clade : Angiospermes ; Clade : Dicotylédones vraies ; Clade : Rosidées ; Clade : Fabidées ; Ordre : Fabales ; Famille : Fabaceae ; Classification/taxinomie traditionnelle : Règne : Plantae ; Sous-règne : Tracheobionta ; Division : Magnoliophyta ; Classe : Magnoliopsida ; Ordre : Fabales ; Famille : Fabaceae ; Genre : Acacia ; Nom(s) anglais, local(aux) et/ou international(aux) : bead wattle , Pukati, Pukkati ; Rapport de consommation et comestibilité/consommabilité inférée (partie(s) utilisable(s) et usage(s) alimentaire(s) correspondant(s)) : Fruit (graines) comestible{{{0(+x). Détails : Graines. Les graines mûres sont consommées crues ou réduites en farine et cuites{{{0(+x). Les graines mûres sont consommées crues ou moulues en farine et cuites Partie testée : graines{{{0(+x) (traduction automatique) Original : Seeds{{{0(+x) Taux d'humidité Énergie (kj) Énergie (kcal) Protéines (g) Pro- Vitamines C (mg) Fer (mg) Zinc (mg) vitamines A (µg) 0 0 0 0 0 0 0 néant, inconnus ou indéterminés.néant, inconnus ou indéterminés. Illustration(s) (photographie(s) et/ou dessin(s)): Page 1/2 Autres infos : dont infos de "FOOD PLANTS INTERNATIONAL" : Distribution : Il préfère les sols sableux bien drainés. Il convient à une position ensoleillée ouverte. Il résiste à la sécheresse mais ne supporte pas les gelées. Il se produit souvent dans les régions arides{{{0(+x) (traduction automatique). Original : It prefers sandy well-drained soils. It suits an open sunny position. It is drought resistant but cannot tolerate frosts. Often it occurs in arid regions{{{0(+x). Localisation : Australie*{{{0(+x) (traduction automatique). -
Delayed Colonisation of Acacia by Thrips and the Timing of Host
McLeish et al. BMC Evolutionary Biology 2013, 13:188 http://www.biomedcentral.com/1471-2148/13/188 RESEARCH ARTICLE Open Access Delayed colonisation of Acacia by thrips and the timing of host-conservatism and behavioural specialisation Michael J McLeish1*, Joseph T Miller2 and Laurence A Mound3 Abstract Background: Repeated colonisation of novel host-plants is believed to be an essential component of the evolutionary success of phytophagous insects. The relative timing between the origin of an insect lineage and the plant clade they eat or reproduce on is important for understanding how host-range expansion can lead to resource specialisation and speciation. Path and stepping-stone sampling are used in a Bayesian approach to test divergence timing between the origin of Acacia and colonisation by thrips. The evolution of host-plant conservatism and ecological specialisation is discussed. Results: Results indicated very strong support for a model describing the origin of the common ancestor of Acacia thrips subsequent to that of Acacia. A current estimate puts the origin of Acacia at approximately 6 million years before the common ancestor of Acacia thrips, and 15 million years before the origin of a gall-inducing clade. The evolution of host conservatism and resource specialisation resulted in a phylogenetically under-dispersed pattern of host-use by several thrips lineages. Conclusions: Thrips colonised a diversity of Acacia species over a protracted period as Australia experienced aridification. Host conservatism evolved on phenotypically and environmentally suitable host lineages. Ecological specialisation resulted from habitat selection and selection on thrips behavior that promoted primary and secondary host associations. These findings suggest that delayed and repeated colonisation is characterised by cycles of oligo- or poly-phagy.