Biodiversity Summary: Western, New South Wales
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ecology Assessment Report Pre-Clearance Survey Report
2 Ecology Assessment Report Pre-clearance Survey Report Consultant/contractor and sub-contractor document review/approval 48DY69, 46DY69, 69DY97, 70DY97, 74DY99, 14DY67, 2RP840942, Warra-Kogan Road reserve, Lot no. Healey's Crossing Road reserve, Dalby-Kogan Road reserve Property name Various Disturbance Tracker no. DP139 Origin/Australia Pacific LNG document no. Q-4331-15-RP-001 Contractor internal reference no. (if 17BRI-7037 applicable) Submitted by (full name of author) Kate Brodie, Loren Appleby, Emma Blacklock Consultant/contractor N/A comments Pre-clearance Survey Report expiry N/A date Technical Revision Date Status Checked Q/A Review 1 12/12/2017 Issued for Use L Appleby L Appleby L Appleby 2 27/08/2018 Issued for Use Liz Fisher Liz Fisher Ailsa Kerswell pp. pp. pp. Template Ref: Q-LNG01-15-AQ-0225 Revision: 2 Approvals, Land and Stakeholder, Australia Pacific LNG Upstream Phase 1 Uncontrolled when printed unless issued and stamped controlled copy. Rev. 0 approved by (name and title) Signature Tim Collins Kainama Development (Stage 1) – Terrestrial Ecology Survey Report Prepared for Origin Energy th 27 August 2018 Kainama Stage 1 Terrestrial Ecology Assessment DOCUMENT TRACKING Item Detail Project Name Kainama Development Stage 1 Ecology Survey Project Number 17BRI-7037 Loren Appleby Project Manager 07 3239 9401 Level 5 / 12 Creek St Brisbane Qld 4000 Prepared by Kate Brodie, Loren Appleby, Emma Blacklock Reviewed by Liz Fisher, Alan House Approved by Ailsa Kerswell Status Final Version Number Revision 2 Last saved on 27th August 2018 Cover Photo Philotheca sporadica and Eucalyputs curtisii, Loren Appleby, 2017. This report should be cited as ‘Eco Logical Australia 2018. -
Cunninghamia : a Journal of Plant Ecology for Eastern Australia
27 Flora conservation issues at Kinchega National Park, western NSW Tony D. Auld and Andrew J. Denham Auld, Tony D., and Denham, Andrew J. (Biodiversity Research and Management Division, NSW National Parks & Wildlife Service, PO Box 1967 Hurstville NSW 2220 email: [email protected]) 2001. Flora conservation issues at Kinchega National Park, western NSW. Cunninghamia 7(1): 27–41. Kinchega National Park reserves significant stands of Eucalyptus largiflorens open woodland on the Darling River floodplain, low open Maireana pyramidata shrubland and Casuarina pauper/Alectryon oleifolius open woodland on dune systems. We identify four key issues for the conservation of flora in Kinchega National Park, western NSW. These are: 1) There is an urgent need to initiate regeneration in a number of long-lived perennial trees and shrubs. Failure to do so will lead to local population declines and extinction in a number of species. Reduction in grazing impacts of rabbits and goats is needed. Some degree of rabbit control has been achieved over the last few years through a combination of the effects of the rabbit calicivirus disease (RCD) and an extensive rabbit control program for the reserve. 2) The need to initiate a water plan of management for the reserve to overcome the problem of changes in water flows, flood periodicity and flood magnitude that have occurred in response to water regulation activities on the Darling River. 3) Management of several threatened species and ecological communities on the reserve, in particular the nationally vulnerable species Acacia carneorum and Solanum karsense. Kinchega NP is the only conservation reserve containing populations of these species and these populations are significant for both species. -
BCSA Aug 05 21
BUTTERFLY CONSERVATION SA Inc. NEWSLETTER No. 21: August, 2005. SURVEY OF THE DALHOUSIE SPRINGS AREA Inside this issue: • BCSA Chairman Roger Grund made a trip to the Dalhousie Survey of the Dalhousie Springs area Springs area in the Far North Region of South Australia during (Roger Grund) the period 21-28 September 2004, to survey for butterflies in an • Excursions area that has not received historical attention from lepidopterists. • Field and other Notes (Andy Young) The weather was good with temperatures in the 30's to high 20's • Butterfly Campaign degrees centigrade. It was intended to be a much longer and update broader survey but was curtailed by a medical emergency. The • Grant success • email area had received some good early-winter rains and so it was • thought there would be a good chance of a floral blooming and New Members • Diary dates along with it a good flight of butterflies, even though the rainfall (Continued on page 2) Fig 1 Fig 3 Fig 4 Fig 5 Fig 6 and 7 Fig 8 Fig 9 Fig 2 Fig 10 BUTTERFLY CONSERVATION SA Inc. for membership enquiries and annual membership payments ($10): Treasurer, 13/4 Randolph Avenue, PARKSIDE. 5063 BUTTERFLY CONSERVATION SA Inc. NEWSLETTER August, 2005 Issue 21 Page 2 was poor during July and August. In fact, it was found the area was already in the mid stages of drying out by the time the survey was undertaken and the local butterfly fauna was very active and often very ragged. The country is mainly gibber plain (Fig. 1) and breakaway but some nice vegetated red dune habitat is present just to the south of Hamilton and again to the northeast of Mt Dare near the Finke River. -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
Grass Genera in Townsville
Grass Genera in Townsville Nanette B. Hooker Photographs by Chris Gardiner SCHOOL OF MARINE and TROPICAL BIOLOGY JAMES COOK UNIVERSITY TOWNSVILLE QUEENSLAND James Cook University 2012 GRASSES OF THE TOWNSVILLE AREA Welcome to the grasses of the Townsville area. The genera covered in this treatment are those found in the lowland areas around Townsville as far north as Bluewater, south to Alligator Creek and west to the base of Hervey’s Range. Most of these genera will also be found in neighbouring areas although some genera not included may occur in specific habitats. The aim of this book is to provide a description of the grass genera as well as a list of species. The grasses belong to a very widespread and large family called the Poaceae. The original family name Gramineae is used in some publications, in Australia the preferred family name is Poaceae. It is one of the largest flowering plant families of the world, comprising more than 700 genera, and more than 10,000 species. In Australia there are over 1300 species including non-native grasses. In the Townsville area there are more than 220 grass species. The grasses have highly modified flowers arranged in a variety of ways. Because they are highly modified and specialized, there are also many new terms used to describe the various features. Hence there is a lot of terminology that chiefly applies to grasses, but some terms are used also in the sedge family. The basic unit of the grass inflorescence (The flowering part) is the spikelet. The spikelet consists of 1-2 basal glumes (bracts at the base) that subtend 1-many florets or flowers. -
Identifying Climate Refugia for Key Species in New South Wales - Final Report from the Bionode of the NSW Adaptation Hub
Identifying Climate Refugia for Key Species in New South Wales - Final Report from the BioNode of the NSW Adaptation Hub Linda J. Beaumont, John B. Baumgartner, Manuel Esperón-Rodríguez, David Nipperess 1 | P a g e Report prepared for the NSW Office of Environment and Heritage as part of a project funded by the NSW Adaptation Research Hub–Biodiversity Node. While every effort has been made to ensure all information within this document has been developed using rigorous scientific practice, readers should obtain independent advice before making any decision based on this information. Cite this publication as: Beaumont, L. J., Baumgartner, J. B., Esperón-Rodríguez, M, & Nipperess, D. (2019). Identifying climate refugia for key species in New South Wales - Final report from the BioNode of the NSW Adaptation Hub, Macquarie University, Sydney, Australia. For further correspondence contact: [email protected] 2 | P a g e Contents Acknowledgements ................................................................................................................................. 5 Abbreviations .......................................................................................................................................... 6 Glossary ................................................................................................................................................... 7 Executive summary ................................................................................................................................. 8 Highlights -
Acacia Burrowii Maiden
WATTLE Acacias of Australia Acacia burrowii Maiden Source: Australian Plant Image Index Source: W orldW ideW attle ver. 2. Source: W orldW ideW attle ver. 2. Source: Australian Plant Image Index (dig.23654). Published at: w w w .w orldw idew attle.com Published at: w w w .w orldw idew attle.com (dig.23655). ANBG © M. Fagg, 2012 J. & M. Simmons J. & M. Simmons ANBG © M. Fagg, 2012 Source: Australian Plant Image Index Source: W orldW ideW attle ver. 2. Source: W orldW ideW attle ver. 2. (dig.23656). Published at: w w w .w orldw idew attle.com Published at: w w w .w orldw idew attle.com ANBG © M. Fagg, 2012 Source: W orldW ideW attle ver. 2. Published at: w w w .w orldw idew attle.com J. & M. Simmons Source: W orldW ideW attle ver. 2. Published at: w w w .w orldw idew attle.com Acacia burrow ii occurrence map. O ccurrence map generated via Atlas of Living Australia (https://w w w .ala.org.au). Common Name Burrow’s Wattle Family Fabaceae Distribution Occurs on the North Western Plains of N.S.W. from Cobar-Nyngan area N to Yetman (including the Pilliga Scrub), and in south-eastern Qld from the Goodiwindi– Moonie area N to Eidsvold, W of 151ºE. Description Tree to 13 m high, single-stemmed. Bark ribbony, grey. Branchlets angular towards apices, red-brown, scurfy, glabrous, ±resinous. Phyllodes narrowly to very narrowly elliptic, flat, straight or slightly curved, (2–) 3–11 cm long, (2–) 4–10 mm wide (juveniles to 14 mm wide and scurfy), coriaceous, with 1–3 slightly prominent main nerves; minor nerves 8–10 per mm, parallel, not anastomosing; gland 1, basal, to 1 mm above pulvinus. -
By H.D.V. PRENDERGAST a Thesis Submitted for the Degree of Doctor of Philosophy of the Australian National University. January 1
STRUCTURAL, BIOCHEMICAL AND GEOGRAPHICAL RELATIONSHIPS IN AUSTRALIAN c4 GRASSES (POACEAE) • by H.D.V. PRENDERGAST A thesis submitted for the degree of Doctor of Philosophy of the Australian National University. January 1987. Canberra, Australia. i STATEMENT This thesis describes my own work which included collaboration with Dr N .. E. Stone (Taxonomy Unit, R .. S .. B.S .. ), whose expertise in enzyme assays enabled me to obtain comparative information on enzyme activities reported in Chapters 3, 5 and 7; and with Mr M.. Lazarides (Australian National Herbarium, c .. s .. r .. R .. O .. ), whose as yet unpublished taxonomic views on Eragrostis form the basis of some of the discussion in Chapter 3. ii This thesis describes the results of research work carried out in the Taxonomy Unit, Research School of Biological Sciences, The Australian National University during the tenure of an A.N.U. Postgraduate Scholarship. iii ACKNOWLEDGEMENTS My time in the Taxonomy Unit has been a happy one: I could not have asked for better supervision for my project or for a more congenial atmosphere in which to work. To Dr. Paul Hattersley, for his help, advice, encouragement and friendship, I owe a lot more than can be said in just a few words: but, Paul, thanks very much! To Mr. Les Watson I owe as much for his own support and guidance, and for many discussions on things often psittacaceous as well as graminaceous! Dr. Nancy Stone was a kind teacher in many days of enzyme assays and Chris Frylink a great help and friend both in and out of the lab •• Further thanks go to Mike Lazarides (Australian National Herbarium, c.s.I.R.O.) for identifying many grass specimens and for unpublished data on infrageneric groups in Eragrostis; Dr. -
Approved Conservation Advice for Acacia Curranii (Curly-Bark Wattle)
This Conservation Advice was approved by the Minister / Delegate of the Minister on: 1/10/2008 Approved Conservation Advice (s266B of the Environment Protection and Biodiversity Conservation Act 1999) Approved Conservation Advice for Acacia curranii (Curly-bark Wattle) This Conservation Advice has been developed based on the best available information at the time this Conservation Advice was approved; this includes existing plans, records or management prescriptions for this species. Description Acacia curranii, Family Mimosaceae, also known as Curly-bark Wattle, is an erect or spreading multi-stemmed shrub growing to 4 m tall, with distinctive red curling (minniritchi) bark. Branches are angular, maroon-grey with silky, downy hairs. The leaf-like phyllodes are erect, linear, depressed along the midrib, 13–18 cm long, 1–1.5 mm wide and covered by silky silver hairs. Flowers are golden yellow in colour and arranged in spikes 5–7 mm long on a stalk 1.5 mm long. Pods are flat, up to 6 cm long by 3 mm wide and with coarse long hairs. Seeds are oblong, about 3 mm long, greyish-brown with a pale area and a basal seed stalk (aril). Flowering time is August and September (Pedley, 1978; Tindale & Kodela, 2001; DECC, 2005a). Conservation Status Acacia curranii is listed as vulnerable. This species is eligible for listing as vulnerable under the Environment Protection and Biodiversity Conservation Act 1999 (Cwlth) (EPBC Act) as, prior to the commencement of the EPBC Act, it was listed as vulnerable under Schedule 1 of the Endangered Species Protection Act 1992 (Cwlth). Acacia curranii is also listed as vulnerable under the Threatened Species Conservation Act 1995 (NSW) and vulnerable under the Nature Conservation (Wildlife) Regulation 2006 (Queensland). -
Eriachne Triseta Nees Ex Steud
Grasses of Cape Yorkork - Quinkan Country Eriachne triseta Nees ex Steud. This species is very widespread and common across northern Australia. It is an erect to sometimes drooping, tufted perennial between 60 cm and 120 cm high (Fig. 1). Plants are mostly glabrous with the base of the plant slightly thickened or knotty, and pubescent (softly hairy). Leaf blades are thin and bristle like to 25 cm long, with the flowering branch sparse and often drooping. Eriachne triseta has two bisexual florets (modified flowers) per spikelet (the basic flowering unit), each floret is distinctly, although shortly, three awned, a rare occurrence in the genus (Figs. 2a & b). Fig. 1. Habit of Eriachne triseta FACT SHEET: GRASSES OF CAPE YORK - QUINKAN COUNTRY - Eriachne triseta | PAGE 1 of 3 > BOTANICAL DESCRIPTION Spikelets are few per branch, each spikelet is defined A perennial species 60-120 cm high. The leaves and by two glumes 8-15 mm long, and contains two culms are mostly glabrous with the base of plant bisexual florets, the florets are shorter than the slightly thickened or knotty, pubescent. The leaf glumes. The lemma of each floret is awned, the lemma sheaths are usually half as long as the culm internode, awn is 8-14 mm long, with the palea of each floret and the blades are up to 25 cm long, are convolute, splitting to form two awns slightly shorter than the setaceous (bristle like), finely pointed and often lemma awn, between 6-11.5 mm long (Fig. 2a & b). flexuose (bent from side to side or curved). -
Palatability of Plants to Camels (DBIRD NT)
Technote No. 116 June 2003 Agdex No: 468/62 ISSN No: 0158-2755 The Palatability of Central Australian Plant Species to Camels Dr B. Dorges, Dr J. Heucke, Central Australian Camel Industry Association and R. Dance, Pastoral Division, Alice Springs BACKGROUND About 600,000 camels (Camelus dromedarius) are believed to inhabit the arid centre of Australia, mainly in South Australia, Western Australia and the Northern Territory. Most of these camels are feral. A small camel industry has developed, which harvests selected animals for domestic and export markets, primarily for meat. Camels can eat more than 80% of the common plant species found in Central Australia. Some plant species are actively sought by camels and may need to be protected. METHOD Observations of grazing preferences by camels were made periodically for up to 12 years on five cattle stations in Central Australia. Where camels were accustomed to the presence of humans, it was possible to observe their grazing preferences from a few metres. Radio transmitters were fitted on some camels for easy detection and observation at any time. These evaluations were used to establish a diet preference or palatability index for observed food plants. Table 1. Palatability index for camels Index Interpretation 1 only eaten when nothing else is available 2 rarely eaten 3 common food plant 4 main food plant at times 5 preferred food plant 6 highly preferred food plant 7 could be killed by camel browsing More information can be obtained from the web site of the Central Australian Camel Industry Association http://www.camelsaust.com.au 2 RESULTS Table 2. -
Newsletter No.133
Acacia brunioides !" " As I write this, Melbourne is enjoying its coldest June day Contents Page since 1998. But to brighten up the bleakest of days, we have near our front door a brightly flowering Acacia chrysocephala. I first saw this small wattle some years ago, From the Leader 1 !"#$#%&'(#)&*#$"+#,'&(#-."&#+$(/#$*#0!"(#1$%$"$,234# Welcome 2 garden at Ocean Grove (south of Melbourne). Tony had a Study Group Excursions 2 number of these wattles dotted around the edge of his lawn, 5'6,2*&"6",#.7#$"#!*2&')64&#+.88#)6"*&'34#9!'"6",:##;*4# Smelly Acacias and Climate 2 bright golden flowers and compact growth habit make it a Acacia hybrids 2 great garden plant. Acacia irrorate 4 New Species ! Acacia citriodora 4 I hope that you find a number of the articles in this Transplanting Acacias and Other newsletter interesting, but one that I think is of particular Seedlings 4 interest is the one by John Gibson on the nature of the smell Prickly! You Bet! 5 of Acacia roots, and a possible link to our climate. I believe Books 6 that a number of our Study Group members have been Acacia cretacea 7 conscious of the smell emitted by Acacia roots < if you are Acacias in The News 8 one of these members, could you provide any information Wattle Day 2016 8 or data that you have to John, as he has requested in the Seed Bank 8 article (see page 2). Study Group Membership 9 As for all Study Groups, membership fees fall due on 1 July each year ! so it is now that time of year.