Anderson Oliveira Do Carmo Busca Por Novos Antígenos Para a Produção De Soro Antiescorpiônico

Total Page:16

File Type:pdf, Size:1020Kb

Anderson Oliveira Do Carmo Busca Por Novos Antígenos Para a Produção De Soro Antiescorpiônico Anderson Oliveira do Carmo Busca por novos antígenos para a produção de soro antiescorpiônico: Construção de antígenos quiméricos e caracterização de proteases da peçonha de T. serrulatus. Tese apresentada ao curso de pós-graduação em Genética do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais com requisito parcial para obtenção de título de Doutor em Genética. Orientador: Evanguedes Kalapothakis Universidade Federal de Minas Gerais Instituto de Ciências Biológicas Departamento de Biologia Geral Programa de Pós-graduação em Genética Belo Horizonte, 2015. 043 Carmo, Anderson Oliveira do. Busca por novos antígenos para a produção de soro antiescorpiônico: construção de antígenos quiméricos e caracterização de proteases da peçonha de T. serrulatus [manuscrito] / Anderson Oliveira do Carmo. – 2015. 157 f. : il. ; 29,5 cm. Orientador: Evanguedes Kalapothakis. Tese (doutorado) – Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas. 1. Tityus serrulatus - Teses. 2. Escorpião – Teses. 3. Proteína quimera. 4. Protease. 5. Anticorpos. 6. Anti-veneno. 7. Genética – Teses. I. Kalapothakis, Evanguedes. II. Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. III. Título. CDU: 575 Este trabalho foi realizado com o apoio das seguintes instituições: - Departamento de Biologia Geral – ICB – UFMG; - Departamento de Bioquímica e Imunologia – ICB – UFMG; - Fundação de Amparo a Pesquisa de Minas Gerais – FAPEMIG; - Conselho Nacional de Pesquisa – CNPq; - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES. VI Dedico esse trabalho a minha família. VII Agradecimentos Gostaria de agradecer ao programa de Pós Graduação em Genética e ao departamento de Biologia Geral pela oportunidade e apoio para o desenvolvimento desse trabalho e pela oportunidade de aprendizado e convívio com grandes pesquisadores do Brasil. As agências de fomento CAPES, CNPq e FAPEMIG pelo financiamento desse projeto e pela bolsa de doutorado. Ao professor Evanguedes Kalapothakis pelo apoio total durante todo o tempo de vivência. Você é um ótimo profissional no qual me espelho, com grande competência, sensibilidade e experiência, que sempre que necessário me indicou a direção certa a seguir para superar as adversidades surgidas durante esse trabalho. A banca por ter aceitado o convite de participar da arguição da minha tese e pela disponibilidade, tenho certeza que a presença de vocês trará grandes contribuições a esse trabalho. Aos membros do laboratório do professor Calos Chávez-Olórtegui pela grande ajuda e colaboração durante esse trablho. Aos técnicos de laboratório que passaram pelo LBMM, ICB e servidores que sempre me ajudaram nos experimentos mais complexos, em especial ao Jamil. A toda a família Kalapogrupo (IC’s, técnicos, mestrandos, doutorandos, pós docs etc...), a presença de vocês e companheirismo foi crucial para a boa convivência no laboratório e ajuda nesse trabalho. Em especial gostaria de agradecer ao Lucas, Carolina, Bárbaras que me ajuradam MUITO em todo o desenvolvimento. (desculpe por não citar outros nomes, mas tenho medo de deixar alguém de fora ). Aos meus queridos amigos, que tiveram paciência em aturar minhas ausências e neuroses durante esse período. Pela ajuda nas horas complicadas e pelos momentos de descontração super importantes para que eu não me isolasse do mundo. A toda minha família pelo apoio e compreensão durante esse período. Vocês me ajudaram muito para que eu fosse capaz de escrever e me desenvolver. Em especial aos meus Pais e irmãos que acompanharam mais de perto esse momento. E ao restante da família pelos momentos de descontração em festas e pequenas viagens. VIII Sumário AGRADECIMENTOS ........................................................................................................................................ VII SUMÁRIO ...................................................................................................................................................... VIII ÍNDICE DE ILUSTRAÇÕES ................................................................................................................................. XI ÍNDICE DE TABELAS ........................................................................................................................................ XII LISTA DE ABREVIATURAS .............................................................................................................................. XIII RESUMO .........................................................................................................................................................15 ABSTRACT .......................................................................................................................................................16 1. INTRODUÇÃO .........................................................................................................................................17 1.1 Escorpiões ........................................................................................................................................ 17 1.2 Escorpionismo .................................................................................................................................. 18 1.3 Epidemiologia do Escorpionismo ..................................................................................................... 19 1.3.1 Velho Mundo ................................................................................................................................... 19 1.3.2 Novo Mundo .................................................................................................................................... 20 1.4 Peçonha escorpiônica e toxinas ....................................................................................................... 21 1.5 Soro antipeçonha escorpiônico ........................................................................................................ 23 1.6 Historia da produção de soro antiescorpiônico em cavalos ............................................................ 23 1.7 Formas alternativas de produção de soro antiescorpiônico ............................................................ 24 1.7.1 Imunização com peçonha detoxificada ........................................................................................... 24 1.7.2 Imunização com frações tóxicas da peçonha .................................................................................. 25 1.7.3 Imunização com anatoxinas nativas ................................................................................................ 26 1.7.4 Imunização com toxinas recombinantes ......................................................................................... 26 1.7.5 Imunização com peptídeos sintéticos .............................................................................................. 28 1.7.6 Anticorpos monoclonais contra a peçonha escorpiônica ................................................................ 29 1.7.7 Anticorpos recombinantes baseados em antipeçonha escorpiônica ............................................... 30 1.8 Tityus serrulatus .............................................................................................................................. 31 1.8.1 Epidemiologia de T. serrulatus ........................................................................................................ 33 1.8.2 Toxinas de T. serrulatus ................................................................................................................... 35 1.8.3 Tratamento de escorpionismo ......................................................................................................... 37 1.8.4 Problemas na produção de soro ...................................................................................................... 37 2. JUSTIFICATIVA ........................................................................................................................................40 3. OBJETIVOS ..............................................................................................................................................41 3.1 Objetivos Específicos ........................................................................................................................ 41 4. MATERIAL E MÉTODOS ...........................................................................................................................42 4.1 Animais e linhagens de E.coli utilizadas........................................................................................... 42 4.2 Extração de peçonha de T. serrulatus .............................................................................................. 42 4.3 Busca de clones na Biblioteca de cDNA para a construção de cassetes quiméricos ........................ 43 4.4 Vetores plasmidiais utilizados ......................................................................................................... 43 4.5 Reação em cadeia da Polimerase (PCR)........................................................................................... 43 4.6 Eletroforese em gel de agarose ....................................................................................................... 44 IX 4.7 Transformação em E. coli ................................................................................................................ 44 4.8 Lise alcalina para purificação plasmidial ........................................................................................
Recommended publications
  • Bioinformatic Characterizations and Prediction of K+ and Na+ Ion Channels Effector Toxins
    Bioinformatic characterizations and prediction of K+ and Na+ ion channels effector toxins. Rima Soli, Belhassen Kaabi, Mourad Barhoumi, Mohamed El-Ayeb, Najet Srairi-Abid To cite this version: Rima Soli, Belhassen Kaabi, Mourad Barhoumi, Mohamed El-Ayeb, Najet Srairi-Abid. Bioinformatic characterizations and prediction of K+ and Na+ ion channels effector toxins.. BMC Pharmacology, BioMed Central, 2009, 9, pp.4. 10.1186/1471-2210-9-4. pasteur-00612552 HAL Id: pasteur-00612552 https://hal-riip.archives-ouvertes.fr/pasteur-00612552 Submitted on 2 Aug 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. BMC Pharmacology BioMed Central Research article Open Access Bioinformatic characterizations and prediction of K+ and Na+ ion channels effector toxins Rima Soli†1, Belhassen Kaabi*†1,3, Mourad Barhoumi1, Mohamed El-Ayeb2 and Najet Srairi-Abid2 Address: 1Laboratory of Epidemiology and Ecology of Parasites, Institut Pasteur de Tunis, Tunis, Tunisia, 2Laboratory of Venom and Toxins, Institut Pasteur de Tunis, Tunis, Tunisia and 3Research and Teaching Building,
    [Show full text]
  • Rope Parasite” the Rope Parasite Parasites: Nearly Every AuSC Child I Ever Treated Proved to Carry a Significant Parasite Burden
    Au#sm: 2015 Dietrich Klinghardt MD, PhD Infec4ons and Infestaons Chronic Infecons, Infesta#ons and ASD Infec4ons affect us in 3 ways: 1. Immune reac,on against the microbes or their metabolic products Treatment: low dose immunotherapy (LDI, LDA, EPD) 2. Effects of their secreted endo- and exotoxins and metabolic waste Treatment: colon hydrotherapy, sauna, intes4nal binders (Enterosgel, MicroSilica, chlorella, zeolite), detoxificaon with herbs and medical drugs, ac4vaon of detox pathways by solving underlying blocKages (methylaon, etc.) 3. Compe,,on for our micronutrients Treatment: decrease microbial load, consider vitamin/mineral protocol Lyme, Toxins and Epigene#cs • In 2000 I examined 10 au4s4c children with no Known history of Lyme disease (age 3-10), with the IgeneX Western Blot test – aer successful treatment. 5 children were IgM posi4ve, 3 children IgG, 2 children were negave. That is 80% of the children had clinical Lyme disease, none the history of a 4cK bite! • Why is it taking so long for au4sm-literate prac44oners to embrace the fact, that many au4s4c children have contracted Lyme or several co-infec4ons in the womb from an oVen asymptomac mother? Why not become Lyme literate also? • Infec4ons can be treated without the use of an4bio4cs, using liposomal ozonated essen4al oils, herbs, ozone, Rife devices, PEMF, colloidal silver, regular s.c injecons of artesunate, the Klinghardt co-infec4on cocKtail and more. • Symptomac infec4ons and infestaons are almost always the result of a high body burden of glyphosate, mercury and aluminum - against the bacKdrop of epigene4c injuries (epimutaons) suffered in the womb or from our ancestors( trauma, vaccine adjuvants, worK place related lead, aluminum, herbicides etc., electromagne4c radiaon exposures etc.) • Most symptoms are caused by a confused upregulated immune system (molecular mimicry) Toxins from a toxic environment enter our system through damaged boundaries and membranes (gut barrier, blood brain barrier, damaged endothelium, etc.).
    [Show full text]
  • Channel Toxin from Parabuthus Transvaalicus
    Eur. J. Biochem. 269, 5369–5376 (2002) Ó FEBS 2002 doi:10.1046/j.1432-1033.2002.03171.x A single charged surface residue modifies the activity of ikitoxin, a beta-type Na+ channel toxin from Parabuthus transvaalicus A. Bora Inceoglu1,*, Yuki Hayashida2, Jozsef Lango3, Andrew T. Ishida2 and Bruce D. Hammock1 1Department of Entomology and Cancer Research Center, 2Section of Neurobiology, Physiology and Behavior, and 3Department of Chemistry and Superfund Analytical Laboratory, University of California, Davis, CA, USA We previously purified and characterized a peptide toxin, from birtoxin by a single residue change from glycine to birtoxin, from the South African scorpion Parabuthus glutamic acid at position 23, consistent with the apparent transvaalicus. Birtoxin is a 58-residue, long chain neurotoxin mass difference of 72 Da. This single-residue difference that has a unique three disulfide-bridged structure. Here we renders ikitoxin much less effective in producing the same report the isolation and characterization of ikitoxin, a pep- behavioral effect as low concentrations of birtoxin. Elec- tide toxin with a single residue difference, and a markedly trophysiological measurements showed that birtoxin and reduced biological activity, from birtoxin. Bioassays on mice ikitoxin can be classified as beta group toxins for voltage- showed that high doses of ikitoxin induce unprovoked gated Na+ channels of central neurons. It is our conclusion jumps, whereas birtoxin induces jumps at a 1000-fold lower that the N-terminal loop preceding the a-helix in scorpion concentration. Both toxins are active against mice when toxins is one of the determinative domains in the interaction administered intracerebroventricularly.
    [Show full text]
  • Ion Selectivity and Membrane Potential Effects of Two Scorpion Pore-Forming Peptides
    Ion selectivity and membrane potential effects of two scorpion pore-forming peptides r Hons. B.Sc. Dissertation submitted for the degree Magister Scientiae in the Subject group Physiology, School for Physiology, Nutrition and Consumer Sciences at the North-West University (Potchefstroom Campus) Supervisor: Mr. J.L. Du Plessis Co-supervisor: Prof. F. Verdonck 2005 Potchefstroom Acknowledgements Acknowledgements Firstly I thank The Almighty Father for blessing me with a talent and providing me with the strength to make my studies at the North-West University a success. Thank you for the opportunities You have placed before me and the strength You have given me to pursue these opportunities. A special word of thanks must go out to my supervisor Mr. J.L. Du Plessis. His knowledge, guidance and friendships where key contributions in the success of my Masters study. The help and friendship 1 received is greatly appreciated. A big thank you must go to Prof. Fons Verdonck, my co-supervisor. Thank you for taking the time to type email after email and for your much valued and helpful ideas. Your experience was a hugh contribution to the success of my Masters research. Thank you. 1 find the need to thank my family: Dad, Mom and Dean thank you for all your support during my studying career. Without your eagerness and encouragement my university career at the North-West University would not have been possible. 1 would also like to thank the following people: To Mrs. Carla Fourie for the hours that she made available for the isolation of the cardiac myocytes.
    [Show full text]
  • Biotechnological Trends in Spider and Scorpion Antivenom Development
    Downloaded from orbit.dtu.dk on: Sep 23, 2021 Biotechnological Trends in Spider and Scorpion Antivenom Development Laustsen, Andreas Hougaard; Solà, Mireia; Jappe, Emma Christine; Oscoz Cob, Saioa; Lauridsen, Line P.; Engmark, Mikael Published in: Toxins Link to article, DOI: 10.3390/toxins8080226 Publication date: 2016 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Laustsen, A. H., Solà, M., Jappe, E. C., Oscoz Cob, S., Lauridsen, L. P., & Engmark, M. (2016). Biotechnological Trends in Spider and Scorpion Antivenom Development. Toxins, 8(8), [226]. https://doi.org/10.3390/toxins8080226 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. toxins Review Biotechnological Trends in Spider and Scorpion Antivenom Development Andreas Hougaard Laustsen 1,2,*, Mireia Solà 1, Emma Christine Jappe 1, Saioa Oscoz 1, Line Præst Lauridsen 1 and Mikael Engmark 1,3 1 Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs.
    [Show full text]
  • Experimental Kinetic Analysis of Mesobuthus Eupeus Scorpion Venom Absorption by ELISA
    ASIA PACIFIC JOURNAL of MEDICAL TOXICOLOGY APJMT 5;2 http://apjmt.mums.ac.ir June 2016 ORIGINAL ARTICLE Experimental Kinetic Analysis of Mesobuthus Eupeus Scorpion Venom Absorption by ELISA 1 2 2,* 3 ZOHREH HOSSEINI , MASOUD GHORBANPOOR , MOHAMMAD KHOSRAVI , MANSOUR MAYAHI 1 DVM Student, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran 2 Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran 3 Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran Abstract Background: A satisfactory therapeutic of envenomation requires accurate evaluation of the kinetic parameters of venoms. In this study, an AC-ELISA was developed for detection of Mesobuthus eupeus scorpion venom levels in the sera of experimental ly envenomed mice. The aim was to establish a correlation between these levels and the amount of injected venom in different intervals after treatments. Methods: Eighteen adult male N-mary mice were randomly divided into 6 equal groups; the first five groups received 180, 150, 100, 50 and 25 µg of M. eupeus venom per mouse respectively by SC route. The 6th group received PBS and was kept as control. At intervals of 15 and 30 minutes and 1, 2, 4, 6, 24 and 48 hours after treatment, the blood was obtained and its serum was assayed for detection of scorpion venom by an in-house AC-ELISA technique. Results: One hour after injection of 25µg and 150µg M. eupeus venom, the highest serum concentrations of the venom were recorded as 12.6% and 19.2%/mL of the injected venom, respectively.
    [Show full text]
  • Toxines Et Fonctions Cholinergiques Neuronales Et Non Neuronales
    Collection Rencontres en toxinologie © P. Marchot & J.-L. Boudier TTooxxiinneess eett ffoonnccttiioonnss cchhoolliinneerrggiiqquueess nneeuurroonnaalleess eett nnoonn nneeuurroonnaalleess Comité d’édition : Evelyne BENOIT, Françoise GOUDEY-PERRIERE, Pascale MARCHOT et Denis SERVENT Société Française pour l'Etude des Toxines Illustrations de couverture : En haut : Vue en microscopie électronique des synapses neuromusculaires du muscle triangulaire de sternum de souris (grossissement de 13 333 fois). Les pelotes noires sont générées par des molécules d’alpha-neurotoxine « à trois doigts », isolée d’un venin de cobra et radioiodée, fixées aux récepteurs nicotiniques de l’acétylcholine associés aux membranes post-synaptiques. (Copyright Pascale Marchot et Jean-Louis Boudier) En bas : Vue cristallographique du complexe de haute affinité formé entre (en jaune) cinq exemplaires d’une alpha- neurotoxine « à trois doigts », isolée d’un venin de cobra, et (en bleu) l’acetylcholine binding protein, protéine homopentamérique de mollusque aquatique et équivalent soluble du domaine extracellulaire de fixation des ligands du récepteur nicotinique de l’acétylcholine. (Copyright Pascale Marchot et Yves Bourne) Près de vingt ans de travaux menés par de nombreuses équipes au plan international relient ces deux images. Collection Rencontres en toxinologie La collection « Rencontres en toxinologie » est publiée à l’occasion des Colloques annuels « Rencontres en toxinologie » organisés par la Société Française pour l’Etude des Toxines (SFET). Les ouvrages parus de 2001 à 2007 ont été édités par Elsevier (Paris, France), puis par la Librairie Lavoisier (Cachan, France). A partir de 2008, ils seront édités par la SFET et diffusés sur le site http://www.sfet.asso.fr, en libre accès pour les auteurs et les lecteurs.
    [Show full text]
  • Functional Prediction of Bioactive Toxins in Scorpion
    FUNCTIONAL PREDICTION OF BIOACTIVE TOXINS IN SCORPION VENOM THROUGH BIOINFORMATICS TAN THIAM JOO , PAUL ( B. Appl. Sc. (Hons.), NUS ) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF BIOCHEMISTRY NATIONAL UNIVERSITY OF SINGAPORE 2005 Functional prediction of bioactive toxins in scorpion venom through bioinformatics Acknowledgements Throughout my Ph.D. candidature, I have been accompanied and supported by friends and family members to complete this thesis. So it is with deep gratitude that I express my heartfelt appreciation to the following: Almighty God who has blessed me with gifts and talents to share with others. Professor Vladimir Brusic, my supervisor and mentor, whom I owe lots of gratitude. Through his guidance and advice, I have improved on my writing skill and learnt to be an independent researcher. It is also through his faith in me that I have realised my potential. Professor Shoba Ranganathan, my co-supervisor, for her valuable advices and support which motivated me to pursue Ph.D. Seng Hong, Fahad, ZongHong, Anitha and XuanLinh for their computing assistance in my research. Asif, Heiny, Stephanie and Wilson for their critique of my dissertation and companionship during lunch and at I2R. Judice, Chris, Yew Kwang and Lynn for their listening ears and encouragement during difficult times. Bernett, Lesheng, Vivek, Victor and Justin, my fellow post-graduate friends for their comradeship. My mother, Madam Soong Kim Song, for her perseverance in the face of adversity. My family especially my eldest sister, Anna, for their love, encouragement, prayers and support. My deepest and sincere gratitude, Paul Tan Thiam Joo November, 2005 I Functional prediction of bioactive toxins in scorpion venom through bioinformatics Table of Contents Acknowledgements.............................................................................................................
    [Show full text]
  • Antigenic Cross-Reactivity Anti-Birtoxin Antibody Against Androctonus Crassicauda Venom
    J Arthropod-Borne Dis, December 2015, 9(2): 176–183 SA V Zoelen et al.: Antigenic Cross-Reactivity … Original Article Antigenic Cross-Reactivity Anti-Birtoxin Antibody against Androctonus crassicauda Venom *Suhandan Adigüzel Van Zoelen 1, Ozcan Ozkan 2, Bora Inceoglu 3 1Netherlands Organisation for Applied Scientific Research-Innovation for life-Hollanda, Turkey 2Drug and Medical Device Agency of Turkey, Ankara, Turkey 3Department of Entomology, University of California, Davis, USA (Received 2 Nov 2013; accepted 7 May 2014) Abstract Background: Antivenom is still widely used in the treatment of envenomation as there are no vaccines or other effective agents available against animal venoms. Recently, neurotoxins named birtoxin family have been described from Parabuthus transvaalicus and Androctonus crassicauda. The aim of the present study was to test the anti- birtoxin antibodies for their ability to neutralize the lethal effects of A. crassicauda scorpion venom. Methods: SDS-PAGE and Western blotting used the presence of components from A. crassicauda and P. transvaalicus scorpion venoms and to determine the degree of cross-reactivity. The Minimum Lethal Dose (MLD) of venom was assessed by subcutaneously (sc) injections in mice. Results: The MLD of the A. crassicauda venom was 35 µg/ 20g mouse by sc injection route. Western blotting showed the presence of components from A. crassicauda and P. transvaalicus scorpion venoms strongly cross react with the A. crassicauda antivenom. However, Western blotting of the A. crassicauda scorpion venom using the Refik Saydam Public Health Agency (RSPHA) generated antibody showed that not all the venom components cross reacted with the anti-birtoxin antibody. The antibodies only cross reacted with components falling under the 19 kDa protein size of A.
    [Show full text]
  • Etude De L'effet Du Venin De Scorpion Androctonus Australis Hector Sur La Régulation Des Fonctions Des Polynucléaires Neut
    N° d’ordre : 11/2012-M/S.B REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L’ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITIE DES SCIENCES ET DE LA TECHNOLOGIE HOUARI BOUMEDIENNE FACULTE DES SCIENCES BIOLOGIQUES MEMOIRE Présenté pour l’obtention du diplôme de MAGISTER En : SCIENCES DE LA NATURE Spécialité : Biochimie-Immunologie Par : Dalila KHEMILI THEME Etude de l’effet du venin de scorpion Androctonus australis hector sur la régulation des fonctions des polynucléaires neutrophiles Soutenu publiquement le 31 /10 / 2012, devant le jury composé de : Mme F. LARABA-DJEBARI, Professeur à l’USTHB Présidente Mme D.HAMMOUDI-TRIKI, Professeur à l’USTHB Directrice de mémoire Mme C.TOUIL-BOUKOFFA, Professeur à l’USTHB Examinatrice Mme H.OUMEHDI-OUSSEDIK, Maitre de conférences à l’USTHB Examinatrice Remerciements Je tiens tout d’abord à remercier Dieu pour la force et la patience qu’il m’a donné pour surmonter toutes les épreuves vécues au cours de ce mémoire. J'exprime mes profonds remerciements à ma directrice de thèse, le Professeur Hammoudi-Triki D, je la remercie pour m’avoir proposé ce sujet, pour sa confiance, son soutien et sa constante bonne humeur et surtout ses discussions scientifiques. Je tiens à remercier les membres de jury et particulièrement Mme Lararba-Djebari F, Professeur à la Faculté des Sciences Biologiques, qui nous a fait l’honneur de juger ce travail et de présider le jury. Je la remercie pour m’avoir donné l’opportunité de travailler au sein de son laboratoire. J’adresse mes remerciements à Mme Touil-Boukoffa C, Professeur à la Faculté des Sciences Biologiques, d’avoir aimablement accepté d’examiner ce travail.
    [Show full text]
  • Antigenic Cross-Reactivity Anti-Birtoxin Antibody Against Androctonus Crassicauda Venom
    J Arthropod-Borne Dis, December 2015, 9(2): 176–183 SA V Zoelen et al.: Antigenic Cross-Reactivity … Original Article Antigenic Cross-Reactivity Anti-Birtoxin Antibody against Androctonus crassicauda Venom *Suhandan Adigüzel Van Zoelen 1, Ozcan Ozkan 2, Bora Inceoglu 3 1Netherlands Organisation for Applied Scientific Research-Innovation for life-Hollanda, Turkey 2Drug and Medical Device Agency of Turkey, Ankara, Turkey 3Department of Entomology, University of California, Davis, USA (Received 2 Nov 2013; accepted 7 May 2014) Abstract Background: Antivenom is still widely used in the treatment of envenomation as there are no vaccines or other effective agents available against animal venoms. Recently, neurotoxins named birtoxin family have been described from Parabuthus transvaalicus and Androctonus crassicauda. The aim of the present study was to test the anti- birtoxin antibodies for their ability to neutralize the lethal effects of A. crassicauda scorpion venom. Methods: SDS-PAGE and Western blotting used the presence of components from A. crassicauda and P. transvaalicus scorpion venoms and to determine the degree of cross-reactivity. The Minimum Lethal Dose (MLD) of venom was assessed by subcutaneously (sc) injections in mice. Results: The MLD of the A. crassicauda venom was 35 µg/ 20g mouse by sc injection route. Western blotting showed the presence of components from A. crassicauda and P. transvaalicus scorpion venoms strongly cross react with the A. crassicauda antivenom. However, Western blotting of the A. crassicauda scorpion venom using the Refik Saydam Public Health Agency (RSPHA) generated antibody showed that not all the venom components cross reacted with the anti-birtoxin antibody. The antibodies only cross reacted with components falling under the 19 kDa protein size of A.
    [Show full text]
  • Biotechnological Trends in Spider and Scorpion Antivenom Development
    toxins Review Biotechnological Trends in Spider and Scorpion Antivenom Development Andreas Hougaard Laustsen 1,2,*, Mireia Solà 1, Emma Christine Jappe 1, Saioa Oscoz 1, Line Præst Lauridsen 1 and Mikael Engmark 1,3 1 Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark; [email protected] (M.S.); [email protected] (E.C.J.); [email protected] (S.O.); [email protected] (L.P.L.); [email protected] (M.E.) 2 Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen East, Denmark 3 Department of Bio and Health Informatics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark * Correspondence: [email protected]; Tel.: +45-2988-1134 Academic Editor: Nicholas R. Casewell Received: 14 June 2016; Accepted: 13 July 2016; Published: 23 July 2016 Abstract: Spiders and scorpions are notorious for their fearful dispositions and their ability to inject venom into prey and predators, causing symptoms such as necrosis, paralysis, and excruciating pain. Information on venom composition and the toxins present in these species is growing due to an interest in using bioactive toxins from spiders and scorpions for drug discovery purposes and for solving crystal structures of membrane-embedded receptors. Additionally, the identification and isolation of a myriad of spider and scorpion toxins has allowed research within next generation antivenoms to progress at an increasingly faster pace. In this review, the current knowledge of spider and scorpion venoms is presented, followed by a discussion of all published biotechnological efforts within development of spider and scorpion antitoxins based on small molecules, antibodies and fragments thereof, and next generation immunization strategies.
    [Show full text]