The Adaptive Significance of Inquiline Parasite Workers

Total Page:16

File Type:pdf, Size:1020Kb

The Adaptive Significance of Inquiline Parasite Workers Received 5December 2002 Accepted 29January 2003 Publishedonline 30April 2003 Theadaptive significance of inquilineparasite workers Seirian Sumner * ,David R.Nash and Jacobus J.Boomsma Departmentof Population Ecology, Zoological Institute, University ofCopenhagen, Universitetsparken 15, DK-2100Copenhagen, Denmark Social parasites exploit thesocially managed resourcesof their host’s society.Inquiline social parasites are dependenton their hostthroughout their life cycle,and so many ofthe traits inherited from their free-living ancestorare removedby natural selection.One trait that is commonly lostis theworker caste, thefunctions of which are adequately fulfilled by hostworkers. The fewinquiline parasites that have retaineda worker casteare thought tobe at atransitional stage in theevolution of social parasitism, and their worker castesare consideredvestigial andnon-adaptive. However, this idea has notbeen tested. Furthermore, whetherinquiline workershave anadaptive role outsidethe usual worker repertoire of foraging, broodcare andcolony maintenance has notbeen examined. In this paper, wepresentdata that suggestthat workersof the inquiline ant Acromyrmexinsinuator play avital role in ensuringthe parasite’ s fitness.We show that thepresence of these parasite workershas apositive effecton the production of parasite sexualsand a negative effecton the production of host sexuals. This suggeststhat inquiline workersplay avital role in suppressinghost queen reproduction, thus promoting therearing ofparasite sexuals.To ourknowledge, these are thefirst experiments oninquiline workersand the first toprovide evidencethat inquiline workershave an adaptive role. Keywords: reproductive suppression;social parasitism; Acromyrmexinsinuator ;adaptation 1. INTRODUCTION gained from producing both sexualsand workers, then a workerlessstate is expectedto evolve quickly (Nonacs& Social parasites capitalize onthe socially managed Tobin 1992). However,a handfulof inquilines doinvest resourcesof their hosts,rather like thedistant relative who in aworker caste(nine out of 67 specieslisted in takesup an offerof a bedfor thenight andnever leaves. Ho¨lldobler &Wilson(1990)). This has beeninterpreted While theunwanted guest exercises strategies toexploit asincomplete adaptation toinquilinism by parasites at a theresources of the host’ s home,the host must respond primitive stage in their evolution (Wilson1984; by detectingand ultimately evicting them.This studyis Ho¨lldobler &Wilson 1990; Nonacs& Tobin 1992). concernedwith theadaptive strategies ofthe unwanted There is little evidencethat inquiline workersare effec- guest,the social parasite. tive in performing tasksthat are typical offree-living work- Social parasitism is commonthroughout theanimal ers.They are apparently unmotivatedin broodrearing and kingdom; for example, cuckoosparasitize thebrood- transportation (e.g. Kyidris yaleogyna ;Wilson &Brown caring abilities ofanother speciesby laying their eggs in 1956) andare ineffectivehunters, foragers andnest build- thenests of their hosts(Brook &Davies 1988). Social ers (K.yaleogyna ;Wilson& Brown1956; Polyrhachislama ; parasites are commonin thehymenopteran societies,and Maschwitz et al. 2000). There is only oneaccount from a they have evolved repeatedly in thebees, wasps and ants single colonyof Monomoriummetoecus in which inquiline (Wcislo 1987). In somecases, hymenopteran social para- workersappear toforage effectively (Wilson& Brown sitesproduce a worker castethat clearly has an adaptive 1958). However,inquiline workersmay perform some function(e.g. workers of slave-making antsare crucial for adaptive functionthat falls outsidethe normal worker rep- raiding other hostcolonies; Ho ¨lldobler &Wilson1990). ertoire, asis observed,for example, in slave-making ants. However,most permanent hymenopteran social parasites Theseworkers show a regressionof typical worker func- producesexuals but no workers, and the selection pressure tionssuch as brood caring, foraging andnest-building for theloss of the worker casteis likely tobe strong if the abilities (Alloway 1979; Ho¨lldobler &Wilson 1990) but social parasite cansuccessfully exploit theworker func- are highly adaptednest raiders (Foitzik &Herbers2001). tionsof its host. Weknowof only onedescription of inquiline workersper- Permanent social parasites, or parasitic inquilines,are forming an adaptive function: P. lama parasite workers dependenton their host’s societythroughout their life appear able tocare selectively for parasite brood,albeit becausethey donot kill thehost queen. Most inquiline lesseffectively than their hostcounterparts (Maschwitz et specieshave losttheir worker caste,since they rely ona al. 2000). constantsupply ofhost workers (e.g. Pseudomyrmex In this paper, weintroducethe idea that theproduction leptosus;Ward 1996). If thefitness gained by aparasite ofworkersmay bea fitnessinsurance policy for incipient from producing only sexual broodis greater than that inquilines.We suggest that they may help tosuppress host-queenreproduction in incipient systemswhere more *Authorand address for correspondence: SmithsonianTropical Research complex methodsof controlhave notevolved. We present Institute,Balboa, Panama, Republicof Panama ([email protected]). asetof predictionsfrom thehypothesis and test them with Proc.R. Soc.Lond. B (2003) 270, 1315–1322 1315 Ó 2003 TheRoyal Society DOI10.1098/ rspb.2003.2362 1316S. Sumnerand others Adaptiveparasite workers field data andmanipulation experiments onan inquiline produceworkers that, like thequeens, closely resemble socially parasitic fungus-growingant. their hostcounterparts (Schultz et al. 1998; Bekkevold & Boomsma 2000). Parasite workerscan be distinguished (a) Ahypothesisfor themaintenance ofadaptive from thehosts by their relatively smaller metapleural inquiline workers glands (Sumner et al. 2003b),facilitating in vivo manipu- Inquiline parasites are selectedto increase their ownfit- lation experiments.Colonies of A.echinatior consistof sev- nessby redirecting theresources of the host colony. One eral thousandworkers (Weber 1972; Bekkevold & way in which they dothis is by suppressingthe host Boomsma 2000). Sexual reproductionby theparasite is queen’sreproduction,so allowing resourcesto beinvested essentially semelparousand can occur in hostcolonies of in parasite rather than hostsexuals (e.g. Wilson & Brown any size,with sexual broods(male andfemale) varying 1956; Passera et al. 2001). Weproposethat parasite work- from twoto 326 individuals (Bekkevold &Boomsma ersof incipient inquilines may play akey role in redirecting 2000). After theemergence of parasite sexuals,the host hostresources, by aiding thesuppression of host repro- colonydeclines and eventually dies,putatively owing to ductionand promoting theproduction of parasite sexuals. thesuppression of host worker production(Bekkevold & This hypothesismakes several predictionsabout how Boomsma 2000). Acromyrmexinsinuator and A.echinatior selectionacts on incipient inquilines. are both facultatively polygynous,with upto fourhost and First, thepresence of parasite workerswill beassociated nineparasitic queensin asingle colony(Bekkevold et al. with thepresence of parasite sexuals.As a corollary, if host 1999; this paper), andcolonies of different gyny are of resourcesare divertedvia suppressionof host repro- similar size(see § 3b). The effectof queen numbers on duction,a negative relationship betweenparasite worker theproduction of parasite workersand sexuals is, there- productionand host sexual productionis expected fore,easily testedusing data from field colonies. (prediction 1). Although thereis little data available, observationson The numberof parasite andhost queens present in a A.insinuator already indicatethat its investmentin the colonycan affect parasite worker production.If, in worker castehas beenreduced from that ofa free-living addition toworkers, parasitic queensplay adirectrole in stateand that theworkers are notfully functional.First, theredirection of host resources, then fewer parasite work- A.insinuator producesminor workersprior tosexual pro- erswill berequired for sexual reproductionwhen the duction,and these constitute on average 25% ofthetotal numberof parasite queensis high. Furthermore, in poly- worker forcein colonieswhere they are produced.They gynoushost colonies we expect the combined number of only rarely investin large workersthat wouldbe able to parasite workersand queens required for effectivesup- forage, probably whenhost foragers are in shortsupply, as pressionto be greater than in monogynouscolonies suggestedby prediction 6(Sumner et al. 2003b). Second, (prediction 2). A.insinuator workersfare poorly in diseasedefence relative To assessthe success of resource distribution andto totheir hostcounterparts (Sumner et al. 2003b), as in pre- determinewhen to start rearing parasite sexuals,parasite diction5. However,these observations are also consistent workersmust be capable ofdistinguishing betweenhost with thenull hypothesisthat workersare vestigial and andparasite brood(prediction 3). This feedbackmech- functionless. anism assumesthat castedetermination is at least partly In this paper, weaddressthe remaining fourhypotheses. underworker control.This is consistentwith thecurrent Weusedata from field coloniescollected over 10 years to view ofcaste determination in ants,whereby gyne devel- assessthe influence of parasite worker productionon sex- opmentmay beswitched on by queenpheromones, but is ual production(prediction 1) andhow production of para- ultimately
Recommended publications
  • The Genome of the Leaf-Cutting Ant Acromyrmex Echinatior Suggests Key Adaptations to Advanced Social Life and Fungus Farming
    Downloaded from genome.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Research The genome of the leaf-cutting ant Acromyrmex echinatior suggests key adaptations to advanced social life and fungus farming Sanne Nygaard,1,9,11 Guojie Zhang,2,9 Morten Schiøtt,1,9 Cai Li,2,9 Yannick Wurm,3,4 Haofu Hu,2 Jiajian Zhou,2 Lu Ji,2 Feng Qiu,2 Morten Rasmussen,5 Hailin Pan,2 Frank Hauser,6 Anders Krogh,5,7,8 Cornelis J.P. Grimmelikhuijzen,6 Jun Wang,2,7,10,11 and Jacobus J. Boomsma1,10 1Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark; 2BGI-Shenzhen, Shenzhen 518083, China; 3Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland; 4Vital-IT Group, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland; 5Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350 Copenhagen, Denmark; 6Centre for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark; 7Department of Biology, University of Copenhagen, Copenhagen DK-2200, Denmark; 8Biotech Research and Innovation Center, University of Copenhagen, Copenhagen DK-2200, Denmark We present a high-quality (>100 3depth) Illumina genome sequence of the leaf-cutting ant Acromyrmex echinatior, a model species for symbiosis and reproductive conflict studies. We compare this genome with three previously sequenced genomes of ants from different subfamilies and focus our analyses on aspects of the genome likely to be associated with known evolutionary changes. The first is the specialized fungal diet of A.
    [Show full text]
  • A Five-Year Research Program Is Proposed to Expand the Theory of Community Assembly from Its Current Base of Correlative Inferen
    PROJECT SUMMARY A five-year research program is proposed to expand the theory of community assembly from its current base of correlative inferences to one grounded in process-based conclusions derived from controlled field and laboratory experiments. Northern pitcher plants, Sarracenia purpurea, and their community of inquiline arthropods and rotifers, will be used as the model system for the proposed experiments. There are three goals to the proposed research. (1) Inquiline assemblages that colonize pitcher plants will be developed as a model system for understanding community assembly and persistence. (2) Field and laboratory experiments will be used to elucidate causes of inquiline community colonization, assembly, and persistence, and the consequences of inquiline community dynamics for plant leaf allocation patterns, growth, and reproduction, as well as within-plant nutrient cycling. Reciprocal interactions of plant dynamics on inquiline community structure will also be investigated experimentally. (3) Matrix models will be developed to describe reciprocal interactions between inquiline community assembly and persistence, and inquilines’ living host habitats. As an integrated whole, the proposed experiments and models will provide a complete picture of linkages between pitcher-plant inquiline communities and their host plants, at individual leaf and whole-plant scales. This focus on measures of plant performance will fill an apparent lacuna in prior studies of pitcher plant microecosystems, which, with few exceptions, have focused almost exclusively on inquiline population dynamics and interspecific interactions. Plant demography of S. purpurea will be described and modeled for the first time. Complementary, multi-year field and greenhouse experiments will reveal effects of soil and pitcher nutrient composition on leaf allocation, plant growth, and reproduction.
    [Show full text]
  • Acromyrmex Ameliae Sp. N. (Hymenoptera: Formicidae): a New Social Parasite of Leaf-Cutting Ants in Brazil
    © 2007 The Authors Insect Science (2007) 14, 251-257 Acromyrmex ameliae new species 251 Journal compilation © Institute of Zoology, Chinese Academy of Sciences Acromyrmex ameliae sp. n. (Hymenoptera: Formicidae): A new social parasite of leaf-cutting ants in Brazil DANIVAL JOSÉ DE SOUZA1,3, ILKA MARIA FERNANDES SOARES2 and TEREZINHA MARIA CASTRO DELLA LUCIA2 1Institut de Recherche sur la Biologie de l’Insecte, Université François Rabelais, Tours, France, 2Departamento de Biologia Animal and 3Laboratório de Ecologia de Comunidades, Departamento de Biologia Geral, Universidade Federal de Viçosa, MG, 36570-000, Brazil Abstract The fungus-growing ants (Tribe Attini) are a New World group of > 200 species, all obligate symbionts with a fungus they use for food. Four attine taxa are known to be social parasites of other attines. Acromyrmex (Pseudoatta) argentina argentina and Acromyrmex (Pseudoatta) argentina platensis (parasites of Acromyrmex lundi), and Acromyrmex sp. (a parasite of Acromyrmex rugosus) produce no worker caste. In contrast, the recently discovered Acromyrmex insinuator (a parasite of Acromyrmex echinatior) does produce workers. Here, we describe a new species, Acromyrmex ameliae, a social parasite of Acromyrmex subterraneus subterraneus and Acromyrmex subterraneus brunneus in Minas Gerais, Brasil. Like A. insinuator, it produces workers and appears to be closely related to its hosts. Similar social parasites may be fairly common in the fungus-growing ants, but overlooked due to the close resemblance between parasite and host workers. Key words Acromyrmex, leaf-cutting ants, social evolution, social parasitism DOI 10.1111/j.1744-7917.2007.00151.x Introduction species can coexist as social parasites in attine colonies, consuming the fungus garden (Brandão, 1990; Adams The fungus-growing ants (Tribe Attini) are a New World et al., 2000).
    [Show full text]
  • Chemical Deception Among Ant Social Parasites
    Current Zoology 60 (1): 62–75, 2014 Chemical deception among ant social parasites Rhian M. GUILLEM1, Falko DRIJFHOUT2, Stephen J. MARTIN3* 1 Department of Animal and Plant Sciences, University of Sheffield, S10 2TN, UK 2 Chemical Ecology Group, School of Physical and Geographical Sciences, Lennard-Jones Laboratory, Keele University, ST5 5BG, UK 3 School of Environment and Life Sciences, University of Salford, Manchester M5 4WT, UK Abstract Deception is widespread throughout the animal kingdom and various deceptive strategies are exemplified by social parasites. These are species of ants, bees and wasps that have evolved to invade, survive and reproduce within a host colony of another social species. This is achieved principally by chemical deception that tricks the host workers into treating the invading parasite as their own kin. Achieving levels of acceptance into typically hostile host colonies requires an amazing level of decep- tion as social insects have evolved complex species- and colony-specific recognition systems. This allows the detection of for- eigners, both hetero- and con-specific. Therefore, social parasitic ants not only have to overcome the unique species recognition profiles that each ant species produces, but also the subtle variations in theses profiles which generate the colony-specific profiles. We present data on the level of chemical similarity between social parasites and their hosts in four different systems and then discuss these data in the wider context with previous studies, especially in respect to using multivariate statistical methods when looking for differences in these systems [Current Zoology 60 (1): 6275, 2014]. Keywords Mimicry, Social parasites, Cuticular hydrocarbons, Multivariate statistics Deception by mimicking the pattern of another spe- 1968).
    [Show full text]
  • Download PDF File
    Myrmecological News 20 7-14 Vienna, September 2014 Imperfect chemical mimicry explains the imperfect social integration of the inquiline ant Ectatomma parasiticum (Hymenoptera: Formicidae: Ectatomminae) Fabrice SAVARIT & Renée FÉNÉRON Abstract Inquilinism is an extreme form of social parasitism where the parasite permanently depends on its host. This parasitism is widespread among Formicinae and Myrmicinae ants but rare in other subfamilies, like Ectatomminae where Ectatomma parasiticum FEITOSA & FRESNEAU, 2008 is the sole inquiline described so far. This species is genetically and morpholo- gically very similar to its host, E. tuberculatum (OLIVIER, 1792), and uses its worker force to produce exclusively sexuals. During their life cycle, E. parasiticum queens enter into established host colonies and cohabit with the resident queens over an extended period of time. However, previous experiments in the laboratory have shown that some parasites are attacked by host workers, suggesting that their social integration into host colonies is incomplete or unstable. We thus investigate how the chemical cues of the parasites relate to the host's recognition system. For this, we compare the cuticu- lar hydrocarbon profiles of parasites, host queens and host workers using solid-phase microextraction. Although over- lapping, the chemical profiles of both species are distinct. Parasites have no specific compounds but a reduced total amount of cuticular hydrocarbons compared with hosts. We suggest that E. parasiticum uses an imperfect chemical mimicry stra- tegy as it is well-discriminated by its host species. Key words: Chemical strategy, cuticular hydrocarbons, inquiline ants, Ectatomma parasiticum, Ectatomma tuberculatum. Myrmecol. News 20: 7-14 (online 17 February 2014) ISSN 1994-4136 (print), ISSN 1997-3500 (online) Received 14 June 2013; revision received 12 November 2013; accepted 12 November 2013 Subject Editor: Falko P.
    [Show full text]
  • Exotic Ants (Hymenoptera, Formicidae) of Ohio
    JHR 51: 203–226 (2016) Exotic ants (Hymenoptera, Formicidae) of Ohio 203 doi: 10.3897/jhr.51.9135 RESEARCH ARTICLE http://jhr.pensoft.net Exotic ants (Hymenoptera, Formicidae) of Ohio Kaloyan Ivanov1 1 Department of Recent Invertebrates, Virginia Museum of Natural History, 21 Starling Ave., Martinsville, VA 24112, USA Corresponding author: Kaloyan Ivanov ([email protected]) Academic editor: Jack Neff | Received 9 May 2016 | Accepted 30 June 2016 | Published 29 August 2016 http://zoobank.org/DB4AA574-7B14-4544-A501-B9A8FA1F0C93 Citation: Ivanov K (2016) Exotic ants (Hymenoptera, Formicidae) of Ohio. Journal of Hymenoptera Research 51: 203–226. doi: 10.3897/jhr.51.9135 Abstract The worldwide transfer of plants and animals outside their native ranges is an ever increasing problem for global biodiversity. Ants are no exception and many species have been transported to new locations often with profound negative impacts on local biota. The current study is based on data gathered since the publication of the “Ants of Ohio” in 2005. Here I expand on our knowledge of Ohio’s myrmecofauna by contributing new records, new distributional information and natural history notes. The list presented here contains 10 species with origins in a variety of geographic regions, including South America, Eu- rope, Asia, and Indo-Australia. Two distinct groups of exotics, somewhat dissimilar in their geographic origin, occur in Ohio: a) 3 species of temperate Eurasian origin that have established reproducing outdoor populations; and b) 7 tropical tramp species currently confined to man-made structures. OnlyNylanderia flavipes (Smith, 1874) is currently seen to be of concern although its effects on local ant communities ap- pear to be restricted largely to already disturbed habitats.
    [Show full text]
  • Using Network Theory to Understand and Predict Biological Invasions
    Trends in Ecology & Evolution Review Using Network Theory to Understand and Predict Biological Invasions Carol M. Frost,1,2,* Warwick J. Allen,3 Franck Courchamp,4 Jonathan M. Jeschke,5,6,7 Wolf-Christian Saul,5,6,7,8 and David A. Wardle1,9 Understanding and predicting biological invasions is challenging because of the complexity of many interacting players. A holistic approach is needed with the potential to simultaneously consider all relevant effects and effectors. Using net- works to describe the relevant anthropogenic and ecological factors, from community-level to global scales, promises advances in understanding aspects of invasion from propagule pressure, through establishment, spread, and eco- logical impact of invaders. These insights could lead to development of new tools for prevention and management of invasions that are based on species’ network characteristics and use of networks to predict the ecological effects of invaders. Here, we review the findings from network ecology that show the most promise for invasion biology and identify pressing needs for future 1Department of Forest Ecology and research. Management, Swedish University of Agricultural Sciences, Skogsmarksgränd, SE901 83 Umeå, Scaling up to a Network Approach in Invasion Biology Sweden 2Current address: Department of Understanding and predicting biological invasions and their impacts is a huge challenge in ecol- Renewable Resources, University of ogy that will become more important as the homogenization of Earth’s biota increases [1]. Inva- Alberta, 230D Earth Sciences Building, sion biology’s ability to predict invasions and their impacts has been limited by the lack of Edmonton, AB, Canada T6G 2E3 3The Bio-Protection Research Centre, theoretical frameworks that can incorporate and quantify the formidable ecological complexity Lincoln University, PO Box 84, Lincoln of direct and indirect species interactions over multiple trophic levels [2].
    [Show full text]
  • The Mechanisms of Social Immunity Against Fungal Infections in Eusocial Insects
    toxins Review The Mechanisms of Social Immunity Against Fungal Infections in Eusocial Insects Long Liu 1,2, Xing-Ying Zhao 1, Qing-Bo Tang 2, Chao-Liang Lei 1 and Qiu-Ying Huang 1,* 1 Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China; [email protected] (L.L.); [email protected] (X.-Y.Z.); [email protected] (C.-L.L.) 2 Plant Protection College, Henan Agricultural University, Zhengzhou 450002, China; [email protected] * Correspondence: [email protected] Received: 29 March 2019; Accepted: 27 April 2019; Published: 29 April 2019 Abstract: Entomopathogenic fungus as well as their toxins is a natural threat surrounding social insect colonies. To defend against them, social insects have evolved a series of unique disease defenses at the colony level, which consists of behavioral and physiological adaptations. These colony-level defenses can reduce the infection and poisoning risk and improve the survival of societal members, and is known as social immunity. In this review, we discuss how social immunity enables the insect colony to avoid, resist and tolerate fungal pathogens. To understand the molecular basis of social immunity, we highlight several genetic elements and biochemical factors that drive the colony-level defense, which needs further verification. We discuss the chemosensory genes in regulating social behaviors, the antifungal secretions such as some insect venoms in external defense and the immune priming in internal defense. To conclude, we show the possible driving force of the fungal toxins for the evolution of social immunity.
    [Show full text]
  • Evolution of Miniaturisation in Inquiline Parasitic Ants: Timing of Male Elimination in Plagiolepis Pygmaea, the Host of Plagiolepis Xene
    Insect. Soc. 51 (2004) 395–399 0020-1812/04/040395-05 Insectes Sociaux DOI 10.1007/s00040-004-0758-9 © Birkhäuser Verlag, Basel, 2004 Research article Evolution of miniaturisation in inquiline parasitic ants: Timing of male elimination in Plagiolepis pygmaea, the host of Plagiolepis xene S. Aron 1, L. Passera 2 and L. Keller 3 1 Service d’Eco-Ethologie Evolutive, CP 160/12, Université Libre de Bruxelles, 50 av. F.D. Roosevelt, 1050 Brussels, Belgium, e-mail: [email protected] 2 Centre de Recherches sur la Cognition Animale, Université Toulouse III, France, e-mail: [email protected] 3 Institut d’Ecologie, Université de Lausanne, Switzerland, e-mail: [email protected] Received 9 February 2004; revised 20 April 2004; accepted 22 April 2004. Summary. Inquiline ant species are workerless social para- Introduction sites whose queens rely completely on the host worker force to raise their brood. A remarkable feature of inquiline ants is Social parasitism, whereby individuals of a species exploit the small size of sexuals, which are of the same size as or parental care from another species, has evolved repeatedly smaller than host workers. It has been suggested that minia- in eusocial Hymenoptera and has been reported in over 250 turisation evolved by parasites to prevent host workers from species of ants, bees and wasps (Wilson, 1971; Wcislo, 1987; discriminating between their own worker brood and the in- Hölldobler and Wilson, 1990). In its most extreme form, per- quiline sexuals, so that male and female inquilines can devel- manent inquilinism, social parasitism has been associated op under conditions where the host species does not produce with the loss of the worker caste.
    [Show full text]
  • The Crab Spider–Pitcher Plant Relationship Is a Nutritional Mutualism That Is Dependent on Prey- Resource Quality
    Received: 5 July 2018 | Accepted: 28 September 2018 DOI: 10.1111/1365-2656.12915 RESEARCH ARTICLE The crab spider–pitcher plant relationship is a nutritional mutualism that is dependent on prey- resource quality Weng Ngai Lam | Hugh T. W. Tan Department of Biological Sciences, National University of Singapore, Singapore, Abstract Singapore 1. Nutritional mutualisms are one of the three major categories of mutualisms and Correspondence involve the provision of limiting nutrients (resources) to one species by another. It Weng Ngai Lam was recently shown in laboratory experiments that two species of pitcher-dwell- Email: [email protected] ing crab spiders (Thomisidae), Thomisus nepenthiphilus and Misumenops nepen- Handling Editor: Audrey Dussutour thicola, increased capture rates of flesh flies (Sarcophagidae) for their host, Nepenthes gracilis. The spiders ambushed pitcher-visiting flesh flies and dropped their carcasses into pitchers after consuming them. The consumption of shared prey-resources by crab spiders and pitcher plants presents the possibility of para- sitism between them. However, ecologically generalizable mechanisms that pre- dict the context-dependent outcomes of such mutualisms are not known. 2. The effectiveness framework (mutualism effectiveness = quality × quantity) is useful for examining the total effect of mutualisms, but its quality component can be difficult to define. We identify the crab spider–pitcher plant interaction as a type of resource conversion mutualism and propose that the quality component in such interactions is the amount of the underlying resource contained in each unit of resource processed. We then used the crab spider–pitcher plant interaction to test the hypothesis that resource conversion mutualisms are more beneficial to the nutrient recipient when operating through high-quality resources (i.e., large prey, in this interaction).
    [Show full text]
  • The Genomic Basis of Arthropod Diversity
    bioRxiv preprint doi: https://doi.org/10.1101/382945; this version posted August 4, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. The Genomic Basis of Arthropod Diversity Gregg W.C. Thomas1, Elias Dohmen2, Daniel S.T. Hughes3,a, Shwetha C. Murali3,b, Monica Poelchau4, Karl Glastad5,c, Clare A. Anstead6, Nadia A. Ayoub7, Phillip Batterham8, Michelle Bellair3,d, Gretta J. Binford9, Hsu Chao3, Yolanda H. Chen10, Christopher Childers4, Huyen Dinh3, HarshaVardhan Doddapaneni3, Jian J. Duan11, Shannon Dugan3, Lauren A. Esposito12, Markus Friedrich13, Jessica Garb14, Robin B. Gasser6, Michael A.D. Goodisman5, Dawn E. Gundersen-Rindal15, Yi Han3, Alfred M. Handler16, Masatsugu Hatakeyama17, Lars Hering18, Wayne B. Hunter19, Panagiotis Ioannidis20, e, Joy C. Jayaseelan3, Divya Kalra3, Abderrahman Khila21, Pasi K. Korhonen6, Carol Eunmi Lee22, Sandra L. Lee3, Yiyuan Li23, Amelia R.I. Lindsey24,f, Georg Mayer18, Alistair P. McGregor25, Duane D. McKenna26, Bernhard Misof27, Mala Munidasa3, Monica Munoz-Torres28,g, Donna M. Muzny3, Oliver Niehuis29, Nkechinyere Osuji-Lacy3, Subba R. Palli30, Kristen A. Panfilio31, Matthias Pechmann32, Trent Perry8, Ralph S. Peters33, Helen C. Poynton34, Nikola-Michael Prpic35, Jiaxin Qu3, Dorith Rotenberg36, Coby Schal37, Sean D. Schoville38, Erin D. Scully39, Evette Skinner3, Daniel B. Sloan40, Richard Stouthamer24, Michael R. Strand41, Nikolaus U. Szucsich42, Asela Wijeratne26,h, Neil D. Young6, Eduardo E. Zattara43, Joshua B. Benoit44, Evgeny M. Zdobnov20, Michael E. Pfrender23, Kevin J. Hackett45, John H. Werren46, Kim C.
    [Show full text]
  • Partial Incompatibility Between Ants and Symbiotic Fungi in Two Sympatric Species of Acromyrmex Leaf-Cutting Ants
    Evolution, 55(10), 2001, pp. 1980±1991 PARTIAL INCOMPATIBILITY BETWEEN ANTS AND SYMBIOTIC FUNGI IN TWO SYMPATRIC SPECIES OF ACROMYRMEX LEAF-CUTTING ANTS A. N. M. BOT,1,2 S. A. REHNER,3,4 AND J. J. BOOMSMA1,5,6 1Department of Ecology and Genetics, Institute of Biological Sciences, University of Aarhus, 8000 Aarhus C, Denmark 3Department of Biology, P.O. Box 23360, University of Puerto Rico, Rio Piedras, Puerto Rico, 00931-3360 5Department of Population Ecology, Zoological Institute, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark Abstract. We investigate the nature and duration of incompatibility between certain combinations of Acromyrmex leaf-cutting ants and symbiotic fungi, taken from sympatric colonies of the same or a related species. Ant-fungus incompatibility appeared to be largely independent of the ant species involved, but could be explained partly by genetic differences among the fungus cultivars. Following current theoretical considerations, we develop a hypothesis, originally proposed by S. A. Frank, that the observed incompatibilities are ultimately due to competitive interactions between genetically different fungal lineages, and we predict that the ants should have evolved mechanisms to prevent such competition between cultivars within a single garden. This requires that the ants are able to recognize unfamiliar fungi, and we show that this is indeed the case. Ampli®ed fragment length polymorphism genotyping further shows that the two sympatric Acromyrmex species share each other's major lineages of cultivar, con®rming that horizontal transfer does occasionally take place. We argue and provide some evidence that chemical substances produced by the fungus garden may mediate recognition of alien fungi by the ants.
    [Show full text]