Autism: 2018 Dietrich Klinghardt MD, Phd Infections and Infestations Chronic Infections, Infestations and ASD

Total Page:16

File Type:pdf, Size:1020Kb

Autism: 2018 Dietrich Klinghardt MD, Phd Infections and Infestations Chronic Infections, Infestations and ASD Autism: 2018 Dietrich Klinghardt MD, PhD Infections and Infestations Chronic Infections, Infestations and ASD Infections affect us in 3 ways: 1. Immune reaction against the microbes or their metabolic products Treatment: low dose immunotherapy (LDI, LDA, EPD) 2. Effects of their secreted endo- and exotoxins and metabolic waste Treatment: colon hydrotherapy, sauna, intestinal binders (Enterosgel, MicroSilica, chlorella, zeolite), detoxification with herbs and medical drugs, activation of detox pathways by solving underlying blockages (methylation, etc.) 3. Competition for our micronutrients Treatment: decrease microbial load, consider vitamin/mineral protocol Lyme, Toxins and Epigenetics • In 2000 I examined 10 autistic children with no known history of Lyme disease (age 3- 10), with the IgeneX Western Blot test – after successful treatment. 5 children were IgM positive, 3 children IgG, 2 children were negative. That is 80% of the children had clinical Lyme disease, none the history of a tick bite! • Why is it taking so long for autism-literate practitioners to embrace the fact, that many autistic children have contracted Lyme or several co-infections in the womb from an often asymptomatic mother? Why not become Lyme literate also? • Infections can be treated without the use of antibiotics, using liposomal ozonated essential oils, herbs, ozone, Rife devices, PEMF, colloidal silver, regular s.c injections of artesunate, the Klinghardt co-infection cocktail and more. • Symptomatic infections and infestations are almost always the result of a high body burden of glyphosate, mercury and aluminum - against the backdrop of epigenetic injuries (epimutations) suffered in the womb or from our ancestors( trauma, vaccine adjuvants, work place related lead, aluminum, herbicides etc., electromagnetic radiation exposures etc.) • Most symptoms are caused by a confused upregulated immune system (molecular mimicry) Toxins from a toxic environment enter our system through damaged boundaries and membranes (gut barrier, blood brain barrier, damaged endothelium, etc.). It appears that there is an intentional destruction of human health by poisoning our air, our food and the many direct insults to our body (mercury-amalgam fillings, persistent contrails, herbicides, toxic adjuvants in vaccines, building materials and styles, glyphosate in coffee, etc). A toxic inner milieu turns our symbiotic life-giving microbiome into a pathogenic cesspool with all the oseuees of a hoi ifetio. Microbes achieve dominion over our system by seetig a lage oktail of sall oleules efeed to as biotoxins hih ae responsible for most symptoms. Man-made toxins and microbial toxins have to be cleared via the same biochemical pathways, which are not fully functional in the ASD children for a variety of reasons: genetic SNPs and mutations, epimutations, age at time of injury, EMR exposure, psychological stresses in the family, man-ade isults o the hild’s ai aie adjuvants, medical drugs taken by the mom during pregnancy, ie Tleol, o’s aalga fillings) etc., etc. Literature: Dietrich Klinghardt: iAdvancing Medicine with Food and Nutrients Biotoxins pp 851-868; 2nd edition. CRC Press 2013. Biotoxins from Microbes and Parasites • Bacterial toxins (Exotoxin, Gram positive Bacilli): Clostridium: tetani (Tetanospasmin) · perfringens (Alpha toxin, Enterotoxin) · difficile (A, B) · botulinum (Botox) other: Anthrax toxin · Listeriolysin O • Cocci: Streptolysin · Leukocidin (Panton-Valentine leukocidin) · Staphylococcus (Staphylococcus aureus alpha/beta/delta, Exfoliatin, Toxic shock syndrome toxin, SEB) • Actinobacteria: Cord factor · Diphtheria toxin • Gram negative: Shiga toxin · Verotoxin/shiga-like toxin (E. coli) · E. coli heat-stable enterotoxin/enterotoxin · Cholera toxin · Pertussis toxin · Pseudomonas exotoxin · Extracellular adenylate cyclase • By mechanism: type I (Superantigen) · type II (Pore-forming toxin) · type III (AB toxin/AB5) • Endotoxin: Lipopolysaccharide (Lipid A) · Bacillus thuringiensis delta endotoxin • Virulence factor: Clumping factor A · Fibronectin binding protein A • Mycotoxins: Aflatoxin · Amatoxin (alpha-amanitin, beta-amanitin, gamma-amanitin, epsilon-amanitin) · Citrinin · Cytochalasin · Ergotamine · Fumonisin (Fumonisin B1, Fumonisin B2) · Gliotoxin · Ibotenic acid · Muscimol · Ochratoxin · Patulin · Phalloidin · Sterigmatocystin · Trichothecene · Vomitoxin · Zeranol · Zearalenone • Invertebrates: arthropod: scorpion: Charybdotoxin, Maurotoxin, Agitoxin, Margatoxin, Slotoxin, Scyllatoxin, Hefutoxin, Lq2, Birtoxin, Bestoxin, BmKAEP, Phaiodotoxin · spider: Latrotoxin (Alpha-latrotoxin) · PhTx3 · Stromatoxin · Vanillotoxin · Huwentoxin mollusca: Conotoxin · Eledoisin · Onchidal · Saxitoxin · Tetrodotoxin • Vertebrates: fish: Ciguatera · Tetrodotoxin • amphibian: (+)-Allopumiliotoxin 267A · Batrachotoxin · Bufotoxins (Arenobufagin, Bufotalin, Bufotenin · Cinobufagin, Marinobufagin) · Epibatidine · Histrionicotoxin · Pumiliotoxin 251D · Samandarin · Samandaridine · Tarichatoxin • Reptile/snake venom: Bungarotoxin (Alpha-Bungarotoxin, Beta-Bungarotoxin) · Calciseptine · Taicatoxin · Calcicludine · Cardiotoxin III Nat Rev Neurol 2014 Nov;10(11):643-60. doi: 10.1038/nrneurol.2014.187. Epub 2014 Oct 14. Maternal immune activation and abnormal brain development across CNS disorders. Knuese I, Chicha L, Britschgi M, Schobel SA, Bodmer M, Hellings JA, Toovey S, Prinssen EP Abstract Epidemiological studies have shown a clear association between maternal infection and schizophrenia or autism in the progeny. Animal models have revealed maternal immune activation (mIA) to be a profound risk factor for neurochemical and behavioural abnormalities in the offspring. Microglial priming has been proposed as a major consequence of mIA, and represents a critical link in a causal chain that leads to the wide spectrum of neuronal dysfunctions and behavioural phenotypes observed in the juvenile, adult or aged offspring. Such diversity of phenotypic outcomes in the mIA model are mirrored by recent clinical evidence suggesting that infectious exposure during pregnancy is also associated with epilepsy and, to a lesser extent, cerebral palsy in children. Preclinical research also suggests that mIA might precipitate the development of Alzheimer and Parkinson diseases. Here, we summarize and critically review the emerging evidence that mIA is a shared environmental risk factor across CNS disorders that varies as a function of interactions between genetic and additional environmental factors. We also review ongoing clinical trials targeting immune pathways affected by mIA that may play a part in disease manifestation. In addition, future directions and outstanding questions are discussed, including potential symptomatic, disease- modifying and preventive treatment strategies. Transl Psychiatry 2012 Apr 3;2:e98. doi: 10.1038/tp.2012.24. Effects of maternal immune activation on gene expression patterns in the fetal brain. Garbett KA1, Hsiao EY, Kálmán S, Patterson PH, Mirnics K. Abstract We are exploring the mechanisms underlying how maternal infection increases the risk for schizophrenia and autism in the offspring. Several mouse models of maternal immune activation (MIA) were used to examine the immediate effects of MIA induced by influenza virus, poly(I:C) and interleukin IL-6 on the fetal brain transcriptome. Our results indicate that all three MIA treatments lead to strong and common gene expression changes in the embryonic brain. Most notably, there is an acute and transient upregulation of the α, β ad γ crystallin gene family. Furthermore, levels of crystallin gene expression are correlated with the severity of MIA as assessed by placental weight. The overall gene expression changes suggest that the response to MIA is a neuroprotective attempt by the developing brain to counteract environmental stress, but at a cost of disrupting typical neuronal differentiation and axonal growth. We propose that this cascade of events might parallel the mechanisms by which environmental insults contribute to the risk of neurodevelopmental disorders such as schizophrenia and autism. Lyme and Co-infections The association between tick-borne infections, Lyme borreliosis and autism spectrum disorders Medical Hypotheses, Volume 70, Issue 5, 2008, Pages 967–974 Robert C. Bransfield , Jeffrey S. Wulfman, William T. Harvey, Anju I. Usmand Summary Chronic infectious diseases, including tick-borne infections such as Borrelia burgdorferi may have direct effects, promote other infections and create a weakened, sensitized and immunologically vulnerable state during fetal development and infancy leading to increased vulnerability for developing autism spectrum disorders. A dysfunctional synergism with other predisposing and contributing factors may contribute to autism spectrum disorders by provoking innate and adaptive immune reactions to cause and perpetuate effects in susceptible individuals that result in inflammation, molecular mimicry, kynurenine pathway changes, increased quinolinic acid and decreased serotonin, oxidative stress, mitochondrial dysfunction and excitotoxicity that impair the development of the amygdala and other neural structures and neural networks resulting in a partial Klüver–Bucy Syndrome and other deficits resulting in autism spectrum disorders and/or exacerbating autism spectrum disorders from other causes throughout life. Support for this hypothesis includes multiple cases of mothers with Lyme disease and children with autism spectrum disorders; fetal neurological abnormalities
Recommended publications
  • Download Product Insert (PDF)
    PRODUCT INFORMATION α-Bungarotoxin (trifluoroacetate salt) Item No. 16385 Synonyms: α-Bgt, α-BTX Peptide Sequence: IVCHTTATSPISAVTCPPGENLCY Ile Val Cys His Thr Thr Ala Thr Ser Pro RKMWCDAFCSSRGKVVELGCAA Ile Ser Ala Val Thr Cys Pro Pro Gly Glu TCPSKKPYEEVTCCSTDKCNPHP KQRPG, trifluoroacetate salt Asn Leu Cys Tyr Arg Lys Met Trp Cys Asp (Modifications: Disulfide bridge between Ala Phe Cys Ser Ser Arg Gly Lys Val Val 3-23, 16-44, 29-33, 48-59, 60-65) Glu Leu Gly Cys Ala Ala Thr Cys Pro Ser MF: C338H529N97O105S11 • XCF3COOH FW: 7,984.2 Lys Lys Pro Tyr Glu Glu Val Thr Cys Cys Supplied as: A solid Ser Thr Asp Lys Cys Asn Pro His Pro Lys Storage: -20°C Gln Arg Pro Gly Stability: ≥2 years • XCF COOH Solubility: Soluble in aqueous buffers 3 Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis. Laboratory Procedures α-Bungarotoxin (trifluoroacetate salt) is supplied as a solid. A stock solution may be made by dissolving the α-bungarotoxin (trifluoroacetate salt) in water. The solubility of α-bungarotoxin (trifluoroacetate salt) in water is approximately 1 mg/ml. We do not recommend storing the aqueous solution for more than one day. Description α-Bungarotoxin is a snake venom-derived toxin that irreversibly binds nicotinic acetylcholine receptors (Ki = ~2.5 µM in rat) present in skeletal muscle, blocking action of acetylcholine at the postsynaptic membrane and leading to paralysis.1-3 It has been widely used to characterize activity at the neuromuscular junction, which has numerous applications in neuroscience research.4,5 References 1.
    [Show full text]
  • APPENDIX H – Bibliography of ECOTOX Open Literature
    APPENDIX H – Bibliography of ECOTOX Open Literature Refresh from 2012 Accepted by ECOTOX and OPP Reference List 1. Abbott, J. D.; Bruton, B. D., and Patterson, C. L. Fungicidal Inhibition of Pollen Germination and Germ-Tube Elongation in Muskmelon. REPSOIL,ENV; 1991; 26, (5): 529-530. Notes: EcoReference No.: 63745 Chemical of Concern: BMY,CTN,CuOH,MZB 2. Abney, M. R.; Ruberson, J. R.; Herzog, G. A.; Kring, T. J.; Steinkraus, D. C., and Roberts, P. M. Rise and Fall of Cotton Aphid (Hemiptera: Aphididae) Populations in Southeastern Cotton Production Systems. GRO,POP. Department of Entomology, North Carolina State University, Raleigh, NC, USA. [email protected]//: SOIL,ENV; 2008; 101, (1): 23-35. Notes: EcoReference No.: 156197 Chemical of Concern: AZX,CTN,IMC 3. Al-Dosari, S. A.; Cranshaw, W. S., and Schweissing, F. C. Effects on Control of Onion Thrips from Co- Application of Onion Pesticides. POPENV; 1996; 21, (1): 49-54. Notes: EcoReference No.: 90255 Chemical of Concern: CTN,CYP,CuOH,LCYT,MLX,MMM,Maneb 4. Arts, G. H. P.; Belgers, J. D. M.; Hoekzema, C. H., and Thissen, J. T. N. M. Sensitivity of Submersed Freshwater Macrophytes and Endpoints in Laboratory Toxicity Tests. GROAQUA; 2008; 153, (1): 199-206. Notes: EcoReference No.: 108008 Chemical of Concern: ASM,CTN,FNZ,PCP 5. Aziz, T.; Habte, M., and Yuen, J. E. Inhibition of Mycorrhizal Symbiosis in Leucaena leucocephala by Chlorothalonil. BCM,GRO,POPSOIL,ENV; 1991; 131, (1): 47-52. Notes: EcoReference No.: 92163 Chemical of Concern: CTN 6. Babu, T. H. Effectiveness of Certain Chemicals and Fungicides on the Feeding Behaviour of House Sparrows.
    [Show full text]
  • Bufadienolides from the Skin Secretions of the Neotropical Toad Rhinella Alata (Anura: Bufonidae): Antiprotozoal Activity Against Trypanosoma Cruzi
    molecules Article Bufadienolides from the Skin Secretions of the Neotropical Toad Rhinella alata (Anura: Bufonidae): Antiprotozoal Activity against Trypanosoma cruzi Candelario Rodriguez 1,2,3 , Roberto Ibáñez 4 , Luis Mojica 5, Michelle Ng 6, Carmenza Spadafora 6 , Armando A. Durant-Archibold 1,3,* and Marcelino Gutiérrez 1,* 1 Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Apartado 0843-01103, Panama; [email protected] 2 Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522510, India 3 Departamento de Bioquímica, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Apartado 0824-03366, Panama 4 Smithsonian Tropical Research Institute (STRI), Balboa, Ancon P.O. Box 0843-03092, Panama; [email protected] 5 Centro Nacional de Metrología de Panamá (CENAMEP AIP), Apartado 0843-01353, Panama; [email protected] 6 Centro de Biología Celular y Molecular de Enfermedades, INDICASAT AIP, Apartado 0843-01103, Panama; [email protected] (M.N.); [email protected] (C.S.) * Correspondence: [email protected] (A.A.D.-A.); [email protected] (M.G.) Abstract: Toads in the family Bufonidae contain bufadienolides in their venom, which are charac- Citation: Rodriguez, C.; Ibáñez, R.; terized by their chemical diversity and high pharmacological potential. American trypanosomiasis Mojica, L.; Ng, M.; Spadafora, C.; is a neglected disease that affects an estimated 8 million people in tropical and subtropical coun- Durant-Archibold, A.A.; Gutiérrez, M. tries. In this research, we investigated the chemical composition and antitrypanosomal activity Bufadienolides from the Skin of toad venom from Rhinella alata collected in Panama.
    [Show full text]
  • Preventive and Therapeutic Effects of Chinese Herbal Compounds Against Hepatocellular Carcinoma
    molecules Review Preventive and Therapeutic Effects of Chinese Herbal Compounds against Hepatocellular Carcinoma Bing Hu 1,*, Hong-Mei An 2, Shuang-Shuang Wang 1, Jin-Jun Chen 3 and Ling Xu 1 1 Department of Oncology and Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; [email protected] (S.-S.W.); [email protected] (L.X.) 2 Department of Science & Technology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 202032, China; [email protected] 3 Department of Plastic & Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, The Ninth People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200011, China; [email protected] * Correspondence: [email protected]; Tel.: +86-21-64385700 Academic Editor: Derek J. McPhee Received: 16 November 2015 ; Accepted: 20 January 2016 ; Published: 27 January 2016 Abstract: Traditional Chinese Medicines, unique biomedical and pharmaceutical resources, have been widely used for hepatocellular carcinoma (HCC) prevention and treatment. Accumulated Chinese herb-derived compounds with significant anti-cancer effects against HCC have been identified. Chinese herbal compounds are effective in preventing carcinogenesis, inhibiting cell proliferation, arresting cell cycle, inducing apoptosis, autophagy, cell senescence and anoikis, inhibiting epithelial-mesenchymal transition, metastasis and angiogenesis, regulating immune function, reversing drug
    [Show full text]
  • Host-Pathogen Interactions of Secreted and Surface Staphylococcus Aureus Factors
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 5-2010 Host-pathogen interactions of secreted and surface Staphylococcus aureus factors Vanessa Vazquez Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Biochemistry Commons, and the Microbiology Commons Recommended Citation Vazquez, Vanessa, "Host-pathogen interactions of secreted and surface Staphylococcus aureus factors" (2010). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 25. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/25 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. Host-pathogen interactions of secreted and surface Staphylococcus aureus factors by Vanessa Vazquez, B.S. APPROVED: Supervisory Professor Magnus Höök, Ph.D. Burton Dickey, M.D. Theresa Koehler, Ph.D. C. Wayne Smith, M.D. Yi Xu, Ph.D. APPROVED: Dean, The University of Texas Health Science Center at Houston Graduate School of Biomedical Sciences HOST-PATHOGEN INTERACTIONS OF SECRETED AND SURFACE STAPHYLOCOCCUS AUREUS FACTORS A Dissertation Presented to the Faculty of The University of Texas Health Science Center at Houston and The University of Texas M.D.
    [Show full text]
  • Anti-Inflammatory and Immune Regulatory Actions of Naja Naja
    toxins Review Anti-Inflammatory and Immune Regulatory Actions of Naja naja atra Venom Shu-Zhi Wang 1,2 and Zheng-Hong Qin 3,* 1 Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China; [email protected] 2 Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China 3 Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China * Correspondence: [email protected]; Tel./Fax: +86-512-65882071 Received: 23 December 2017; Accepted: 24 February 2018; Published: 28 February 2018 Abstract: Naja naja atra venom (NNAV) is composed of various proteins, peptides, and enzymes with different biological and pharmacological functions. A number of previous studies have reported that NNAV exerts potent analgesic effects on various animal models of pain. The clinical studies using whole venom or active components have confirmed that NNAV is an effective and safe medicine for treatment of chronic pain. Furthermore, recent studies have demonstrated that NNAV has anti-inflammatory and immune regulatory actions in vitro and in vivo. In this review article, we summarize recent studies of NNAV and its components on inflammation and immunity. The main new findings in NNAV research show that it may enhance innate and humoral immune responses while suppressing T lymphocytes-mediated cellular immunity, thus suggesting that NNAV and its active components may have therapeutic values in the treatment of inflammatory and autoimmune diseases.
    [Show full text]
  • English-Persian
    English-Persian English-Persian A abrachia (= abrachiatism) ﺑﯽ دﺳﺘﯽ ﻣﺎدرزاد abrachiatism ﺑﯽ ﺳﺮو دﺳﺘﯽ ﻣﺎدر زاد abrachiocephalia ﺁ. (A (= adenine ﺑﯽ ﺳﺮ و دﺳﺖ ﻣﺎدر زاد abrachiocephalus ﺁ. (A (= adenovirus ﺑﯽ دﺳﺖ ﻣﺎدر زاد abrachius زﻧﺠﻴﺮﻩ ﺁ. A chain اﺑﺮﯾﻦ abrin دﯼ.ان.اﯼ ﻧﻮع ﺁ. A form DNA اﺑﺴﻴﺰﯾﮏ اﺳﻴﺪ abscisic acid ﺁ.ﯾﮏ، اﯼ.وان. A I (= first meiotic ﭘﻴﮑﺮ anaphase) absolute configuration ﺑﻨﺪﯼ/ﮐﻨﻔﻴﮕﻮراﺳﻴﻮن/ﺁراﯾ ﺁ.دو، اﯼ.ﺗﻮ. A II (= second meiotic ش ﻣﻄﻠﻖ (anaphase ﺟﺬب ﮐﻨﻨﺪﮔﯽ، absorbance ﺟﺎﯾﮕﺎﻩ اﯼ.،ﭘﯽ. A,P site درﺁﺷﺎﻣﻨﺪﮔﯽ، اﺁ (aa (amino acid درﮐﺸﻴﺪﮔﯽ، ﻗﺎﺑﻠﻴﺖ ﺟﺬب اﯼ.اﯼ.ﺟﯽ. AAG (= acid ﺟﺬب، ﺟﺬب ﺳﻄﺤﯽ، alpha-glucosidase) absorption درﺁﺷﺎﻣﯽ، درﮐﺸﯽ، درون اﯼ.اﯼ.ﺗﯽ. (AAT (= alpha-antitrypsin ﺟﺬﺑﯽ اﯼ.اﯼ.وﯼ. AAV (= adeno-associated ﺁﺑﺰﯾﻢ، اﺑﺰاﯾﻢ virus) abzyme ﺁ.ث.، اﯼ.ﺳﯽ. (AC (= adenyl cyclase اﯼ.ﺑﯽ. (ab (= antibody ﺧﺎر ﺳﺮﮎ acanthella ﭘﻴﺸﺒﻴﻨﯽ ژن اب اﯾﻨﻴﺘﻴﻮ ab initio gene prediction ﺧﺎر ﺳﺮان acanthocephala اﻧﺘﻘﺎل دهﻨﺪﻩ اﯼ.ﺑﯽ.ﺳﯽ. ABC transporter =) acanthocephalan ﺟﻮرﻩ/وارﯾﺘﻪ/رﻗﻢ/ﺳﻮﯾﻪ Abelson strain of murine (acanthocephalus (ﻣﺮﺑﻮط ﺑﻪ ﺟﻮﻧﺪﮔﺎن) ﺧﺎر ﺳﺮ acanthocephalus ﺁﺑﻠﺴﻮﻧﯽ ﺧﺎر ﺳﺮﭼﻪ acanthor ﮐﺞ راهﯽ aberration ﺑﯽ ﻗﻠﺒﯽ ﻣﺎدر زاد acardia ﺗﻮﻟﻴﺪ ﺧﻮد ﺑﺨﻮد، ﺗﻮﻟﻴﺪ ﻣﺜﻞ abiogenesis ﺑﯽ ﻗﻠﺐ ﻣﺎدر زاد acardiac ﺧﻮد ﺑﻪ ﺧﻮدﯼ، ﻧﺎزﯾﺴﺖ (acardiacus (=acardiac زاﯾﯽ (acardius (=acardiac ﻏﻴﺮ ﺁﻟﯽ، ﻏﻴﺮ زﻧﺪﻩ، ﻧﺎزﯾﻮا abiotic ﮐﻨﻪ زدﮔﯽ acariasis ﺗﻨﺶ ﻋﻮاﻣﻞ ﻓﻴﺰﯾﮑﯽ ﻣﺤﻴﻂ، abiotic stress ﮐﻨﻪ ﺳﺎﻧﺎن acarina ﺗﻨﺶ اﺑﻴﻮﺗﻴﮏ ﮐﻨﻪ ﺳﺎن acarine اﯼ.ﺑﯽ.ال abl (=Abelson strain of ﮐﻨﻪ زدﮔﯽ (murine) acarinosis (= acariasis ﮐﻨﻪ زدﮔﯽ ﭘﻮﺳﺖ acarodermatitis اﯼ.ﺑﯽ.ال. ABL (=Abelson strain of ﮐﻨﻪ ﺗﺮﺳﯽ murine) acarophobia ﺑﻠﻮغ ﺷﺘﺎﺑﺪار/ﺗﺴﺮﯾﻊ ﺷﺪﻩ accelerated maturation ﻓﺮﺳﺎب، ﺳﺎﯾﺶ، ذوب ﯾﺦ ablation ﮔﻠﻮﺑﻮﻟﻴﻦ ﺷﺘﺎﺑﺪهﻨﺪﻩ/ﺗﺴﺮﯾﻊ accelerator globulin اﯼ.ﺑﯽ.او.
    [Show full text]
  • Bioinformatic Characterizations and Prediction of K+ and Na+ Ion Channels Effector Toxins
    Bioinformatic characterizations and prediction of K+ and Na+ ion channels effector toxins. Rima Soli, Belhassen Kaabi, Mourad Barhoumi, Mohamed El-Ayeb, Najet Srairi-Abid To cite this version: Rima Soli, Belhassen Kaabi, Mourad Barhoumi, Mohamed El-Ayeb, Najet Srairi-Abid. Bioinformatic characterizations and prediction of K+ and Na+ ion channels effector toxins.. BMC Pharmacology, BioMed Central, 2009, 9, pp.4. 10.1186/1471-2210-9-4. pasteur-00612552 HAL Id: pasteur-00612552 https://hal-riip.archives-ouvertes.fr/pasteur-00612552 Submitted on 2 Aug 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. BMC Pharmacology BioMed Central Research article Open Access Bioinformatic characterizations and prediction of K+ and Na+ ion channels effector toxins Rima Soli†1, Belhassen Kaabi*†1,3, Mourad Barhoumi1, Mohamed El-Ayeb2 and Najet Srairi-Abid2 Address: 1Laboratory of Epidemiology and Ecology of Parasites, Institut Pasteur de Tunis, Tunis, Tunisia, 2Laboratory of Venom and Toxins, Institut Pasteur de Tunis, Tunis, Tunisia and 3Research and Teaching Building,
    [Show full text]
  • Fibrinogen Binding Sites P336 and Y338 of Clumping Factor a Are Crucial for Staphylococcus Aureus Virulence
    Fibrinogen Binding Sites P336 and Y338 of Clumping Factor A Are Crucial for Staphylococcus aureus Virulence Elisabet Josefsson1*, Judy Higgins2, Timothy J. Foster2, Andrej Tarkowski1 1 Department of Rheumatology and Inflammation Research, University of Gothenburg, Go¨teborg, Sweden, 2 Microbiology Department, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland Abstract We have earlier shown that clumping factor A (ClfA), a fibrinogen binding surface protein of Staphylococcus aureus,isan important virulence factor in septic arthritis. When two amino acids in the ClfA molecule, P336 and Y338, were changed to serine and alanine, respectively, the fibrinogen binding property was lost. ClfAP336Y338 mutants have been constructed in two virulent S. aureus strains Newman and LS-1. The aim of this study was to analyze if these two amino acids which are vital for the fibrinogen binding of ClfA are of importance for the ability of S. aureus to generate disease. Septic arthritis or sepsis were induced in mice by intravenous inoculation of bacteria. The clfAP336Y338 mutant induced significantly less arthritis than the wild type strain, both with respect to severity and frequency. The mutant infected mice developed also a much milder systemic inflammation, measured as lower mortality, weight loss, bacterial growth in kidneys and lower IL-6 levels. The data were verified with a second mutant where clfAP336 and Y338 were changed to alanine and serine respectively. When sepsis was induced by a larger bacterial inoculum, the clfAP336Y338 mutants induced significantly less septic death. Importantly, immunization with the recombinant A domain of ClfAP336SY338A mutant but not with recombinant ClfA, protected against septic death.
    [Show full text]
  • Toxicology in Antiquity
    TOXICOLOGY IN ANTIQUITY Other published books in the History of Toxicology and Environmental Health series Wexler, History of Toxicology and Environmental Health: Toxicology in Antiquity, Volume I, May 2014, 978-0-12-800045-8 Wexler, History of Toxicology and Environmental Health: Toxicology in Antiquity, Volume II, September 2014, 978-0-12-801506-3 Wexler, Toxicology in the Middle Ages and Renaissance, March 2017, 978-0-12-809554-6 Bobst, History of Risk Assessment in Toxicology, October 2017, 978-0-12-809532-4 Balls, et al., The History of Alternative Test Methods in Toxicology, October 2018, 978-0-12-813697-3 TOXICOLOGY IN ANTIQUITY SECOND EDITION Edited by PHILIP WEXLER Retired, National Library of Medicine’s (NLM) Toxicology and Environmental Health Information Program, Bethesda, MD, USA Academic Press is an imprint of Elsevier 125 London Wall, London EC2Y 5AS, United Kingdom 525 B Street, Suite 1650, San Diego, CA 92101, United States 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom Copyright r 2019 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).
    [Show full text]
  • Lllostridium Botulinum Neurotoxinl I H
    MICROBIOLOGICAL REVIEWS, Sept. 1980, p. 419-448 Vol. 44, No. 3 0146-0749/80/03-0419/30$0!)V/0 Lllostridium botulinum Neurotoxinl I H. WJGIYAMA Food Research Institute and Department ofBacteriology, University of Wisconsin, Madison, Wisconsin 53706 INTRODUCTION ........ .. 419 PATHOGENIC FORMS OF BOTULISM ........................................ 420 Food Poisoning ............................................ 420 Wound Botulism ............................................ 420 Infant Botulism ............................................ 420 CULTURES AND TOXIN TYPES ............................................ 422 Culture-Toxin Relationships ............................................ 422 Culture Groups ............................................ 422 GENETICS OF TOXIN PRODUCTION ......................................... 423 ASSAY OF TOXIN ............................................ 423 In Vivo Quantitation ............................................ 424 Infant-Potent Toxin ............................................ 424 Serological Assays ............................................ 424 TOXIC COMPLEXES ............................................ 425 Complexes 425 Structure of Complexes ...................................................... 425 Antigenicity and Reconstitution .......................... 426 Significance of Complexes .......................... 426 Nomenclature ........................ 427 NEUROTOXIN ..... 427 Molecular Weight ................... 427 Specific Toxicity ................... 428 Small Toxin ..................
    [Show full text]
  • INVITED SPEAKERS (INV) Presentation: Monday, September 28, 2015 from 10:30 – 11:00 in Room Congress Saal
    INVITED SPEAKERS (INV) Presentation: Monday, September 28, 2015 from 10:30 – 11:00 in room Congress Saal. INV01 Redefining Virulence: Bacterial Gene Expression during INV03 Human Infection Breath-taking viral zoonosis: Lessons from influenza viruses H. L. T. Mobley T. Wolff University of Michigan Medical School, Department of Robert Koch-Institut, Division 17, Influenza viruses and other Microbiology and Immunology, Ann Arbor, United States Respiratory Viruses, Berlin, Germany Investigators identifying virulence genes at first did so by The World Health Organization recently expressed concerns about examining transposon mutants or individual gene mutations. an unprecedented diversity and geographical distribution of Mutants of bacterial pathogens were then assessed in animals, influenza viruses currently circulating in animal reservoirs. This whose symptoms mimicked human disease. Later, genome-wide includes an increase in the detection of animal influenza viruses screens (STM, IVET, IVIAT) were developed whereby genes and that co-circulate and exchange viral genes giving rise to novel virus proteins that influence virulence could be identified. These efforts strains. As the avian and porcine host reservoirs have in the past led to our conventional view of microbial virulence, with its focus contributed essentially to the genesis of human pandemic influenza on adhesins, iron acquisition, toxins, secretion, and motility, as viruses causing waves of severe respiratory disease on a global well as on those bacteria with genes such as on horizontally scale, this is a notable situation. transferred pathogenicity-associated islands that are not found in Zoonotic transmissions of avian influenza viruses belonging to the commensal strains. Now, however, we also must consider what H5N1 or H7N9 subtypes have been well documented in recent metabolic pathways are in play when microbial pathogens infect years.
    [Show full text]