INTEGRATED AMMONITE BIOCEIRONOLOGY and U-Pb GEOCHRONOLOGY from a BASAL JURASSIC SECTION in ALASKA
Total Page:16
File Type:pdf, Size:1020Kb
National Liirary Bibliothèque nationale I*I of Canada du Canada Acquisitions and Acquisitions et Bibliographie Services services bibliographiques 395 Wellington Street 395. rue Wellington OltawaûN KlAON4 Ollawa ON K1A ON4 Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Library of Canada to Bi1,liothèque nationale du Canada de reproduce, loan, distribute or sell reproduire, prêter, distribuer ou copies of this thesis in microform, vendre des copies de cette thése sous paper or electronic formats. la forme de microfiche/film, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels may be printed or othexwise de ceile-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. Current tirne scales disagree on age estirnates for Jurassic stage boundaries and carry large uncertainties. The U-Pb ~r"~~r-"~rdating of voIcaniclastic rocks of preciseiy known biochronologic age is the preferred method to improve the calibtation. Eighteen new U-Pb zircon dates were obtained on volcaniclastic rock from Surassic volcanic arc assemblages of the North American Cordillera. The voIcanic rocks are interbedded in fossiliferous marine sedimenq rocks, which in mm were dated by ammonite biochronology at the zona1 level. In the Queen Charlotte Islands, a tuff Iayer directly beneath the Triassic-Jurassic boundary was dated at 200I1 Ma. Lowermost Jurassic (middle and upper Hettangian) volcaniclastic rocks ftom Alaska yielded ages of 200.8+2.7/-2.8 Ma, 1 W.8* 1 .O Ma, and 197.8+1.2/-0.4 Ma. An ash layer near the base of the Middle Toarcian Crassicosta Zone in its type section in the Queen Charlotte Islands was dated at 181.411.2 Ma. The other new dates furnish additional time scale calibration points. The biostratigraphy of measured sections contribute to the understanding of North Arnerican Juraçsic ammonite successions, especially for the Hettangian of Alaska. In an attempt to quanti9 biochronologic correlation uncertainty, the cornputer-assisted Unitary Association mehod was used to correlate a Toarcian North American regionai ammonite zone with the northwest European standard. The correlation uncertainty between the two regions is not more than Il standard subzone. A radiometric age database consisting of 50 U-Pb and 'OAK-~~A~ ages was compiled to construct a revised Jurassic time scale. Apart from the newly obtained U-Pb ages, several recently reported Cordilleran dates are included with revised biochronologic ages. Additional dates were cornpiled from previous time scales and recent literaîure. Only a few boundaries are dated directly. The chronogram method was applied for the first tirne ro estirnate ail Early and earIy Middle Jurassic chron boundaries, as well as late Middle Jurassic substage boundaries and Late Jurassic stage boundaries. The most significant irnprovement concems the Pliensbachian and Toarcian, where six consecutive chron boundaries were detennined. The derived chron durations Vary between 0.4 and 1.6 Ma. Their disparities argue against the assumption of equal duration of chrons or subchrons, which was used as a bais for interpolation in several previous thescales. [nterpolation based on magnetochronology improved chronogram estimates for the latest Jurassic, where the isotopic database remains too sparse. The initial boundaries of Jurassic stages are proposed as follows: Bemasian (Jurassic-Cretaceous): 144.8 +2.61-3 -7 Ma; Tithonian: 15 1.5 +1 .O14 -4 Ma; Kirnmeridgian: 154.7 + 1.014.9 Ma; Oxfordian: 156.6 +2.01-2.7 Ma; Callovian: 159.7 k1.1 Ma; Bathonian: 166.0 M.61-5.4 Ma; Bajocian: 174.0 + 1.01-7.3 Ma; Aalenian: 178.0 +1.01-1.5 Ma; Toarcian: 183.6+1.6/-1. 1 Ma; Pliensbachian: 192.0 +3.81-5.2 Ma; Sinemurian: 197.0 + 1 -2l-4.2 Ma; Hettangian (Triassic-Jurassic): 20 1 & 1 Ma. The revised time scale was used to assess the timing of mass extinction events and subsequent biotic recoveries. Marine and terrestrial extinctions at the end of the Triassic both occured at abou 20 1 Ma, later than suggested in most previous tirne scales. During the Pliensbachian-Toarcian rnass extinction, elevated extinction rates were sustained between 185.7 and 18 1.4 Ma and apparently followed by an immediate recovery. îhe hypothetical26 Ma extinction periodicity is plausible between the end-Permian and end-Triassic, between the Pliensbachian-Toarcian and Callovian, and among the Tithonian, Cenomanian-Turonian, and end-Cretaceous events. However, the spacing of the end-Triassic and Pliensbachian-Toarcian events is less than 20 Ma, significantly less than predicted by the periodicity model. iii TABLE OF CONTENTS ABSTRACT ................................................................................................................................................................ ii TABLE OF CONTENTS .......................................................................................................................................... iv ... LIST OF TABLES................................................................................................................................................... VIII LIST OF FIGURES................................................................................................................................................... ix LIST OF PLATES..................................................................................................................................................... xi .. ACKNOWLEDGEMENT .......................................................................................................................................xl~ ... DEDICATION .........................................................................................................................................................xi11 CHAPTER 1. INTRODUCTION ................................................. ... ....................................................................... I 1.1. MTRODUCTORY STATEMENT........ .. ............................................................................................. 1 1.2. OBJECTIVES ..........................................................................................................+.................................- 7 1.3. METHODS................................................................................................................................................. -7 1.4. PRESENTATION ..................... ..... .................................................................................................. 3 CHAPTER 2. DEVELOPMENT OF THE JURASSIC GEOCHRONOLOGIC SCALE ................................. 5 2.1. MTRODUCTION .................................................................................................................................... 5 2.2. DATABASE AND PROCEDURES iN TIME SCALE CALIBRATION ................................................. 8 2.3. KEY AREAS OF PROGRESS AND CONSTRUCTIONAL DIFFERENCES BETWEEN SCALES ..... 9 2.3.1. Advances in isotopic dating ............................................................................................................... 9 2.3.2. Selection of dates ......................................... .. .............................................................................. Il 2.3.3. Errors and uncertainties in data ........................................................................................................ 14 2.3.4. Boundary estimation and mathematical data manipulation .............................................................. 16 2.3.5. Interpolation techniques ............................................................................................................... 17 2.4. DIRECTIONS IN CURRENT AND FUTURE TIME SCALE RESEARCH .......................................... 19 2.5. SUMMARY .......................................................................................................................................... 21 CHAPTER 3. A U-Pb ACE FROM THE TOARCLAN (LOWER JURASSIC) AND ITS USE FOR TIME SCALE CALlBRATION THROUGH ERROR ANALYSIS OF BIOCHRONOLOGIC DATINC ................. 2; 3.1 . MTRODUCTION ..........................................................................................*...*..*.................................. 2: 3.2. GEOLOGIC SETïING .......................................................................................................................... 24 3.3. U-Pb GEOCHRONOMETRY ................................................................................................................ ..-3' 3 3.1. Methodology ........................................ .. ......................................................................................... -7' 3.3.2. Results ...............................................................................................................................................- 7' 3.4. BIOCHRONOLOGY ............................ .. ..............................................................................................- 3 1 3.4.1. The ammonite fossil record............................. ..................................................................................-3 ( 3.4.2. Reliability of observed ranges .......................................................................................................