Resolving Distribution and Population Fragmentation in Two Leaf-Tailed Gecko Species of North-East Australia: Key Steps in the Conservation of Microendemic Species

Total Page:16

File Type:pdf, Size:1020Kb

Resolving Distribution and Population Fragmentation in Two Leaf-Tailed Gecko Species of North-East Australia: Key Steps in the Conservation of Microendemic Species CSIRO PUBLISHING Australian Journal of Zoology, 2018, 66, 152–166 https://doi.org/10.1071/ZO18036 Resolving distribution and population fragmentation in two leaf-tailed gecko species of north-east Australia: key steps in the conservation of microendemic species Lorenzo V. Bertola A, Megan Higgie A and Conrad J. Hoskin A,B ACollege of Science and Engineering, James Cook University, Townsville, Qld 4811, Australia. BCorresponding author. Email: [email protected] Abstract. North Queensland harbours many microendemic species. These species are of conservation concern due to their small and fragmented populations, coupled with threats such as fire and climate change. We aimed to resolve the distribution and population genetic structure in two localised Phyllurus leaf-tailed geckos: P. gulbaru and P. amnicola. We conducted field surveys to better resolve distributions, used Species Distribution Models (SDMs) to assess the potential distribution, and then used the SDMs to target further surveys. We also sequenced all populations for a mitochondrial gene to assess population genetic structure. Our surveys found additional small, isolated populations of both species, including significant range extensions. SDMs revealed the climatic and non-climatic variables that best predict the distribution of these species. Targeted surveys based on the SDMs found P. gulbaru at an additional two sites but failed to find either species at other sites, suggesting that we have broadly resolved their distributions. Genetic analysis revealed population genetic structuring in both species, including deeply divergent mitochondrial lineages. Current and potential threats are overlain on these results to determine conservation listings and identify management actions. More broadly, this study highlights how targeted surveys, SDMs, and genetic data can rapidly increase our knowledge of microendemic species, and direct management. Received 21 May 2018, accepted 4 October 2018, published online 2 November 2018 Introduction Borsboom et al. 2010; Couper and Hoskin 2013). The Some vertebrate species have remarkably small natural biogeographic insights and conservation challenges for these distributions. These species can be particularly interesting vertebrates are similar to those for ‘short-range endemic’ biogeographically, and are often of conservation significance invertebrates (Harvey et al. 2011). due to small and fragmented populations. Microendemic lizards Species may be highly localised and fragmented naturally and frogs characterise vertebrate diversity in the rainforests of due to long-term processes, or may have declined to small Queensland, in north-eastern Australia. Tropical and subtropical distributions in recent times due to human-associated impacts, rainforests have a broken distribution along the coastal or a combination of both. The small distributions of the mountains of Queensland and microendemic lizards and frogs Queensland rainforest lizards and frogs can generally be occur in these isolates (Moritz et al. 2005; Rosauer et al. 2017). considered to be natural – the result of long-term contraction As a broad-scale example, 13 leaf-tailed geckos species (Orraya, and fragmentation of rainforests over millions of years to mesic Saltuarius, Phyllurus) occur allopatrically across these rainforest refugia in the east-coast mountains (Moritz et al. 2005). These areas (Hoskin and Couper 2013). As a finer-scale example, 16 refugia have not been static in recent time, expanding and species of microhylid frogs (Cophixalus, Austrochaperina) contracting through the Pleistocene glacial cycles (Hugall et al. occur across the mountains of the largest of these areas, the 2002). To persist in an area, low-vagility rainforest-associated Wet Tropics (Hoskin 2004). Even small isolates harbour species had to survive through the globally dry glacial periods, considerable endemic diversity. For example, seven highly when Australian east-coast rainforests had their most restricted distinct rainforest-associated reptiles and frogs are restricted to known distribution (Hugall et al. 2002; Moritz et al. 2005; Bell the Melville Range, isolated from relatives in rainforest patches et al. 2010; Rosauer et al. 2017). In many areas from where to the north and south for millions of years (Hoskin 2014; rainforest largely disappeared, rainforest-associated reptile and Hoskin and Couper 2014). Many microendemics are restricted frog lineages persisted in deeply piled rocky areas that acted to a single mountain or range, while others occur as distinct as mesic refugia (‘lithorefugia’: Couper and Hoskin 2008). subpopulations separated by areas of unsuitable habitat (e.g. In coastal Queensland these lithorefugia range from large Journal compilation Ó CSIRO 2018 www.publish.csiro.au/journals/ajz Leaf-tailed gecko distribution and phylogeography Australian Journal of Zoology 153 boulder-fields to small areas of piled boulders on slopes or skink Nangura spinosa, which has received considerable in individual gullies (Couper and Hoskin 2008). Therefore, attention in regard to distribution, phylogeographic structure, climate, topography and geology have all played key roles abundance and threats (e.g. Borsboom et al. 2010). in persistence of rainforest lineages. Competition and other Here we attempt to resolve the fine-scale distribution and species interactions also play a role in shaping distributions, population genetic structure of two highly localised leaf-tailed but resolving these interactions is complex (Cunningham et al. geckos in north-east Queensland. Leaf-tailed geckos, the 2016). carphodactyline clade comprising the genera Phyllurus, Although these species appear to have persisted in small Saltuarius and Orraya, exemplify the pattern of microendemism areas for millennia (Moritz et al. 2005; Hoskin et al. 2011; in moist refugia along the east coast of Australia (Couper et al. Rosauer et al. 2017), they are still of conservation concern. Taxa 2000; Moritz et al. 2005; Hoskin and Couper 2013). This is with small distributions are among the most vulnerable to particularly the case for the genus Phyllurus, which comprises extinction (MacArthur and Wilson 1967; Terborgh and Winter nine species, eight of which are highly localised and distributed 1980; Gilpin and Soule 1986; Harvey et al. 2011). Stochastic contiguously in rainforest isolates along the coastal ranges of events (e.g. fire or drought) can affect the entire species, whereas Queensland (Couper and Hoskin 2013; Wilson and Swan 2013). for widespread species these events may affect some populations Most Phyllurus occur in mid-east Queensland but two species only. For this reason, distribution area is one of the key factors occur to the north, on the northern side of a long-term in threatened species listing, even without any evidence of biogeographic barrier, the Burdekin Gap (Hoskin et al. 2003). population decline (e.g. Vulnerable D2: IUCN 2012). Small These two species, P. amnicola and P. gulbaru, occur in the distributions also offer little buffering from human-induced Townsville region, at the far southern end of the Australian change in the environment, such as clearing, invasive species, Wet Tropics (Fig. 1). The Wet Tropics is a fairly continuous novel disease and climate change. Even seemingly localised area of tropical rainforest along the mountains and associated threats such as illegal collecting or hunting, or changes in fire coastal lowlands between Townsville, Cairns and Cooktown. regime, may impact the entire population of a highly localised At its southern extent, in the Townsville region, rainforest is species. Therefore, threatened species categories are based very patchy and confined to uplands, gullies and rocky slopes, in largely around the combination of distributional area/population a matrix of open, fire-prone eucalyptus woodland with a grassy size and observed or projected decline due to an identified threat understorey. (e.g. IUCN 2012). Phyllurus gulbaru was discovered in Patterson’s Gorge in Many of the highly localised Queensland rainforest lizards the southern Paluma Range in 2001 and was described in 2003 and frogs are listed as threatened species under federal (Hoskin et al. 2003). Surveys around the time of discovery (Environment Protection and Biodiversity Conservation Act, found the species at two sites within the gorge, but not in EPBC Act, 1999) and state (Nature Conservation Act, NCA, adjacent areas, and the species was assumed to be restricted to 1992) legislation, based on small distributional area in the rocky habitats of Patterson’s Gorge (Hoskin et al. 2003). combination with observed or projected threats such as disease, P. amnicola was discovered on Mt Elliot, a southern upland climate change, and changes in fire regime (Curtis 2012). outlier to the Wet Tropics region, in 1998 and was described in Illegal collecting is an additional, currently unquantified, threat 2000 (Couper et al. 2000). Surveys at the time of discovery, and to many of these species due to their rarity and spectacular in the few years following, found the species in two areas on appearance (e.g. leaf-tailed geckos) (Auliya et al. 2016). While Mt Elliot and the species was thus assumed to be restricted to many species are listed, many others have not been assessed or rocky habitats on Mt Elliot (Couper et al. 2000; Hoskin et al. are considered Data Deficient due to a lack of information. Data 2003). Both species were found to be restricted to rocky Deficient species, and indeed most of the listed species, have
Recommended publications
  • Fauna of Australia 2A
    FAUNA of AUSTRALIA 26. BIOGEOGRAPHY AND PHYLOGENY OF THE SQUAMATA Mark N. Hutchinson & Stephen C. Donnellan 26. BIOGEOGRAPHY AND PHYLOGENY OF THE SQUAMATA This review summarises the current hypotheses of the origin, antiquity and history of the order Squamata, the dominant living reptile group which comprises the lizards, snakes and worm-lizards. The primary concern here is with the broad relationships and origins of the major taxa rather than with local distributional or phylogenetic patterns within Australia. In our review of the phylogenetic hypotheses, where possible we refer principally to data sets that have been analysed by cladistic methods. Analyses based on anatomical morphological data sets are integrated with the results of karyotypic and biochemical data sets. A persistent theme of this chapter is that for most families there are few cladistically analysed morphological data, and karyotypic or biochemical data sets are limited or unavailable. Biogeographic study, especially historical biogeography, cannot proceed unless both phylogenetic data are available for the taxa and geological data are available for the physical environment. Again, the reader will find that geological data are very uncertain regarding the degree and timing of the isolation of the Australian continent from Asia and Antarctica. In most cases, therefore, conclusions should be regarded very cautiously. The number of squamate families in Australia is low. Five of approximately fifteen lizard families and five or six of eleven snake families occur in the region; amphisbaenians are absent. Opinions vary concerning the actual number of families recognised in the Australian fauna, depending on whether the Pygopodidae are regarded as distinct from the Gekkonidae, and whether sea snakes, Hydrophiidae and Laticaudidae, are recognised as separate from the Elapidae.
    [Show full text]
  • The Importance of Protecting and Conserving the Wet Tropics
    The Importance of Protecting and Conserving the Wet Tropics Synthesis of NERP Tropical Ecosystems Hub Tropical Rainforest Research Outputs 2011-2014 Compiled by RRRC The Importance of Protecting and Conserving the Wet Tropics A Synthesis of NERP Tropical Ecosystems Hub Tropical Rainforest Research Outputs 2011-2014 Julie Carmody, Helen Murphy, Ro Hill, Carla Catterall, Steve Goosem, Allan Dale, David Westcott, Justin Welbergen, Luke Shoo, Natalie Stoeckl, Michelle Esparon Supported by the Australian Government’s National Environmental Research Program © Reef and Rainforest Research Centre Limited National Library of Australia Cataloguing-in-Publication entry: 978-1-925088-60-1 This report should be cited as: Carmody, J., Murphy, H., Hill, R., Catterall, C., Goosem, S., Dale, A., Westcott, D., Welbergen, J., Shoo, L., Stoeckl, N., Esparon, M. (2015) The Importance of Protecting and Conserving the Wet Tropics: A synthesis of NERP Tropical Ecosystems Hub Tropical Rainforest Outputs 2011-2014. Report to the National Environmental Research Program. Reef and Rainforest Research Centre Limited, Cairns (6 4pp.). Published by the Reef and Rainforest Research Centre on behalf of the Australian Government’s National Environmental Research Program (NERP) Tropical Ecosystems (TE) Hub. The Tropical Ecosystems Hub is part of the Australian Government’s National Environmental Research Program. The NERP TE Hub is administered in North Queensland by the Reef and Rainforest Research Centre Limited (RRRC). The NERP Tropical Ecosystem Hub addresses issues of concern for the management, conservation and sustainable use of the World Heritage listed Great Barrier Reef (GBR) and its catchments, tropical rainforests including the Wet Tropics World Heritage Area (WTWHA), and the terrestrial and marine assets underpinning resilient communities in the Torres Strait, through the generation and transfer of world-class research and shared knowledge.
    [Show full text]
  • Two New Subspecies of the Leaf-Tailed Gecko Phyllurus Ossa (Lacertilia: Carphodactylidae) from Mid-Eastern Queensland, Australia
    Zootaxa 3664 (4): 537–553 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3664.4.7 http://zoobank.org/urn:lsid:zoobank.org:pub:ADCEC4CA-728B-486F-934D-CB36DA5E18D6 Two new subspecies of the leaf-tailed gecko Phyllurus ossa (Lacertilia: Carphodactylidae) from mid-eastern Queensland, Australia PATRICK COUPER1 & CONRAD J. HOSKIN2 1Queensland Museum, PO Box 3300 South Brisbane, Queensland 4101, Australia. E-mail: [email protected] 2School of Marine & Tropical Biology, James Cook University, Townsville Queensland 4811, Australia Abstract Following the discovery of a new population of Phyllurus ossa on Whitsunday Island in the Cumberland Island Group, eastern Queensland, we conducted both genetic and morphological analyses to assess differences between all known pop- ulations. The analyses revealed three genetically distinct, morphologically diagnosable, geographical units. The differenc- es are such that we recognise these as subspecies: Phyllurus ossa ossa restricted to the Mt Ossa/Mt Pelion/ Mt Charlton/ St Helens Gap area; P. ossa hobsoni subsp. nov. on Mt Dryander and in the Conway Range and P. os sa t am o y a subsp. nov. currently only known from Whitsunday Island. There are now 11 recognised taxa in Phyllurus. The three P. o ss a sub- species are narrowly distributed and closely associated with exposed rock in low to mid-elevation vine forests. Their cur- rent distributions are shaped by past climate change that progressively contracted and fragmented the distribution of rainforests in eastern Australia. The recognition of these subspecies has land management/conservation implications.
    [Show full text]
  • Molecular Evidence for Gondwanan Origins of Multiple Lineages Within A
    Journal of Biogeography (J. Biogeogr.) (2009) 36, 2044–2055 ORIGINAL Molecular evidence for Gondwanan ARTICLE origins of multiple lineages within a diverse Australasian gecko radiation Paul M. Oliver1,2* and Kate L. Sanders1 1Centre for Evolutionary Biology and ABSTRACT Biodiversity, University of Adelaide and Aim Gondwanan lineages are a prominent component of the Australian 2Terrestrial Vertebrates, South Australian Museum, North Terrace, Adelaide, SA, terrestrial biota. However, most squamate (lizard and snake) lineages in Australia Australia appear to be derived from relatively recent dispersal from Asia (< 30 Ma) and in situ diversification, subsequent to the isolation of Australia from other Gondwanan landmasses. We test the hypothesis that the Australian radiation of diplodactyloid geckos (families Carphodactylidae, Diplodactylidae and Pygopodidae), in contrast to other endemic squamate groups, has a Gondwanan origin and comprises multiple lineages that originated before the separation of Australia from Antarctica. Location Australasia. Methods Bayesian (beast) and penalized likelihood rate smoothing (PLRS) (r8s) molecular dating methods and two long nuclear DNA sequences (RAG-1 and c-mos) were used to estimate a timeframe for divergence events among 18 genera and 30 species of Australian diplodactyloids. Results At least five lineages of Australian diplodactyloid geckos are estimated to have originated > 34 Ma (pre-Oligocene) and basal splits among the Australian diplodactyloids occurred c. 70 Ma. However, most extant generic and intergeneric diversity within diplodactyloid lineages appears to post-date the late Oligocene (< 30 Ma). Main conclusions Basal divergences within the diplodactyloids significantly pre-date the final break-up of East Gondwana, indicating that the group is one of the most ancient extant endemic vertebrate radiations east of Wallace’s Line.
    [Show full text]
  • Taxonomic Assessment of Two Pygopodoid Gecko Subspecies from Western Australia
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/338531530 Taxonomic assessment of two pygopodoid gecko subspecies from Western Australia Article in Israel Journal of Ecology and Evolution · January 2020 DOI: 10.1163/22244662-20191078 CITATIONS READS 0 169 4 authors, including: Paul Doughty Ian Brennan Government of Western Australia Australian National University 136 PUBLICATIONS 2,689 CITATIONS 17 PUBLICATIONS 61 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Barcoding utility in a mega-diverse, cross-continental genus: keeping pace with Cyrtodactylus geckos View project All content following this page was uploaded by Ian Brennan on 15 January 2020. The user has requested enhancement of the downloaded file. Israel Journal of Ecology & Evolution, 2020 http://dx.doi.org/10.1163/22244662-20191078 Taxonomic assessment of two pygopodoid gecko subspecies from Western Australia Luke Kealleya,*, Paul Doughtya, Danielle Edwardsb and Ian G. Brennanc aDepartment of Terrestrial Zoology, Western Australian Museum, 49 Kew Street, Welshpool 6106, Australia bSchool of Natural Sciences, University of California, Merced, CA 95343, U.S.A. cDivision of Ecology & Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia Abstract Subspecies designations for herpetofauna in Western Australia were largely coined in the 20th century where rigorous evolutionary concepts to species were not consistently applied. Rather, subspecies tended to designate geographic populations of similar-looking taxa to nominate forms, usually differing in size, pattern or colour and, at best, a few scalation differences. Here we re-evaluate two pygopodoid taxa from Western Australia using a combination of published and original genetic data coupled with a reassessment of morphology.
    [Show full text]
  • Liste Der Neubeschreibungen Von Reptilien Des Jahres 2003
    69 Arbeitsgemeinschaften (GRAY, 1863)“ beschreibt. Sehr ausführlich geht Berichten der Programme, die für einige Arten auf der Autor auf seine Haltungsbedingungen und die der Webseite der ESF eingesehen werden können. Nachzucht dieser schönen Schildkrötenart ein. Den Für die meisten Arten liegen außerdem noch Abschluss dieser Artikelreihe bildet der „Bericht Protokollauszüge aus der Diskussion beim Cuora- zur erfolgreichen Haltung und Nachzucht der Gelb- Workshop vor, die von ANDREAS S. HENNIG festge- rand-Scharnierschildkröte, Cuora flavomarginata“ halten, in eine druckfähige Form gebracht und von SASCHA PAWLOWSKI. Während die Haltung und jeweils im Anschluss an die Artikel zu den jewei- Pflege der Art relativ problemlos ist, ergeben sich ligen Arten platziert wurden. Diese Protokollaus- jedoch insbesondere im Hinblick auf die Inkubation züge enthalten ergänzende Hinweise zur Haltung und die Formvariabilität einige essenzielle Fragen, und Zucht der Arten der Gattung Cuora. auf die der Autor hier eingeht. JENS BEIL beschreibt seine „Beobachtungen bei In der aktuellen Ausgabe der MINOR finden die der Haltung und Vermehrung von Cuora amboi- AG-Mitglieder neben Hinweisen auf verschiedene nensis kamaroma RUMMLER & FRITZ, 1991“, den Veranstaltungen innerhalb und außerhalb der AG Schlusspunkt des Sonderbandes setzen schließlich eine Kurzvorstellung unseres neuen Referenten für RICHARD P. J. H. STRUIJK und LAURENS A. WOLDRING Öffentlichkeitsarbeit STEFAN THIERFELDT, eine Nach- mit ihrem Beitrag „Das Cuora-Zuchtprogramm – betrachtung unserer Jahrestagung in Gera von Ein Überblick“. Dieser Aufsatz soll einen Über- GERHARD EGRETZBERGER, den ersten Teil der „Be- blick über die Cuora-Zuchtprogramme der Euro- richte aus dem Arbeitskreis Schmuckschildkröten“ pean Studbook Foundation (ESF) geben. In diesem über die Höckerschildkröten der Gattung Grapte- Rahmen werden der Schutzstatus, die Größe der mys von ANDREAS S.
    [Show full text]
  • Science for Policy Research Findings in Brief Project 2.1
    Science for Policy Research findings in brief Project 2.1 Reptiles on the brink: the Australian terrestrial snake and lizard species most at risk of extinction In brief Background Australia is a hotspot for reptiles; The conservation of Australian reptiles Invasive species were the most it is home to about 10% of the world’s is often overlooked relative to the common threats to the most known species (the largest number concern given to birds and mammals imperilled snakes and lizards, of any country), and over 90% (which typically have higher public followed by agriculture, altered fire of Australian reptile species are profiles). However, many of regimes and climate change. found nowhere else. Australia’s reptiles are declining. Although most of the species Many reptiles are experiencing An important first step in preventing identified were historically more ongoing declines in Australia. their extinctions is identifying the widespread, each of them now A lack of conservation action to species at greatest risk. occurs in a relatively small area. address this has been compounded Our team of almost 30 reptile This makes them vulnerable to by a general lack of knowledge about Australian reptiles; many species experts from universities, museums extinctions caused by a single are poorly known (evidenced by and government agencies across catastrophic event, such as a large fire. the high rate of description of the country has identified the 20 Increased resourcing and conservation new Australian species); and there Australian snakes and lizards at actions are urgently needed to prevent has been limited monitoring for greatest risk of extinction, and extinctions of Australian reptiles.
    [Show full text]
  • Preliminary List of Species Which May Warrant Further Consideration in Preparation for Cop17
    UNEP-WCMC technical report Preliminary list of species which may warrant further consideration in preparation for CoP17 (Version edited for public release) Preliminary list of species which may warrant further consideration in 2 preparation for CoP17 Prepared for The European Commission, Directorate General Environment, Directorate E - Global & Regional Challenges, LIFE ENV.E.2. – Global Sustainability, Trade & Multilateral Agreements, Brussels, Belgium Published April 2015 Copyright European Commission 2015 Citation UNEP-WCMC. 2015. Preliminary list of species which may warrant further consideration in preparation for CoP17. UNEP-WCMC, Cambridge. The UNEP World Conservation Monitoring Centre (UNEP-WCMC) is the specialist biodiversity assessment of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organization. The Centre has been in operation for over 30 years, combining scientific research with policy advice and the development of decision tools. We are able to provide objective, scientifically rigorous products and services to help decision- makers recognize the value of biodiversity and apply this knowledge to all that they do. To do this, we collate and verify data on biodiversity and ecosystem services that we analyze and interpret in comprehensive assessments, making the results available in appropriate forms for national and international level decision-makers and businesses. To ensure that our work is both sustainable and equitable we seek to build the capacity of partners where needed,
    [Show full text]
  • Conservation Advice and Included This Species in the Critically Endangered Category, Effective from 17/11/15
    THREATENED SPECIES SCIENTIFIC COMMITTEE Established under the Environment Protection and Biodiversity Conservation Act 1999 The Minister approved this conservation advice and included this species in the Critically Endangered category, effective from 17/11/15 Conservation Advice Phyllurus gulbaru Gulbaru gecko Taxonomy Conventionally accepted as Phyllurus gulbaru (Hoskin et al., 2003). Summary of assessment Conservation status Critically endangered: Criterion 2 B1,(a),(b)(i)(ii)(iii)(iv)(v), Criterion 3 B,(a),(b)(i-v) and Criterion 4(c). Phyllurus gulbaru has been found to be eligible for listing under the following listing categories: Criterion 2: B1 (a) (b) (i-v): Critically Endangered Criterion 3: B (a) (b) (i-v): Endangered Criterion 4: (c): Vulnerable The highest category for which Phyllurus gulbaru is eligible to be listed is Critically Endangered. Species can be listed as threatened under state and territory legislation. For information on the listing status of this species under relevant state or territory legislation, see http://www.environment.gov.au/cgi-bin/sprat/public/sprat.pl Reason for conservation assessment by the Threatened Species Scientific Committee This advice follows assessment of information provided by the Queensland Government as part of the process to systematically reviewing species that are inconsistently listed under the EPBC Act and relevant Queensland legislation/lists. Public Consultation Notice of the proposed amendment was made available for public comment for 35 business days between 17 November 2014 and 9 January 2015. Any comments received that are relevant to the survival of the species have been considered by the Committee. Species Information Description The Gulbaru gecko is a grey reptile growing to 18 cm with irregular dark blotches on head body and limbs with a pair of large dark and white blotches immediately anterior to the tail base.
    [Show full text]
  • Carphodactylidae Reviewed: Four New Genera, Four New Subgenera, Nine New Species and Four New Subspecies Within the Australian Gecko Family (Squamata: Sauria)
    Australasian Journal of Herpetology 3 Australasian Journal of Herpetology 32:3-25. ISSN 1836-5698 (Print) Published 1 August 2016. ISSN 1836-5779 (Online) Carphodactylidae reviewed: Four new genera, four new subgenera, nine new species and four new subspecies within the Australian gecko family (Squamata: Sauria). RAYMOND T. HOSER 488 Park Road, Park Orchards, Victoria, 3134, Australia. Phone: +61 3 9812 3322 Fax: 9812 3355 E-mail: snakeman (at) snakeman.com.au Received 4 May 2016 Accepted 20 June 2016, Published 1 August 2016. ABSTRACT Numerous studies and reclassifications of the Australian gecko family Carphodactylidae have been published in the previous three decades. These have resulted in the publication of a significant body of data, leading to the recognition of new genera and species. Molecular studies have indicated further unnamed groups at both generic and species levels. These taxa are all also readily identifiable on the basis of morphology. The obvious unnamed taxa have therefore been formally described and named according to the rules of the International Code of Zoological Nomenclature (Ride et al. 1999). The genus Saltuarius Couper, Covacevich and Moritz, 1993 is divided along obvious phylogenetic and morphological lines into two, the new genus being named Shireengecko gen. nov.. The two genera are both split into two subgenera. Phyllurus Schinz, 1822 is split four ways with the three new genera being Oxygecko gen. nov., Couperus gen. nov. and Teesgecko gen. nov. respectively. Two divergent species groups of Knob-tailed Gecko Nephrurus Günther, 1876 sensu lato are formally named herein as subgenera, as Quazinephrurus subgen. nov. and Paranephrurus subgen.
    [Show full text]
  • Systematics and Diversity of Australian Pygopodoid Geckos
    Systematics and diversity of Australian pygopodoid geckos (Pygopodoidea, Gekkota, Squamata). Paul M. Oliver A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy School of Earth and Environmental Sciences The University of Adelaide December, 2009 Table of Contents CHAPTER 1. General Introduction 1.1 The diverse Australian squamate fauna 1 1.2 Systematics of the Australian squamate fauna 1 1.3 Pygopodoid geckos 2 1.4 Historical Biogeography of Australian squamates 4 1.4.1 Geographic and temporal origins 5 1.4.2 Aridification 6 1.5 The aims of the thesis 8 1.6 Thesis structure 8 CHAPTER 2. Oliver, P.M.; Sanders KL. (2009) Molecular evidence for 11 Gondwanan origins of multiple lineages within a diverse Australasian gecko radiation. Journal of Biogeography. 36: 2044-2055. CHAPTER 3. Oliver, P.M.; Hutchinson, M.N.; Cooper, S.J.B. (2007) 29 Phylogenetic relationships in the lizard genus Diplodactylus Gray, 1832, and resurrection of Lucasium Wermuth, 1965 (Gekkota, Diplodactylidae). Australian Journal of Zoology. 55: 197-210. CHAPTER 4. Oliver, P.M.; Doughty, P.; Hutchinson, M.N.; Lee, M.S.Y.; 45 Adams, M. (2009) The taxonomic impediment in vertebrates: DNA sequence, allozyme and chromosomal data double estimates of species diversity in a lineage of Australian lizards (Diplodactylus, Gekkota). Proceedings of the Royal Society London: Biological Sciences. 276: 2001-2007. CHAPTER 5. Oliver, P.M.: Doughty, P.; Adams, M. (submitted) 63 Molecular evidence for ten species and Oligo-Miocene vicariance within a nominal Australian gecko species (Crenadactylus ocellatus, Diplodactylidae) CHAPTER 6. Oliver, P.M.: Bauer, A.M.
    [Show full text]
  • A New Species of Phyllurus (Lacertilia: Gekkonidae) from the Kilkivan District of South-Eastern Queensland
    VOLUME 52 PART 2 ME M OIRS OF THE QUEENSLAND MUSEU M BRIS B ANE 30 APRIL 2008 © Queensland Museum PO Box 3300, South Brisbane 4101, Australia Phone 06 7 3840 7555 Fax 06 7 3846 1226 Email [email protected] Website www.qm.qld.gov.au National Library of Australia card number ISSN 0079-8835 NOTE Papers published in this volume and in all previous volumes of the Memoirs of the Queensland Museum may be reproduced for scientific research, individual study or other educational purposes. Properly acknowledged quotations may be made but queries regarding the republication of any papers should be addressed to the Editor in Chief. Copies of the journal can be purchased from the Queensland Museum Shop. A Guide to Authors is displayed at the Queensland Museum web site www.qm.qld.gov.au/organisation/publications/memoirs/guidetoauthors.pdf A Queensland Government Project Typeset at the Queensland Museum A NEW SPECIES OF PHYLLURUS (LACERTILIA: GEKKONIDAE) FROM THE KILKIVAN DISTRICT OF SOUTH-EASTERN QUEENSLAND. PATRICK J. COUPER, BEN HAMLEY & CONRAD J. HOSKIN Couper, P.J., Hamley, B. & Hoskin, C.J. 2008 04 30: A new species of Phyllurus (Lacertilia: Gekkonidae) from the Kilkivan district of south-eastern Queensland. Memoirs of the Queensland Museum 52(2): 139-147. Brisbane. ISSN 0079-8835. The leaf-tailed gecko Phyllurus kabikabi sp. nov. is described from Oakview Forest Reserve in the Kilkivan district of south-eastern Queensland. It has a very restricted distribution and is deeply divergent from its sister taxon, P. caudiannulatus, from which it is readily separated in morphology by lacking enlarged tubercules on the underside of the hindlimb.
    [Show full text]