Ecological Studies by Undergraduates At

Total Page:16

File Type:pdf, Size:1020Kb

Ecological Studies by Undergraduates At Ecological studies by undergraduate students at Brackenridge Field Laboratory, University of Texas at Austin. RM Plowes, LE Gilbert Published online 31 March, 2021 This document contains summaries and abstracts from student independent studies conducted at BFL. The full reports and the analyses by the students have not been independently verified or reviewed. The data underlying the reports can be provided at the discretion of the Director. However, the reports were developed by students and are not generally available for sharing. The majority of these studies were conducted in BIO373L Field Ecology. This course is instructed by Dr L. E. Gilbert and assisted by TA’s: R. Plowes, C. Estrada, R. Bocsa, H. Gillespie, K. Pierce, E. Resetarits, K. Jiang, L. Dugan, R. Deans, L. Trotter, C. Rakowski, C. Petersen Acknowledgements: H. Januska, J. Lawson, A. Miller for compiling the data. Abstracts from Previous BIO373L Student’s Independent Projects 1999 Gall Distribution on the Leaves of Vitis cadicans Amanda Rives – S99 Galls are commonly found on various parts of many types of plants. Questions concerning the impact of abiotic factors and the presence of other gall forming organisms are commonly posed in ecological studies of gall distribution. Considering theories of niche partitioning and competition, one would conclude that organisms would utilize different parts of the plant or would not oviposit on leaves that already had signs of a different organism. One would also assume that abiotic factors such as leaf location in the plant would play a role in the distribution as well. Additionally, it is possible that as leaf size increases, so should the number of galls. These ideas were tested using two different types of galls found on Vitis cadicans. Leaf width and height were measured, and the number of galls was counted at two different heights within three sites. These three sites were located at Brackenridge Field Lab in Austin, Texas and were at varying distances from the Colorado River. The obtained data were analyzed using a chi- square test. These tests indicated that height and distance from the river influence gall distribution. There was also a small correlation between increasing leaf size and more galls per leaf. It was also evident that the different types of galls that were studied were less commonly found together than on separate leaves. The Last Stand of Solenopsis geminata in Fire Fly Meadow Julie Warr – S99 About fifty years ago the fire ant Solenopsis invicta began its colonization of the south- eastern United States beginning near Mobile, Alabama (Porter 1990). S. invicta has managed to competitively exclude the native fire ant, S. geminata, from its habitat (Porter et al. 1988). All of Brackenridge Field Lab has been invaded by S. invicta except for Fire Fly Meadow. This study attempts to determine why this meadow has escaped the wrath of S. invicta while the remainder of the property is overrun with the exotic fire ants. Intraspecific Competition and Self-Thinning in Radishes Sherry Jacobsen – S99 Self-thinning as a result of intraspecific competition occurs in many plant species. When average biomass is plotted against final density, a slope of -1.5 is often found. This result is so common, it is referred to as the -3/2 power law. We examined radishes to determine if intraspecific competition and resulting self-thinning occurred in the species. Though correlations were found, they were not as strong as the -3/2 power law, indicating that, though intraspecific competition and self-thinning are probably present, most radish mortality resulted by other means. A comparison of bird species diversity and foliage height diversity during spring migration Samuel Hanes – S99 Previous studies have shown that bird and foliage diversities are positively correlated for breeding birds. I wanted to see if this was true during spring migration along the Colorado River. I investigated whether or not migratory birds had the same general distribution, relative to vegetation diversity, as do breeding birds, or if they were more evenly distributed. Unfortunately, few migratory birds were spotted during the duration of this study so comparisons between species richness vs. time and the species diversity for all birds vs. foliage height diversity were made. Three sites in five different areas were chosen for study at Brackenridge Field Laboratory. At each plot, the foliage height diversity was measured by dividing the foliage into three layers (ground level-2m, 2m-10m, and 10m+). Then each site was sampled for birds from April 9th to May 3rd beginning around 8:00 am. Overall there did seem to be a positive correlation between bird species diversity and foliage height diversity. While the diversity of breeding birds is probably more closely tied to vegetation structure than migrant diversity, migrants also need structurally diverse vegetation. Organization of Soil Invertebrate Fauna as Determined by Forest Cover Bryan Wofford – S99 Soil arthropods are key components in the recycling of nutrients. In wooded areas, arthropods are more abundant as there is more leaf litter to break down while in open areas, arthropods are less abundant as there is less organic matter to break down. In this study, I attempt to determine if soil invertebrate abundance and diversity is determined by climactic factors (temperature, moisture) or biological factors (nutrients from fauna) at Brackenridge Field Laboratory. Ten soil samples in total were taken from both open and wooded areas. The insects from each sample were then sorted and identified. Based on the results, species richness was higher in the covered areas rather than the open areas. Abundance was also reduced at the open sites when compared with the wooded areas. Overall, the factors affecting soil composition seem to be site specific and act in conjunction with one another rather than an either/or scenario. Pollinators of Lupinus texensis Gillian Saenz and Andrea Nunn – S99 The mutualism that occurs between plants and pollinators is crucial to ecosystems. In this study I aim to identify the major pollinators of the Texas Bluebonnet (Lupinus texensis) at Brackenridge Field Laboratory. Observations of bluebonnet patches began in mid-March and continued weekly for approximately four weeks. Any insects found visiting the flowers were captured and kept for identification. I also dissected a bluebonnet to collect any internal insects. A total of ten species were found on the flowers. Overwhelmingly, however, Apis mellifera was the most common insect found throughout the patches and was thus deemed the major pollinator of the bluebonnet. Interactions Between Different Ant Species Living in Close Proximity Jennifer Washburn – S99 In this study, I examined three situations of various ant species with nests in close proximity to one another. The nests were observed over the span of five weeks at Brackenridge Field Laboratory in Austin, Texas. Three ant species of the genus Pogonomyrmex (barbatus), Forelius, and Solenopsis (invicta) were the species being monitored living in close quarters to one another. Dominance between ant species was measured by setting out two ten minute and one hour bait traps with different baits at each site and seeing which species was predominantly found on the baits. I predicted that certain ant species would prefer different food baits which would allow them to live in such close proximity to one another. Overall, I found that Pogonomyrmex and Forelius ants were able to live in close quarters without much conflict due to different foraging preferences. In the presences of the Solenopsis fire ants, both the Pogonomyrmex and Forelius ants were out-competed, however, this may just be due to S. invicta’s raised aggression levels towards other species. The distribution of different ant species at BFL in bait traps and pitfall traps Michael Sorial – S99 Since the invasion of the important fire ant, Solenopsis invicta, native ant species have decreased in diversity and abundance at Brackenridge Field Laboratory. In this study, I aim to complete a survey of the relative abundance of ant species at BFL using baited and pitfall traps placed along the pre-existing transects at the field lab. When looking at all of the collected specimens from the traps, it is clear that S. invicta is the dominant species of ant present. S. invicta was also found in much higher numbers in the bait traps rather than the pitfall traps. A field study of two types of insect-induced galls and their distribution on Mustang Grape (Vitis mustangensis) at Brackenridge Field Laboratory, Austin Texas Jason Moss – S99 Galls form as a result from an attack from a parasite (bacterium, fungus, or insect) on a plant. Galls often provide food and protection to parasitic larvae living within its tissues. In this study, I collected samples of Mustang Grape (Vitis mustangensis) from three different sites at Brackenridge Field Laboratory and compared them for the presence of insect induced galls. I hoped to find a difference between the sample sites with regards to gall distribution and oviposition preference of the gall inducing insects. A higher number of galls were found on the Mustang Grape collected from the river area, suggesting that the insects prefer a moister environment. Because the gall insect has not been identified, this is merely a prediction and more data is needed to make conclusive statements. Red Imported Fire Ant Impacts on the Herpetological Community at BFL Paco Cardenas – S99 The invasion of the imported fire ant, Solenopsis invicta, has caused shifts in species diversity and abundance throughout trophic levels. Their high levels of aggression and their ability to live in a number of habitats has let them outcompete many native species. In this study, I conducted a survey of the reptiles and amphibians present at Brackenridge Field Laboratory to see how their numbers and territories have changed since the invasion of S.
Recommended publications
  • The Collection of Oak Trees of Mexico and Central America in Iturraran Botanical Gardens
    The Collection of Oak Trees of Mexico and Central America in Iturraran Botanical Gardens Francisco Garin Garcia Iturraran Botanical Gardens, northern Spain [email protected] Overview Iturraran Botanical Gardens occupy 25 hectares of the northern area of Spain’s Pagoeta Natural Park. They extend along the slopes of the Iturraran hill upon the former hay meadows belonging to the farmhouse of the same name, currently the Reception Centre of the Park. The minimum altitude is 130 m above sea level, and the maximum is 220 m. Within its bounds there are indigenous wooded copses of Quercus robur and other non-coniferous species. Annual precipitation ranges from 140 to 160 cm/year. The maximum temperatures can reach 30º C on some days of summer and even during periods of southern winds on isolated days from October to March; the winter minimums fall to -3º C or -5 º C, occasionally registering as low as -7º C. Frosty days are few and they do not last long. It may snow several days each year. Soils are fairly shallow, with a calcareous substratum, but acidified by the abundant rainfall. In general, the pH is neutral due to their action. Collections The first plantations date back to late 1987. There are currently approximately 5,000 different taxa, the majority being trees and shrubs. There are around 3,000 species, including around 300 species from the genus Quercus; 100 of them are from Mexico and Central America. Quercus costaricensis photo©Francisco Garcia 48 International Oak Journal No. 22 Spring 2011 Oaks from Mexico and Oaks from Mexico
    [Show full text]
  • TEXAS BLUEBONNET 'ALAMO FIRE' Lupinus Texensis(Fabaceae
    TEXAS BLUEBONNET ‘ALAMO FIRE’ Lupinus texensis(Fabaceae) Characteristics Type: Annual Bloom Color: Maroon with white tip Root type: Tap Blooms: March to May Height: 1-2 feet Winter Hardy Water Use: Low Well drained soil Light: full sun Attractive to bees Soil: Dry Texas Superstar® Culture A hardy winter annual that is a relative of the "State Flower of Texas". The maroon flowers are densely arranged on a spike with a characteristic ice white terminal tip. Bluebonnets cannot tolerate poorly drained, clay based soils. Seed planted in poorly drained soils will germinate, but plants will never fully develop. Seedlings will become either stunted or turn yellow and soon die. Prefers a sloped area in light to gravelly, well drained, soil with a pH level between 6-7. Seed is scarified for quick germination. Bluebonnets require 8 hours of direct sun. Noteworthy Characteristics A Bluebonnet with an "Attitude" for the 21st century, the Alamo Fire is an exclusive introduction from Wildseed Farms, developed in conjunction with Dr. Jerry Parsons. The original plant was found in the wild near San Antonio, Texas and has taken over 20 years to develop for your gardening pleasure. Cross-pollination may occur in future generations. To keep plants true to color, remove any plant that blooms in purple or blue shades as soon as possible. Problems Plants in the genus Lupinus, especially the seeds, can be toxic to humans and animals if ingested. Garden Uses Texas bluebonnets can be grown in raised flower beds, half wooden barrels, hanging baskets, mixtures, hillsides, roadsides and meadows. .
    [Show full text]
  • Bioblitz! OK 2019 - Cherokee County Moth List
    BioBlitz! OK 2019 - Cherokee County Moth List Sort Family Species 00366 Tineidae Acrolophus mortipennella 00372 Tineidae Acrolophus plumifrontella Eastern Grass Tubeworm Moth 00373 Tineidae Acrolophus popeanella 00383 Tineidae Acrolophus texanella 00457 Psychidae Thyridopteryx ephemeraeformis Evergreen Bagworm Moth 01011 Oecophoridae Antaeotricha schlaegeri Schlaeger's Fruitworm 01014 Oecophoridae Antaeotricha leucillana 02047 Gelechiidae Keiferia lycopersicella Tomato Pinworm 02204 Gelechiidae Fascista cercerisella 02301.2 Gelechiidae Dichomeris isa 02401 Yponomeutidae Atteva aurea 02401 Yponomeutidae Atteva aurea Ailanthus Webworm Moth 02583 Sesiidae Synanthedon exitiosa 02691 Cossidae Fania nanus 02694 Cossidae Prionoxystus macmurtrei Little Carpenterworm Moth 02837 Tortricidae Olethreutes astrologana The Astrologer 03172 Tortricidae Epiblema strenuana 03202 Tortricidae Epiblema otiosana 03494 Tortricidae Cydia latiferreanus Filbert Worm 03573 Tortricidae Decodes basiplaganus 03632 Tortricidae Choristoneura fractittana 03635 Tortricidae Choristoneura rosaceana Oblique-banded Leafroller moth 03688 Tortricidae Clepsis peritana 03695 Tortricidae Sparganothis sulfureana Sparganothis Fruitworm Moth 03732 Tortricidae Platynota flavedana 03768.99 Tortricidae Cochylis ringsi 04639 Zygaenidae Pyromorpha dimidiata Orange-patched Smoky Moth 04644 Megalopygidae Lagoa crispata Black Waved Flannel Moth 04647 Megalopygidae Megalopyge opercularis 04665 Limacodidae Lithacodes fasciola 04677 Limacodidae Phobetron pithecium Hag Moth 04691 Limacodidae
    [Show full text]
  • December 2012 Number 1
    Calochortiana December 2012 Number 1 December 2012 Number 1 CONTENTS Proceedings of the Fifth South- western Rare and Endangered Plant Conference Calochortiana, a new publication of the Utah Native Plant Society . 3 The Fifth Southwestern Rare and En- dangered Plant Conference, Salt Lake City, Utah, March 2009 . 3 Abstracts of presentations and posters not submitted for the proceedings . 4 Southwestern cienegas: Rare habitats for endangered wetland plants. Robert Sivinski . 17 A new look at ranking plant rarity for conservation purposes, with an em- phasis on the flora of the American Southwest. John R. Spence . 25 The contribution of Cedar Breaks Na- tional Monument to the conservation of vascular plant diversity in Utah. Walter Fertig and Douglas N. Rey- nolds . 35 Studying the seed bank dynamics of rare plants. Susan Meyer . 46 East meets west: Rare desert Alliums in Arizona. John L. Anderson . 56 Calochortus nuttallii (Sego lily), Spatial patterns of endemic plant spe- state flower of Utah. By Kaye cies of the Colorado Plateau. Crystal Thorne. Krause . 63 Continued on page 2 Copyright 2012 Utah Native Plant Society. All Rights Reserved. Utah Native Plant Society Utah Native Plant Society, PO Box 520041, Salt Lake Copyright 2012 Utah Native Plant Society. All Rights City, Utah, 84152-0041. www.unps.org Reserved. Calochortiana is a publication of the Utah Native Plant Society, a 501(c)(3) not-for-profit organi- Editor: Walter Fertig ([email protected]), zation dedicated to conserving and promoting steward- Editorial Committee: Walter Fertig, Mindy Wheeler, ship of our native plants. Leila Shultz, and Susan Meyer CONTENTS, continued Biogeography of rare plants of the Ash Meadows National Wildlife Refuge, Nevada.
    [Show full text]
  • Desmodium Cuspidatum (Muhl.) Loudon Large-Bracted Tick-Trefoil
    New England Plant Conservation Program Desmodium cuspidatum (Muhl.) Loudon Large-bracted Tick-trefoil Conservation and Research Plan for New England Prepared by: Lynn C. Harper Habitat Protection Specialist Massachusetts Natural Heritage and Endangered Species Program Westborough, Massachusetts For: New England Wild Flower Society 180 Hemenway Road Framingham, MA 01701 508/877-7630 e-mail: [email protected] • website: www.newfs.org Approved, Regional Advisory Council, 2002 SUMMARY Desmodium cuspidatum (Muhl.) Loudon (Fabaceae) is a tall, herbaceous, perennial legume that is regionally rare in New England. Found most often in dry, open, rocky woods over circumneutral to calcareous bedrock, it has been documented from 28 historic and eight current sites in the three states (Vermont, New Hampshire, and Massachusetts) where it is tracked by the Natural Heritage programs. The taxon has not been documented from Maine. In Connecticut and Rhode Island, the species is reported but not tracked by the Heritage programs. Two current sites in Connecticut are known from herbarium specimens. No current sites are known from Rhode Island. Although secure throughout most of its range in eastern and midwestern North America, D. cuspidatum is Endangered in Vermont, considered Historic in New Hampshire, and watch-listed in Massachusetts. It is ranked G5 globally. Very little is understood about the basic biology of this species. From work on congeners, it can be inferred that there are likely to be no problems with pollination, seed set, or germination. As for most legumes, rhizobial bacteria form nitrogen-fixing nodules on the roots of D. cuspidatum. It is unclear whether there have been any changes in the numbers or distribution of rhizobia capable of forming effective mutualisms with D.
    [Show full text]
  • Species at Risk on Department of Defense Installations
    Species at Risk on Department of Defense Installations Revised Report and Documentation Prepared for: Department of Defense U.S. Fish and Wildlife Service Submitted by: January 2004 Species at Risk on Department of Defense Installations: Revised Report and Documentation CONTENTS 1.0 Executive Summary..........................................................................................iii 2.0 Introduction – Project Description................................................................. 1 3.0 Methods ................................................................................................................ 3 3.1 NatureServe Data................................................................................................ 3 3.2 DOD Installations............................................................................................... 5 3.3 Species at Risk .................................................................................................... 6 4.0 Results................................................................................................................... 8 4.1 Nationwide Assessment of Species at Risk on DOD Installations..................... 8 4.2 Assessment of Species at Risk by Military Service.......................................... 13 4.3 Assessment of Species at Risk on Installations ................................................ 15 5.0 Conclusion and Management Recommendations.................................... 22 6.0 Future Directions.............................................................................................
    [Show full text]
  • Texas Prairie Dawn-Flower (Hymenoxys Texana) 5-Year Review
    Texas prairie dawn-flower (Hymenoxys texana) 5-Year Review: Summary and Evaluation Photo credit: USFWS U.S. Fish and Wildlife Service Texas Coastal Ecological Services Field Office Houston, Texas Table of Contents ABBREVIATIONS ........................................................................................................................ 3 1.0 GENERAL INFORMATION .......................................................................................... 4 2.0 REVIEW ANALYSIS ...................................................................................................... 7 2.4 SYNTHESIS .................................................................................................................. 24 3.0 RESULTS....................................................................................................................... 25 4.0 RECOMMENDATIONS FOR FUTURE ACTIONS.................................................... 26 5.0 REFERENCES ............................................................................................................... 28 Appendix A ................................................................................................................................... 31 Recommendation resulting from the 5-Year Review: .................................................................. 34 Figures Figure 1 Current H. texana county occurrences ............................................................................. 9 Tables Table 1 Renaming of species historically associated with H. texana ..........................................
    [Show full text]
  • Phytochemical and Pharmacological Study of the Eysenhardtia Genus
    plants Review Phytochemical and Pharmacological Study of the Eysenhardtia Genus Abraham Garcia-Campoy 1 , Efrén Garcia 2 and Alethia Muñiz-Ramirez 3,* 1 Laboratorio de Investigación de Productos Naturales, Escuela Superior de Ingeniería Química e Industrias extractivas Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional S/N, Unidad Profesional Adolfo López Mateos, Ciudad de Mexico CP 07708, Mexico; [email protected] 2 Laboratorio de Química Supramolecular y Nanociencias, Instituto Politécnico Nacional, Acueducto S/N, Barrio la laguna Ticomán, Ciudad de Mexico CP 07340, Mexico; [email protected] 3 CONACYT-IPICYT/CIIDZA, Camino a la Presa de San José 2055, Col. Lomas 4 Sección, San Luis Potosí S.L.P CP 78216, Mexico * Correspondence: [email protected] Received: 29 July 2020; Accepted: 18 August 2020; Published: 31 August 2020 Abstract: The participation of natural products in health care has been remarkable, and today they continue to play a key role in the discovery and development of new treatments. Phytochemical studies together with pharmacological tests have managed to integrate bioactive agents as an alternative solution to reduce or regulate the problems caused by diseases. The Eysenhardtia genus is a family of plants that are rich in secondary metabolites, which have shown potential activity in the control and mitigation of urinary disorders, diabetes, oxidative stress, protein glycosylation, microbial infections, inflammation, pain or discomfort, muscle contractions, cytotoxicity, or as a cellular or neuronal signaling modulator. These conditions generally appear in comorbid diseases, which motivated the bibliographic review associated with the plant. This document presents the beneficial actions produced by Eysenhardtia extracts and/or bioactives to inhibit, control, or reduce the complications or discomfort of degenerative diseases and thus generate new therapeutic alternatives.
    [Show full text]
  • Texas Big Tree Registry a List of the Largest Trees in Texas Sponsored by Texas a & M Forest Service
    Texas Big Tree Registry A list of the largest trees in Texas Sponsored by Texas A & M Forest Service Native and Naturalized Species of Texas: 320 ( D indicates species naturalized to Texas) Common Name (also known as) Latin Name Remarks Cir. Threshold acacia, Berlandier (guajillo) Senegalia berlandieri Considered a shrub by B. Simpson 18'' or 1.5 ' acacia, blackbrush Vachellia rigidula Considered a shrub by Simpson 12'' or 1.0 ' acacia, Gregg (catclaw acacia, Gregg catclaw) Senegalia greggii var. greggii Was named A. greggii 55'' or 4.6 ' acacia, Roemer (roundflower catclaw) Senegalia roemeriana 18'' or 1.5 ' acacia, sweet (huisache) Vachellia farnesiana 100'' or 8.3 ' acacia, twisted (huisachillo) Vachellia bravoensis Was named 'A. tortuosa' 9'' or 0.8 ' acacia, Wright (Wright catclaw) Senegalia greggii var. wrightii Was named 'A. wrightii' 70'' or 5.8 ' D ailanthus (tree-of-heaven) Ailanthus altissima 120'' or 10.0 ' alder, hazel Alnus serrulata 18'' or 1.5 ' allthorn (crown-of-thorns) Koeberlinia spinosa Considered a shrub by Simpson 18'' or 1.5 ' anacahuita (anacahuite, Mexican olive) Cordia boissieri 60'' or 5.0 ' anacua (anaqua, knockaway) Ehretia anacua 120'' or 10.0 ' ash, Carolina Fraxinus caroliniana 90'' or 7.5 ' ash, Chihuahuan Fraxinus papillosa 12'' or 1.0 ' ash, fragrant Fraxinus cuspidata 18'' or 1.5 ' ash, green Fraxinus pennsylvanica 120'' or 10.0 ' ash, Gregg (littleleaf ash) Fraxinus greggii 12'' or 1.0 ' ash, Mexican (Berlandier ash) Fraxinus berlandieriana Was named 'F. berlandierana' 120'' or 10.0 ' ash, Texas Fraxinus texensis 60'' or 5.0 ' ash, velvet (Arizona ash) Fraxinus velutina 120'' or 10.0 ' ash, white Fraxinus americana 100'' or 8.3 ' aspen, quaking Populus tremuloides 25'' or 2.1 ' baccharis, eastern (groundseltree) Baccharis halimifolia Considered a shrub by Simpson 12'' or 1.0 ' baldcypress (bald cypress) Taxodium distichum Was named 'T.
    [Show full text]
  • A Five-Year Research Program Is Proposed to Expand the Theory of Community Assembly from Its Current Base of Correlative Inferen
    PROJECT SUMMARY A five-year research program is proposed to expand the theory of community assembly from its current base of correlative inferences to one grounded in process-based conclusions derived from controlled field and laboratory experiments. Northern pitcher plants, Sarracenia purpurea, and their community of inquiline arthropods and rotifers, will be used as the model system for the proposed experiments. There are three goals to the proposed research. (1) Inquiline assemblages that colonize pitcher plants will be developed as a model system for understanding community assembly and persistence. (2) Field and laboratory experiments will be used to elucidate causes of inquiline community colonization, assembly, and persistence, and the consequences of inquiline community dynamics for plant leaf allocation patterns, growth, and reproduction, as well as within-plant nutrient cycling. Reciprocal interactions of plant dynamics on inquiline community structure will also be investigated experimentally. (3) Matrix models will be developed to describe reciprocal interactions between inquiline community assembly and persistence, and inquilines’ living host habitats. As an integrated whole, the proposed experiments and models will provide a complete picture of linkages between pitcher-plant inquiline communities and their host plants, at individual leaf and whole-plant scales. This focus on measures of plant performance will fill an apparent lacuna in prior studies of pitcher plant microecosystems, which, with few exceptions, have focused almost exclusively on inquiline population dynamics and interspecific interactions. Plant demography of S. purpurea will be described and modeled for the first time. Complementary, multi-year field and greenhouse experiments will reveal effects of soil and pitcher nutrient composition on leaf allocation, plant growth, and reproduction.
    [Show full text]
  • Butterflies and Moths of Pinal County, Arizona, United States
    Heliothis ononis Flax Bollworm Moth Coptotriche aenea Blackberry Leafminer Argyresthia canadensis Apyrrothrix araxes Dull Firetip Phocides pigmalion Mangrove Skipper Phocides belus Belus Skipper Phocides palemon Guava Skipper Phocides urania Urania skipper Proteides mercurius Mercurial Skipper Epargyreus zestos Zestos Skipper Epargyreus clarus Silver-spotted Skipper Epargyreus spanna Hispaniolan Silverdrop Epargyreus exadeus Broken Silverdrop Polygonus leo Hammock Skipper Polygonus savigny Manuel's Skipper Chioides albofasciatus White-striped Longtail Chioides zilpa Zilpa Longtail Chioides ixion Hispaniolan Longtail Aguna asander Gold-spotted Aguna Aguna claxon Emerald Aguna Aguna metophis Tailed Aguna Typhedanus undulatus Mottled Longtail Typhedanus ampyx Gold-tufted Skipper Polythrix octomaculata Eight-spotted Longtail Polythrix mexicanus Mexican Longtail Polythrix asine Asine Longtail Polythrix caunus (Herrich-Schäffer, 1869) Zestusa dorus Short-tailed Skipper Codatractus carlos Carlos' Mottled-Skipper Codatractus alcaeus White-crescent Longtail Codatractus yucatanus Yucatan Mottled-Skipper Codatractus arizonensis Arizona Skipper Codatractus valeriana Valeriana Skipper Urbanus proteus Long-tailed Skipper Urbanus viterboana Bluish Longtail Urbanus belli Double-striped Longtail Urbanus pronus Pronus Longtail Urbanus esmeraldus Esmeralda Longtail Urbanus evona Turquoise Longtail Urbanus dorantes Dorantes Longtail Urbanus teleus Teleus Longtail Urbanus tanna Tanna Longtail Urbanus simplicius Plain Longtail Urbanus procne Brown Longtail
    [Show full text]
  • Chemical Deception Among Ant Social Parasites
    Current Zoology 60 (1): 62–75, 2014 Chemical deception among ant social parasites Rhian M. GUILLEM1, Falko DRIJFHOUT2, Stephen J. MARTIN3* 1 Department of Animal and Plant Sciences, University of Sheffield, S10 2TN, UK 2 Chemical Ecology Group, School of Physical and Geographical Sciences, Lennard-Jones Laboratory, Keele University, ST5 5BG, UK 3 School of Environment and Life Sciences, University of Salford, Manchester M5 4WT, UK Abstract Deception is widespread throughout the animal kingdom and various deceptive strategies are exemplified by social parasites. These are species of ants, bees and wasps that have evolved to invade, survive and reproduce within a host colony of another social species. This is achieved principally by chemical deception that tricks the host workers into treating the invading parasite as their own kin. Achieving levels of acceptance into typically hostile host colonies requires an amazing level of decep- tion as social insects have evolved complex species- and colony-specific recognition systems. This allows the detection of for- eigners, both hetero- and con-specific. Therefore, social parasitic ants not only have to overcome the unique species recognition profiles that each ant species produces, but also the subtle variations in theses profiles which generate the colony-specific profiles. We present data on the level of chemical similarity between social parasites and their hosts in four different systems and then discuss these data in the wider context with previous studies, especially in respect to using multivariate statistical methods when looking for differences in these systems [Current Zoology 60 (1): 6275, 2014]. Keywords Mimicry, Social parasites, Cuticular hydrocarbons, Multivariate statistics Deception by mimicking the pattern of another spe- 1968).
    [Show full text]