Fauna of Australia 2A
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Range Extension of Cyrtopodion Himalayanus Duda and Sahi, 1978 (Reptilia: Sauria) in Jammu Province of State Jammu and Kashmir F
Official journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 12(1) [General Section]: 49–51 (e156). Range extension of Cyrtopodion himalayanus Duda and Sahi, 1978 (Reptilia: Sauria) in Jammu Province of State Jammu and Kashmir from District Doda, Northern India 1Amit Manhas, 2Rajni Raina, and 3Ashwani Wanganeo 1Research Scholar, Department of Environmental Sciences and Limnology, Barkatullah University Bhopal, Madhya Pradesh, INDIA 2Professor, Department of Zoology, Govt. Science and commerce (Benazir) college, Bhopal, Madhya Pradesh, INDIA 3Professor, Department of Environmental Sciences and Limnology, Barkatullah University Bhopal, Madhya Pradesh, INDIA Abstract.—Documented are new distributional records of the poorly-known Gekkonidae Cyrtopodion himalayanus from the Doda region of Jammu and Kashmir State (India) based on specimens collected in three localities of the Doda region (Village Nai-Bhallara, Village Chagsoo, and Village Zazinda). Presented are notes on the morphology and coloration of the species in Doda, as well as photographs and a map indicating the known localities of Cyrtopodion himalayanus. This record represents an extension range of 60–80 km from the earlier reported locality of the species. The species Cyrtopodion himalayanus is the sole representative of the group Cyrtopodion, documented four decades ago from Kishtwar town of District Kishtwar (formally under District Doda) in the state of Jammu and Kashmir. Keywords. Gekkonidae, new distribution, Kishtwar, reptiles, visual encounter survey, morphology Citation: Manhas A, Raina R, Wanganeo A. 2018. Range extension of Cyrtopodion himalayanus Duda and Sahi, 1978 (Reptilia: Sauria) in Jammu Province of State Jammu and Kashmir from District Doda, Northern India. Amphibian & Reptile Conservation 12(1) [General Section]: 48–51 (e156). -
A Review of Southern Iraq Herpetofauna
Vol. 3 (1): 61-71, 2019 A Review of Southern Iraq Herpetofauna Nadir A. Salman Mazaya University College, Dhi Qar, Iraq *Corresponding author: [email protected] Abstract: The present review discussed the species diversity of herpetofauna in southern Iraq due to their scientific and national interests. The review includes a historical record for the herpetofaunal studies in Iraq since the earlier investigations of the 1920s and 1950s along with the more recent taxonomic trials in the following years. It appeared that, little is known about Iraqi herpetofauna, and no comprehensive checklist has been done for these species. So far, 96 species of reptiles and amphibians have been recorded from Iraq, but only a relatively small proportion of them occur in the southern marshes. The marshes act as key habitat for globally endangered species and as a potential for as yet unexplored amphibian and reptile diversity. Despite the lack of precise localities, the tree frog Hyla savignyi, the marsh frog Pelophylax ridibunda and the green toad Bufo viridis are found in the marshes. Common reptiles in the marshes include the Caspian terrapin (Clemmys caspia), the soft-shell turtle (Trionyx euphraticus), the Euphrates softshell turtle (Rafetus euphraticus), geckos of the genus Hemidactylus, two species of skinks (Trachylepis aurata and Mabuya vittata) and a variety of snakes of the genus Coluber, the spotted sand boa (Eryx jaculus), tessellated water snake (Natrix tessellata) and Gray's desert racer (Coluber ventromaculatus). More recently, a new record for the keeled gecko, Cyrtopodion scabrum and the saw-scaled viper (Echis carinatus sochureki) was reported. The IUCN Red List includes six terrestrial and six aquatic amphibian species. -
Integrative and Comparative Biology Integrative and Comparative Biology, Pp
Integrative and Comparative Biology Integrative and Comparative Biology, pp. 1–17 doi:10.1093/icb/icz006 Society for Integrative and Comparative Biology SYMPOSIUM 2019 April 28 on user Cities Twin - Minnesota of by University https://academic.oup.com/icb/advance-article-abstract/doi/10.1093/icb/icz006/5381544 from Downloaded Evolution of the Gekkotan Adhesive System: Does Digit Anatomy Point to One or More Origins? Anthony P. Russell1,* and Tony Gamble†,‡,§ *Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4; †Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA; ‡Bell Museum of Natural History, University of Minnesota, Saint Paul, MN 55113, USA; §Milwaukee Public Museum, Milwaukee, WI 53233, USA From the symposium “The path less traveled: Reciprocal illumination of gecko adhesion by unifying material science, biomechanics, ecology, and evolution” presented at the annual meeting of the Society of Integrative and Comparative Biology, January 3–7, 2019 at Tampa, Florida. 1E-mail: [email protected] Synopsis Recently-developed, molecularly-based phylogenies of geckos have provided the basis for reassessing the number of times adhesive toe-pads have arisen within the Gekkota. At present both a single origin and multiple origin hypotheses prevail, each of which has consequences that relate to explanations about digit form and evolutionary transitions underlying the enormous variation in adhesive toe pad structure among extant, limbed geckos (pygopods lack pertinent features). These competing hypotheses result from mapping the distribution of toe pads onto a phylo- genetic framework employing the simple binary expedient of whether such toe pads are present or absent. -
Murraylands Fauna
Regional Species Conservation Assessments DENR Murraylands Region Complete Dataset for Fauna Assessments July 2010 Species listed per Class (Mammalia, Aves, Reptilia, Amphibia, Osteichthyes) l l l l l a a a a a n n n n n 2 o o o o o i i i i i E L m E g g g g g D k M e e e e e e D _ 2 _ r O R t R R R R R O n o C m n N i C c k e _ S S S S S S Q S _ c S D U l S D D D D D l e E U T E N d N N N N N A R S T e V L A A e n O _ _ r A A A A A A I r T R C S M L L e o I T L L L L L o S G r E _ _ c M M S M T Y Y Y Y Y c n n E T S i i _ _ S T O C + S R A A A A A B _ _ n n C i i _ s s s N A L L O R R R R R d d _ _ A L u u u C O T A A R t R t R n R n R t O O M W T T X B S f f a a e e a U U U U U _ t t t P o o r r P MAP ID A CLASS NAME FAMILY NAME FAMILY COMNAME NSX CODE SPECIES COMMON NAME A O O M S M S M T M T M S T E N L T T % A A 001 1 MAMMALIA ORNITHORHYNCHIDAE Platypus S01001 Ornithorhynchus anatinus Platypus E 1975 20 4 20.00 4 CR 6 -- 0.5 6.5 002 2 MAMMALIA TACHYGLOSSIDAE Echidnas W01003 Tachyglossus aculeatus Short-beaked Echidna 2004 1245 177 14.22 147 118 LC 1 0 0.3 1.3 003 8 MAMMALIA DASYURIDAE Dasyurids Y01008 Dasyurus maculatus Spotted-tailed Quoll (Tiger Quoll) EN E 1958 7 3 42.86 2 RE 7 7.0 005 17 MAMMALIA DASYURIDAE Dasyurids W01055 Ningaui yvonneae Southern Ningaui 2001 191 43 22.51 27 18 LC 1 0 0.3 1.3 006 18 MAMMALIA DASYURIDAE Dasyurids M01050 Planigale gilesi Giles' Planigale (Paucident Planigale) 2003 407 34 8.35 7 3 VU 4 - 0.4 4.4 007 23 MAMMALIA DASYURIDAE Dasyurids A01072 Sminthopsis crassicaudata Fat-tailed Dunnart 2003 2810 -
Two New Species of the Genus Bavayia (Reptilia: Squamata: Diplodactylidae) from New Caledonia, Southwest Pacific!
Pacific Science (1998), vol. 52, no. 4: 342-355 © 1998 by University of Hawai'i Press. All rights reserved Two New Species of the Genus Bavayia (Reptilia: Squamata: Diplodactylidae) from New Caledonia, Southwest Pacific! AARON M. BAUER, 2 ANTHONY H. WHITAKER,3 AND Ross A. SADLIER4 ABSTRACT: Two new species ofthe diplodactylid gecko Bavayia are described from restricted areas within the main island ofNew Caledonia. Both species are characterized by small size, a single row of preanal pores, and distinctive dorsal color patterns. One species is known only from the endangered sclerophyll forest of the drier west coast of New Caledonia, where it was collected in the largest remaining patch of such habitat on the Pindai" Peninsula. The second species occupies the maquis and adjacent midelevation humid forest habitats in the vicinity of Me Adeo in south-central New Caledonia. Although relation ships within the genus Bavayia remain unknown, the two new species appear to be closely related to one another. BAVAYIA IS ONE OF THREE genera of carpho tion of the main island. The two most wide dactyline geckos that are endemic to the New spread species, B. cyclura and B. sauvagii, are Caledonian region. Seven species are cur both probably composites of several mor rently recognized in the genus (Bauer 1990). phologically similar, cryptic sibling species. Three of these, B. crassicollis Roux, B. cy Recent field investigations on the New Cale clura (Giinther), and B. sauvagii (Boulenger), donian mainland have revealed the presence are relatively widely distributed, with popula of two additional species of Bavayia. Both tions on the Isle of Pines (Bauer and Sadlier are small, distinctively patterned, and appar 1994) and the Loyalty Islands (Sadlier and ently restricted in distribution. -
On the Andaman and Nicobar Islands, Bay of Bengal
Herpetology Notes, volume 13: 631-637 (2020) (published online on 05 August 2020) An update to species distribution records of geckos (Reptilia: Squamata: Gekkonidae) on the Andaman and Nicobar Islands, Bay of Bengal Ashwini V. Mohan1,2,* The Andaman and Nicobar Islands are rifted arc-raft of 2004, and human-mediated transport can introduce continental islands (Ali, 2018). Andaman and Nicobar additional species to these islands (Chandramouli, 2015). Islands together form the largest archipelago in the In this study, I provide an update for the occurrence Bay of Bengal and a high proportion of terrestrial and distribution of species in the family Gekkonidae herpetofauna on these islands are endemic (Das, 1999). (geckos) on the Andaman and Nicobar Islands. Although often lumped together, the Andamans and Nicobars are distinct from each other in their floral Materials and Methods and faunal species communities and are geographically Teams consisted of between 2–4 members and we separated by the 10° Channel. Several studies have conducted opportunistic visual encounter surveys in shed light on distribution, density and taxonomic accessible forested and human-modified areas, both aspects of terrestrial herpetofauna on these islands during daylight hours and post-sunset. These surveys (e.g., Das, 1999; Chandramouli, 2016; Harikrishnan were carried out specifically for geckos between and Vasudevan, 2018), assessed genetic diversity November 2016 and May 2017, this period overlapped across island populations (Mohan et al., 2018), studied with the north-east monsoon and summer seasons in the impacts of introduced species on herpetofauna these islands. A total of 16 islands in the Andaman and and biodiversity (e.g., Mohanty et al., 2016a, 2019), Nicobar archipelagos (Fig. -
Hemidactylus Frenatus Across an Urban Gradient in Brisbane: Influence of Habitat and Potential for Impact on Native Gecko Species
Presence of Asian House Gecko Hemidactylus frenatus across an urban gradient in Brisbane: influence of habitat and potential for impact on native gecko species Author Newbery, Brock, Jones, Darryl Published 2007 Book Title Pest or Guest: The Zoology of Overabundance Copyright Statement © 2007 Royal Zoological Society of NSW. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the book link for access to the definitive, published version. Downloaded from http://hdl.handle.net/10072/18554 Link to published version http://www.rzsnsw.org.au/ Griffith Research Online https://research-repository.griffith.edu.au Presence of Asian House Gecko Hemidactylus frenatus across an urban gradient in Brisbane: influence of habitat and potential for impact on native gecko species Brock Newbery1 and Darryl N. Jones1,2 1Suburban Wildlife Research Group, Australian School of Environmental Studies, Griffith University, Nathan, Qld. 4111, Australia. 2Corresponding author: Darryl Jones, [email protected] The Asian House Gecko Hemidactylus frenatus is an internationally significant invasive reptile which T has spread rapidly though the Pacific and elsewhere and has been implicated in the decline and extinction of a number of native gecko species. Although present in Darwin for some time, the C species has only recently become widespread in the Brisbane region. We investigated the density A and distribution of this and two native house-dwelling geckos in urban, suburban and bushland R environments within Brisbane. The spatially clumped insect resources associated with external light T sources were effectively utilised by both urban and suburban populations of Asian House Geckos, S suggesting likely competitive interactions between the species on structures where the species co-existed. -
A New Locality for Correlophus Ciliatus and Rhacodactylus Leachianus (Sauria: Diplodactylidae) from Néhoué River, Northern New Caledonia
Herpetology Notes, volume 8: 553-555 (2015) (published online on 06 December 2015) A new locality for Correlophus ciliatus and Rhacodactylus leachianus (Sauria: Diplodactylidae) from Néhoué River, northern New Caledonia Mickaël Sanchez1, Jean-Jérôme Cassan2 and Thomas Duval3,* Giant geckos from New Caledonia (Pacific Ocean) We observed seven native gecko species: Bavayia are charismatic nocturnal lizards. This paraphyletic (aff.) cyclura (n=1), Bavayia (aff.) exsuccida (n=1), group is represented by three genera, Rhacodactylus, Correlophus ciliatus (n=1), Dierrogekko nehoueensis Correlophus and Mniarogekko, all endemic to Bauer, Jackman, Sadlier and Whitaker, 2006 (n=1), New Caledonia (Bauer et al., 2012). Rhacodactylus Eurydactylodes agricolae Henkel and Böhme, 2001 leachianus (Cuvier, 1829) is largely distributed on the (n=1), Mniarogekko jalu Bauer, Whitaker, Sadlier and Grande Terre including the Île des Pins and its satellite Jackman, 2012 (n=1) and Rhacodactylus leachianus islands, whereas Correlophus ciliatus Guichenot, 1866 (n=1). Also, the alien Hemidactylus frenatus Dumeril is mostly known in the southern part of the Grande and Bibron, 1836 (n=3) has been sighted. The occurrence Terre, the Île des Pins and its satellite islands (Bauer of C. ciliatus and R. leachianus (Fig. 2 and 3) represent et al., 2012). Here, we report a new locality for both new records for this site. Both gecko species were species in the north-western part of Grande Terre, along observed close to the ground, at a height of less than the Néhoué River (Fig. 1). 1.5 m. The Néhoué River is characterized by gallery forests It is the first time that R. leachianus is recorded in the growing on deep alluvial soils. -
The Fauna of Boonanarring Nature Reserve
The Fauna of Boonanarring Nature Reserve. Tracey Moore, Tracy Sonneman, Alice Reaveley, Karen Bettink, Barbara Wilson. i Department of Parks and Wildlife Locked Bag 104, Bentley Delivery Centre, 6983 Western Australia Telephone: +61-8-9442 0300 Facsimile: +61-8-9386 6399 www.dpaw.wa.gov.au © Government of Western Australia, May 2015 This work is copyright. You may download, display, print and reproduce this material in unaltered form only (retaining this notice) for your personal, non-commercial use or use within your organisation. Apart from any use as permitted under the Copyright Act 1968, all other rights are reserved. Requests and inquiries concerning reproduction and rights should be addressed to the Department of Parks and Wildlife. Project team: Karen Bettink, Nicole Godfrey, Ben Kreplins, Tracey Moore, Craig Olejnik, Tracy Sonneman, Alice Reaveley, Barbara Wilson Acknowledgements: Astron Environmental Consulting Project contact: Tracey Moore; [email protected] i Table of Contents The fauna of Boonanarring Nature Reserve. ........................................ Error! Bookmark not defined. Introduction and Background ................................................................................................................. 1 Methods .................................................................................................................................................. 2 Location and vegetation ..................................................................................................................... -
Fowlers Gap Biodiversity Checklist Reptiles
Fowlers Gap Biodiversity Checklist ow if there are so many lizards then they should make tasty N meals for someone. Many of the lizard-eaters come from their Reptiles own kind, especially the snake-like legless lizards and the snakes themselves. The former are completely harmless to people but the latter should be left alone and assumed to be venomous. Even so it odern reptiles are at the most diverse in the tropics and the is quite safe to watch a snake from a distance but some like the Md rylands of the world. The Australian arid zone has some of the Mulga Snake can be curious and this could get a little most diverse reptile communities found anywhere. In and around a disconcerting! single tussock of spinifex in the western deserts you could find 18 species of lizards. Fowlers Gap does not have any spinifex but even he most common lizards that you will encounter are the large so you do not have to go far to see reptiles in the warmer weather. Tand ubiquitous Shingleback and Central Bearded Dragon. The diversity here is as astonishing as anywhere. Imagine finding six They both have a tendency to use roads for passage, warming up or species of geckos ranging from 50-85 mm long, all within the same for display. So please slow your vehicle down and then take evasive genus. Or think about a similar diversity of striped skinks from 45-75 action to spare them from becoming a road casualty. The mm long! How do all these lizards make a living in such a dry and Shingleback is often seen alone but actually is monogamous and seemingly unproductive landscape? pairs for life. -
Literature Cited in Lizards Natural History Database
Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica. -
A Brief Overview of the Taxonomy and Nomenclature of the Genus
Australasian Journal of Herpetology 57 Australasian Journal of Herpetology 34:57-63. ISSN 1836-5698 (Print) Published 20 July 2017. ISSN 1836-5779 (Online) A brief overview of the taxonomy and nomenclature of the genus Diplodactylus Gray 1832 sensu lato, with the formal naming of a new subgenus for the Diplodactylus byrnei Lucas and Frost, 1896 species group and two new species within this subgenus. RAYMOND T. HOSER 488 Park Road, Park Orchards, Victoria, 3134, Australia. Phone: +61 3 9812 3322 Fax: 9812 3355 E-mail: snakeman (at) snakeman.com.au Received 25 March 2017, Accepted 28 May 2017, Published 20 July 2017. ABSTRACT The taxonomy of the genus Diplodactylus Gray 1832 sensu lato was well resolved at the genus level by Oliver et al. (2007) and to a lesser extent other authors over the past 30 years to 2017. However a group known as the Wüster gang as detailed by Hoser (2015a-f) have unlawfully stopped most herpetologists from using taxonomy and nomenclature proposed by authors outside of their mob. As a result names formally proposed by Wells and Wellington (1989) for obvious species groups have been forcibly suppressed in herpetology since they were first published. This has remained the case even after Oliver et al. (2007) confirmed the validity of their genus-level classification in terms of three names they proposed. Taking an ultra-conservative position, Oliver et al. (2007) split Diplodactylus Gray 1832 sensu lato into three genera, using the first available names of Diplodactylus Gray 1832, Lucasium Wermuth, 1965 and Rhynchoedura Günther, 1867 for three main groups that diverged from one another in excess of 20 MYA.