Exotic Ants (Hymenoptera, Formicidae) of Ohio
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Trofička Niša Mirmekofagnog Predatora Tijekom Ontogenetičkog Razvoja
Trofička niša mirmekofagnog predatora tijekom ontogenetičkog razvoja Gajski, Domagoj Master's thesis / Diplomski rad 2019 Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Science / Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:211948 Rights / Prava: In copyright Download date / Datum preuzimanja: 2021-09-26 Repository / Repozitorij: Repository of Faculty of Science - University of Zagreb University of Zagreb Faculty of Science Department of Biology Domagoj Gajski Trophic niche of an ant-eating predator during its ontogenetic development Graduation Thesis Zagreb, 2019. This thesis was made during an internship at the Masaryk University (Brno, Czech Republic) under the supervision of Prof. Mgr. Stanislav Pekár, Ph.D. and Assoc. Prof. Dr. sc. Damjan Franjević from University of Zagreb, and submitted for evaluation to the Department of Biology, Faculty of Science, University of Zagreb in order to acquire the title Master of molecular biology. I would first like to thank my thesis advisors Prof. dr. mgr. Stanislav Pekar and dr. mgr. Lenka Petrakova of the arachnological lab at the Masaryk University. The door to their offices was always open whenever I ran into questions about my research or writing. They consistently allowed this paper to be my own work but steered me in the right direction whenever they thought I needed it. I would like to thank all the co-workers at the arachnological lab, that made each day of work more interesting by losing their spiders in the lab. They somehow always landed on my work desk. -
Range Expansion in an Introduced Social Parasite-Host Species Pair Abstract Keywords
1 Range expansion in an introduced social parasite-host species pair 2 Jackson A. Helms IV1*, Selassie E. Ijelu2, Nick M. Haddad1 3 1 Kellogg Biological Station, Department of Integrative Biology, Michigan State University, 3700 E Gull 4 Lake Dr, Hickory Corners, MI 49060, USA 5 2 University of Saint Francis, 2701 Spring St, Fort Wayne, IN 46808, USA 6 * Corresponding author: orcid.org/0000-0001-6709-6770, [email protected] 7 Abstract 8 Dispersal in social parasites is constrained by the presence of suitable host populations, limiting 9 opportunities for rapid range expansion. For this reason, although hundreds of ant species have 10 expanded their ranges through human transport, few obligate social parasites have done so. We 11 test the hypothesis that social parasites expand their ranges more slowly than their hosts by 12 examining the spread of an introduced social parasite-host species pair in North America—the 13 workerless ant Tetramorium atratulum and the pavement ant T. immigrans. In doing so we 14 report a new range extension of T. atratulum in the interior US. Consistent with host limitation 15 on dispersal, we found a time lag ranging from several years to over a century between the 16 arrivals of the host and parasite to a new region. The estimated maximum rate of range 17 expansion in the parasite was only a third as fast as that of the host. We suggest that relative to 18 free-living social insects, social parasites may be less able to rapidly shift their ranges in 19 response to changes in habitat or climate. -
Hymenoptera: Vespidae)
INSECTA MUNDI, Vol. 17, No. 3-4, September-December, 2003 209 Review of Zethus Fabricius from the West Indies (Hymenoptera: Vespidae) Lionel A. Stange Florida State Collection of Arthropods Florida Department of Agriculture and Consumer Services P.O.Box 147100 Gainesville, FL 32614-7100, USA Abstract. Eleven species of Zethus are reported for the West Indies including two new species. A re-evaluation of Z. albopictus Smith is accomplished based on new material from Hispaniola leading to the creation of a new species group. A new species from St. Vincent is described which is the first known representative of the Z. sichelianus group from the West Indies. Also, a new species of the Z. cubensis group is described from San Salvador. New records are provided for many species except Z. dentostipes Bohart and Stange, Z. islandicus Bohart and Stange and Z. arietis (Fabricius) which are still known only from the holotypes. A key to species is provided. Introduction 3. Abdominal petiole and gaster reddish yellow, dense- ly micropunctate, with few macropunctures; ster- Bohart and Stange (1965) recorded nine species of nite I constricted to median carina before ex- Zethus from the West Indies (excluding Trinidad). panded posterior section; St. Vincent (Z. siche- lianus Group) .................. Zethus woodruffi n.sp. Specimens studied from St. Vincent and San Salva- 3'. Abdominal petiole and gaster dark brown to black, dor islands represent two additional species. All of the macropunctate but not micropunctate; sternite I species are endemic to one island or island group with nearly completely united with tergite I with weak the possible exception of Z. -
A Guide to the Ants of Sabangau
A Guide to the Ants of Sabangau The Orangutan Tropical Peatland Project November 2014 A Guide to the Ants of Sabangau All original text, layout and illustrations are by Stijn Schreven (e-mail: [email protected]), supple- mented by quotations (with permission) from taxonomic revisions or monographs by Donat Agosti, Barry Bolton, Wolfgang Dorow, Katsuyuki Eguchi, Shingo Hosoishi, John LaPolla, Bernhard Seifert and Philip Ward. The guide was edited by Mark Harrison and Nicholas Marchant. All microscopic photography is from Antbase.net and AntWeb.org, with additional images from Andrew Walmsley Photography, Erik Frank, Stijn Schreven and Thea Powell. The project was devised by Mark Harrison and Eric Perlett, developed by Eric Perlett, and coordinated in the field by Nicholas Marchant. Sample identification, taxonomic research and fieldwork was by Stijn Schreven, Eric Perlett, Benjamin Jarrett, Fransiskus Agus Harsanto, Ari Purwanto and Abdul Azis. Front cover photo: Workers of Polyrhachis (Myrma) sp., photographer: Erik Frank/ OuTrop. Back cover photo: Sabangau forest, photographer: Stijn Schreven/ OuTrop. © 2014, The Orangutan Tropical Peatland Project. All rights reserved. Email [email protected] Website www.outrop.com Citation: Schreven SJJ, Perlett E, Jarrett BJM, Harsanto FA, Purwanto A, Azis A, Marchant NC, Harrison ME (2014). A Guide to the Ants of Sabangau. The Orangutan Tropical Peatland Project, Palangka Raya, Indonesia. The views expressed in this report are those of the authors and do not necessarily represent those of OuTrop’s partners or sponsors. The Orangutan Tropical Peatland Project is registered in the UK as a non-profit organisation (Company No. 06761511) and is supported by the Orangutan Tropical Peatland Trust (UK Registered Charity No. -
Pavement Ants (Tetramorium Immigrans Santschi) Ryan S
Published by Utah State University Extension and Utah Plant Pest Diagnostic Laboratory ENT-219-20 June 2020 Pavement Ants (Tetramorium immigrans Santschi) Ryan S. Davis, Arthropod Diagnostician • Lori Spears, Cooperative Agricultural Pest Survey Coordinator • Austin Taylor, Entomology Assistant Quick Facts • Pavement ants are the most common pest ant in and around structures in Utah. • Worker pavement ants are all the same size and have only one queen. • Pavement ants feed on many foods, but prefer sweet and greasy foods. • Occasionally, pavement ants will injure plants. • Indoor problems with pavement ants are worst in spring and early summer. • Indoors, manage pavement ants using baits coupled with habitat modification, cleaning, Fig. 1. (left) Swarm of pavement ant workers in spring (Ryan proper food storage, and exclusion. Davis, Utah State University). Fig. 2. (right) Two workers fighting • Outside, use habitat modification, exclusion, (Ryan Davis, Utah State University). bait, and residual/nonresidual insecticides to manage pavement ants. or structure. They are attracted indoors by food, garbage and moisture, or swarm indoors when they nest in or near foundation cracks or voids. Pavement ants can also be abundant in gardens, and occasionally injure plants. They INTRODUCTION are found throughout the U.S. from the West Coast to the Pavement ants (Formicidae, Tetramorium immigrans) are Northeast. northern Utah’s most common pest ant in and around homes and structures. Until recently, the pavement IDENTIFICATION ant’s scientific name was Tetramorium caespitum, but recent genetic work has clarified that our common pest Pavement ants are most commonly recognized by their Tetramorium species in the U.S. is from Europe and has habit of gathering in large groups near cracks in the been given the name T. -
Three New Species of the Army Ant Genus Aenictus SHUCKARD, 1840 (Hymenoptera: Formicidae: Aenictinae) from Borneo and the Philippines
Z.Arb.Gem.Öst.Ent. 62 115-125 Wien, 19. 11. 2010 ISSN 0375-5223 Three new species of the army ant genus Aenictus SHUCKARD, 1840 (Hymenoptera: Formicidae: Aenictinae) from Borneo and the Philippines Herbert ZETTEL & Daniela Magdalena SORGER Abstract Descriptions of three new species of army ants are provided: Aenictus pfeifferi sp.n. from Sarawak, Borneo; Aenictus pangantihoni sp.n. from Camiguin, the Philippines; and Aenictus carolianus sp.n. from Cebu, the Philippines. Key words: Hymenoptera, Formicidae, Aenictus, army ants, new species, taxonomy, Philippines, Malaysia, Borneo, Cebu, Camiguin. Zusammenfassung Diese Arbeit liefert die Beschreibungen von drei Ameisenarten aus der Unterfamilie der Aenictinae (Treiberameisen): Aenictus pfeifferi sp.n. wird aus Sarawak, Borneo, beschrie- ben, Aenictus pangantihoni sp.n. von der Insel Camiguin, Philippinen, und Aenictus caro- lianus sp.n. von der Insel Cebu, Philippinen. Introduction The islands in the western Pacific region still yield a wealth of undescribed ant species. Despite the interesting biology of army ants – a review was published by KRONAUER (2009) – their taxonomy and zoogeography are poorly studied and need much more atten- tion. To our knowledge, the “true” army ants of the genus Aenictus SHUCKARD, 1840 (sub- family Aenictinae) are remarkably specious in the region. The described species are often recorded from a single island; this might be either an effect of reduced dispersal abilities or just a lack of information. Since WILSON’s (1964) taxonomic revision only a few species have been described from Southeast Asia, including one from Borneo (YAMANE & HASHIMOTO 1999), but none from the Philippines. In our present study we describe three species. -
Akes an Ant an Ant? Are Insects, and Insects Are Arth Ropods: Invertebrates (Animals With
~ . r. workers will begin to produce eggs if the queen dies. Because ~ eggs are unfertilized, they usually develop into males (see the discus : ~ iaplodiploidy and the evolution of eusociality later in this chapter). =- cases, however, workers can produce new queens either from un ze eggs (parthenogenetically) or after mating with a male ant. -;c. ant colony will continue to grow in size and add workers, but at -: :;oint it becomes mature and will begin sexual reproduction by pro· . ~ -irgin queens and males. Many specie s produce males and repro 0 _ " females just before the nuptial flight . Others produce males and ---: : ._ tive fem ales that stay in the nest for a long time before the nuptial :- ~. Our largest carpenter ant, Camponotus herculeanus, produces males _ . -:= 'n queens in late summer. They are groomed and fed by workers :;' 0 it the fall and winter before they emerge from the colonies for their ;;. ights in the spring. Fin ally, some species, including Monomoriurn : .:5 and Myrmica rubra, have large colonies with multiple que ens that .~ ..ew colonies asexually by fragmenting the original colony. However, _ --' e polygynous (literally, many queens) and polydomous (literally, uses, referring to their many nests) ants eventually go through a -">O=- r' sexual reproduction in which males and new queens are produced. ~ :- . ant colony thus functions as a highly social, organ ized "super _ _ " 1." The queens and mo st workers are safely hidden below ground : : ~ - ed within the interstices of rotting wood. But for the ant workers ~ '_i S ' go out and forage for food for the colony,'life above ground is - =- . -
A Five-Year Research Program Is Proposed to Expand the Theory of Community Assembly from Its Current Base of Correlative Inferen
PROJECT SUMMARY A five-year research program is proposed to expand the theory of community assembly from its current base of correlative inferences to one grounded in process-based conclusions derived from controlled field and laboratory experiments. Northern pitcher plants, Sarracenia purpurea, and their community of inquiline arthropods and rotifers, will be used as the model system for the proposed experiments. There are three goals to the proposed research. (1) Inquiline assemblages that colonize pitcher plants will be developed as a model system for understanding community assembly and persistence. (2) Field and laboratory experiments will be used to elucidate causes of inquiline community colonization, assembly, and persistence, and the consequences of inquiline community dynamics for plant leaf allocation patterns, growth, and reproduction, as well as within-plant nutrient cycling. Reciprocal interactions of plant dynamics on inquiline community structure will also be investigated experimentally. (3) Matrix models will be developed to describe reciprocal interactions between inquiline community assembly and persistence, and inquilines’ living host habitats. As an integrated whole, the proposed experiments and models will provide a complete picture of linkages between pitcher-plant inquiline communities and their host plants, at individual leaf and whole-plant scales. This focus on measures of plant performance will fill an apparent lacuna in prior studies of pitcher plant microecosystems, which, with few exceptions, have focused almost exclusively on inquiline population dynamics and interspecific interactions. Plant demography of S. purpurea will be described and modeled for the first time. Complementary, multi-year field and greenhouse experiments will reveal effects of soil and pitcher nutrient composition on leaf allocation, plant growth, and reproduction. -
Chemical Deception Among Ant Social Parasites
Current Zoology 60 (1): 62–75, 2014 Chemical deception among ant social parasites Rhian M. GUILLEM1, Falko DRIJFHOUT2, Stephen J. MARTIN3* 1 Department of Animal and Plant Sciences, University of Sheffield, S10 2TN, UK 2 Chemical Ecology Group, School of Physical and Geographical Sciences, Lennard-Jones Laboratory, Keele University, ST5 5BG, UK 3 School of Environment and Life Sciences, University of Salford, Manchester M5 4WT, UK Abstract Deception is widespread throughout the animal kingdom and various deceptive strategies are exemplified by social parasites. These are species of ants, bees and wasps that have evolved to invade, survive and reproduce within a host colony of another social species. This is achieved principally by chemical deception that tricks the host workers into treating the invading parasite as their own kin. Achieving levels of acceptance into typically hostile host colonies requires an amazing level of decep- tion as social insects have evolved complex species- and colony-specific recognition systems. This allows the detection of for- eigners, both hetero- and con-specific. Therefore, social parasitic ants not only have to overcome the unique species recognition profiles that each ant species produces, but also the subtle variations in theses profiles which generate the colony-specific profiles. We present data on the level of chemical similarity between social parasites and their hosts in four different systems and then discuss these data in the wider context with previous studies, especially in respect to using multivariate statistical methods when looking for differences in these systems [Current Zoology 60 (1): 6275, 2014]. Keywords Mimicry, Social parasites, Cuticular hydrocarbons, Multivariate statistics Deception by mimicking the pattern of another spe- 1968). -
The Organization of Societal Conflicts by Pavement Ants Tetramorium
Current Zoology, 2016, 62(3), 277–284 doi: 10.1093/cz/zow041 Advance Access Publication Date: 4 April 2016 Article Article The organization of societal conflicts by pavement ants Tetramorium caespitum: an agent-based model of amine-mediated Downloaded from https://academic.oup.com/cz/article-abstract/62/3/277/2897747 by guest on 08 December 2019 decision making a a,b a Kevin M. HOOVER , Andrew N. BUBAK , Isaac J. LAW , c c a Jazmine D. W. YAEGER , Kenneth J. RENNER , John G. SWALLOW , and a,* Michael J. GREENE aDepartment of Integrative Biology, University of Colorado Denver, Denver, CO 80217-3364, USA, bNeuroscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA, and cDepartment of Biology, University of South Dakota, Vermillion, South Dakota 57069, USA *Address correspondence to Michael J. Greene. E-mail: [email protected]. Received on 27 December 2015; accepted on 2 March 2016 Abstract Ant colonies self-organize to solve complex problems despite the simplicity of an individual ant’s brain. Pavement ant Tetramorium caespitum colonies must solve the problem of defending the ter- ritory that they patrol in search of energetically rich forage. When members of 2 colonies randomly interact at the territory boundary a decision to fight occurs when: 1) there is a mismatch in nest- mate recognition cues and 2) each ant has a recent history of high interaction rates with nestmate ants. Instead of fighting, some ants will decide to recruit more workers from the nest to the fighting location, and in this way a positive feedback mediates the development of colony wide wars. -
The Adaptive Significance of Inquiline Parasite Workers
Received 5December 2002 Accepted 29January 2003 Publishedonline 30April 2003 Theadaptive significance of inquilineparasite workers Seirian Sumner * ,David R.Nash and Jacobus J.Boomsma Departmentof Population Ecology, Zoological Institute, University ofCopenhagen, Universitetsparken 15, DK-2100Copenhagen, Denmark Social parasites exploit thesocially managed resourcesof their host’s society.Inquiline social parasites are dependenton their hostthroughout their life cycle,and so many ofthe traits inherited from their free-living ancestorare removedby natural selection.One trait that is commonly lostis theworker caste, thefunctions of which are adequately fulfilled by hostworkers. The fewinquiline parasites that have retaineda worker casteare thought tobe at atransitional stage in theevolution of social parasitism, and their worker castesare consideredvestigial andnon-adaptive. However, this idea has notbeen tested. Furthermore, whetherinquiline workershave anadaptive role outsidethe usual worker repertoire of foraging, broodcare andcolony maintenance has notbeen examined. In this paper, wepresentdata that suggestthat workersof the inquiline ant Acromyrmexinsinuator play avital role in ensuringthe parasite’ s fitness.We show that thepresence of these parasite workershas apositive effecton the production of parasite sexualsand a negative effecton the production of host sexuals. This suggeststhat inquiline workersplay avital role in suppressinghost queen reproduction, thus promoting therearing ofparasite sexuals.To ourknowledge, these are thefirst -
Download PDF File
Myrmecological News 20 7-14 Vienna, September 2014 Imperfect chemical mimicry explains the imperfect social integration of the inquiline ant Ectatomma parasiticum (Hymenoptera: Formicidae: Ectatomminae) Fabrice SAVARIT & Renée FÉNÉRON Abstract Inquilinism is an extreme form of social parasitism where the parasite permanently depends on its host. This parasitism is widespread among Formicinae and Myrmicinae ants but rare in other subfamilies, like Ectatomminae where Ectatomma parasiticum FEITOSA & FRESNEAU, 2008 is the sole inquiline described so far. This species is genetically and morpholo- gically very similar to its host, E. tuberculatum (OLIVIER, 1792), and uses its worker force to produce exclusively sexuals. During their life cycle, E. parasiticum queens enter into established host colonies and cohabit with the resident queens over an extended period of time. However, previous experiments in the laboratory have shown that some parasites are attacked by host workers, suggesting that their social integration into host colonies is incomplete or unstable. We thus investigate how the chemical cues of the parasites relate to the host's recognition system. For this, we compare the cuticu- lar hydrocarbon profiles of parasites, host queens and host workers using solid-phase microextraction. Although over- lapping, the chemical profiles of both species are distinct. Parasites have no specific compounds but a reduced total amount of cuticular hydrocarbons compared with hosts. We suggest that E. parasiticum uses an imperfect chemical mimicry stra- tegy as it is well-discriminated by its host species. Key words: Chemical strategy, cuticular hydrocarbons, inquiline ants, Ectatomma parasiticum, Ectatomma tuberculatum. Myrmecol. News 20: 7-14 (online 17 February 2014) ISSN 1994-4136 (print), ISSN 1997-3500 (online) Received 14 June 2013; revision received 12 November 2013; accepted 12 November 2013 Subject Editor: Falko P.