bioRxiv preprint doi: https://doi.org/10.1101/2020.10.12.333484; this version posted March 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Jurassic NLR: conserved and dynamic evolutionary features of the atypically ancient immune receptor ZAR1 Hiroaki Adachi1, Toshiyuki Sakai1, Jiorgos Kourelis1, Jose L. Gonzalez Hernandez2, Abbas Maqbool1 and Sophien Kamoun1* 1The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH, Norwich, UK 2Agronomy, Horticulture and Plant Sciences Department, South Dakota State University, Brookings, South Dakota, US *For correspondence:
[email protected] ABSTRACT In plants, NLR immune receptors generally exhibit hallmarks of rapid evolution even at the intraspecific level. We reconstructed the evolutionary history of ZAR1, an atypically conserved NLR that traces its origin to early flowering plant lineages ~220 to 150 million years ago (Jurassic period). Ortholog sequence analyses revealed highly conserved features of ZAR1, including regions for pathogen effector recognition, intramolecular interactions and cell death activation. This uncovered a new conserved surface on the ZAR1 resistosome underside that is required for cell death induction. Throughout its evolution, ZAR1 acquired novel features, such as a C-terminal integration of a thioredoxin-like domain. ZAR1 duplicated into two paralog families, which underwent distinct evolutionary paths. We conclude that ZAR1 stands out among angiosperm NLRs for having experienced relatively limited gene duplication and expansion throughout its deep evolutionary history. Nonetheless, ZAR1 did also give rise to non-canonical NLR proteins with integrated domains and degenerated molecular features.