Gauthier, J.A., Kearney, M., Maisano, J.A., Rieppel, O., Behlke, A., 2012

Total Page:16

File Type:pdf, Size:1020Kb

Gauthier, J.A., Kearney, M., Maisano, J.A., Rieppel, O., Behlke, A., 2012 Assembling the Squamate Tree of Life: Perspectives from the Phenotype and the Fossil Record Jacques A. Gauthier,1 Maureen Kearney,2 Jessica Anderson Maisano,3 Olivier Rieppel4 and Adam D.B. Behlke5 1 Corresponding author: Department of Geology and Geophysics, Yale University, P.O. Box 208109, New Haven CT 06520-8109 USA and Divisions of Vertebrate Paleontology and Vertebrate Zoology, Peabody Museum of Natural History, Yale University, P.O. Box 208118, New Haven CT 06520-8118 USA —email: [email protected] 2 Division of Environmental Biology, National Science Foundation, Arlington VA 22230 USA 3 Jackson School of Geosciences, The University of Texas at Austin, Austin TX 78712 USA 4 Department of Geology, Field Museum of Natural History, 1400 S. Lake Shore Drive, Chicago, IL 60605-2496 USA 5 Department of Geology and Geophysics, Yale University, P.O. Box 208109, New Haven CT 06520-8109 USA Abstract We assembled a dataset of 192 carefully selected species—51 extinct and 141 extant—and 976 apo- morphies distributed among 610 phenotypic characters to investigate the phylogeny of Squamata (“lizards,” including snakes and amphisbaenians). These data enabled us to infer a tree much like those derived from previous morphological analyses, but with better support for some key clades. There are also several novel elements, some of which pose striking departures from traditional ideas about lizard evolution (e.g., that mosasaurs and polyglyphanodontians are on the scleroglos- san stem, rather than parts of the crown, and related to varanoids and teiids, respectively). Long- bodied, limb-reduced, “snake-like” fossorial lizards—most notably dibamids, amphisbaenians and snakes—have been and continue to be the chief source of character conflict in squamate morpho- logical phylogenetics. Carnivorous lizards (especially snakes, mosasaurs and varanoids) have proven a close second. Genetic data, presumably less burdened by the potential for adaptive con- vergence related to fossoriality, were expected to resolve these conflicts. Although recent gene phy- logenies seem to do so, they also differ radically from any phylogeny based on the phenotype, especially for the most ancient crown squamate divergences that occured during the latter half of the Mesozoic. Our study relied on traditionally prepared specimens as well as high-resolution computed tomography scans that afforded unprecendented access to the cranial anatomy of Squa- mata. This, along with the inclusion of stem fossils, provided an unparalleled sample of the phe- notype enabling us to more fully explore the extreme incongruences between molecular and morphological topologies for the squamate tree of life. Despite this extensive new database, we were unable to find morphological support for the major rearrangement of the deep divergences in Squamata proposed by recent molecular studies. Instead, our data strongly support the same fun- damental topology suggested by most previous morphological studies—an Iguania–Scleroglossa basal split, a sister-group relationship between Gekkota and Autarchoglossa, and the divergence between Anguimorpha and Scincomorpha—and documents the extreme degree of morphological homoplasy required by those molecular topologies. Keywords Rhynchocephalia, Squamata, Iguania, Polyglyphanodontia, Scleroglossa, Gekkota, Autar- choglossa, Scincomorpha, Anguimorpha, Mosasauria, Serpentes, phylogeny, morphology, fos- sils, biogeography, divergence times, homoplasy, evolution, taxon sampling, morphology vs. molecules. Bulletin of the Peabody Museum of Natural History 53(1):3–308, April 2012. © 2012 Peabody Museum of Natural History, Yale University. All rights reserved. • http://peabody.yale.edu 4 Bulletin of the Peabody Museum of Natural History 53(1) • April 2012 Introduction Although the Cuvierian scheme of classifica- tion portrayed “affinities” in terms of a dichoto- With his “Essai d’une Classification Naturelle des mous hierarchy, the image of an underlying Reptiles,” Alexandre Brongniart (1800a, 1800b), a “series” of forms still dominated comparative collaborator of Georges Cuvier, set the stage for biology well into the 19th century (Daudin 1926), all later discussions of “reptile” classification. as can be seen from Oppel’s (1811) concerns Applying Cuvier’s method of dichotomized clas- about the continuity of the “lizard” with the snake sification (called méthode naturelle by Cuvier “series.” Louis Agassiz, in his famous Essay on [1817:10]) to extant tetrapods (except birds and Classification (1857), emphasized continuity of mammals), he recognized four “orders” later limb reduction in squamates, citing the graded adopted by Duméril (1806) in his classic Zoologie series of intermediates between “lizards” and Analytique: Chéloniens, Sauriens, Ophidiens and snakes as evidence for the completeness (pleni- Batraciens. Because of an error in the dissection of tude) of the scheme of nature, which for him was the caecilian, “lizard” and snake hearts jointly ultimately rooted in Divine thought. Such views, undertaken by Cuvier, Brongniart, and F.M. of course, were famously opposed by Charles Daudin, snakes were separated from “lizards,” but Darwin. Noting the presence of rudimentary the long-bodied, limbless caecilian amphibians hindlimbs in some basal snakes, Darwin was sat- were included within snakes (Daudin 1926; Riep- isfied that “on my view of descent with modifica- pel 1987b). tion, the origin of rudimentary organs is simple” The “order Squamata” was introduced by (Darwin 1859:206). The gradual transition from Oppel (1811:14) to encompass “Saurii” (with dis- limb-reduced “lizards” to snakes pointed to tinct limbs and nondilatable maxillary bones) and descent with modification. This pattern of “Ophidii” (lacking external limbs and character- thought was interrupted, though, by Cope ized by dilatable maxillary bones). Oppel’s (1869:253), who referred monitor-like, marine (1811:19) “Saurii” included the crocodilians lizards from the Cretaceous to his Pythonomor- (which will not be further commented on here). pha based on the fact that mosasaurs have an More important is his grouping of “lizards” and intramandibular joint in the lower jaw, as well as snakes within one order, which he based on the a loose mandibular symphysis, as do some snakes insight that hardly any single character unam- such as pythons. Later, Cope (1872) used similar- biguously differentiates “lizards” from snakes. For ities of inferred jaw mechanics in support of Ophisaurus (considered an intermediate between the phylogenetic derivation of snakes from snakes [Ophi-] and “lizards” [-saurus] by F.M. mosasaurs. Cope (1878, 1895a, 1895b, 1896) con- Daudin [O. ventralis, Daudin 1803:346]), and tinued to defend his gradualistic scenario linking Anguis fragilis (both of which Duméril [1806] had the feeding mechanics of mosasaurs with those of grouped with other “lizards”), Oppel (1811:17) macrostomatan snakes like boas and pythons confessed difficulty in deciding whether these against criticisms such as those of Owen (1877, should be arranged “at the end of the lizard 1878) and Baur (1895, 1896). [series], or at the beginning of the snake The subsequent discovery of basal mosasaurs [series]...nature herself seems not to have placed such as “aigialosaurs” and dolichosaurs—the lat- great weight on the character of [the presence or ter approaching snakes more closely in general absence] of limbs.” But whereas he continued to body proportions than the highly derived group Ophisaurus and Anguis with “lizards,” he Mosasauridae, and exhibiting various stages of included the (mostly) limbless amphisbaenians limb size reduction and body elongation (Korn- with snakes (Oppel 1811:53), as Brongniart huber 1873, 1901; Gorjanovic-Kramberger 1901; (1800a) had done before him. Oppel’s early Nopcsa 1903, 1908; Janensch 1906)—from early (1811) efforts in his “arrangement of reptiles” mid-Cretaceous marine sediments of southern introduced themes that still resonate in contem- Europe, seemed to lend further support to Cope’s porary discussions of squamate phylogeny, in earlier theory of snake origins. With the discovery particular the potential relationships of snakes to of Pachyophis woodwardi from the early Upper other limb-reduced and long-bodied taxa within Cretaceous of Bosnia-Herzogevina, Nopcsa Squamata. (1923) believed he had finally found the critical Assembling the Squamate Tree of Life • Gauthier et al. 5 transitional species between basal mosasaurs and by McDowell and Bogert (1954). This mono- snakes, which in his view also necessarily implied graph not only made important improvements to a marine origin of snakes (Nopcsa 1925). Camp’s (1923) original lizard phylogeny with Meanwhile, Camp’s (1923) monograph on respect to the composition and interrelationships the classification of lizards was an important mile- of Anguimorpha, but also proposed the earless stone, the first modern attempt at a broad-scale “monitor” Lanthanotus borneensis as the extant analysis of squamate relationships (Underwood quadrupedal “lizard” most closely related to 1971). Much of the later work on lizard classifi- snakes. Interpreted by McDowell and Bogert cation based on morphology can be seen as refin- (1954:54) as a “living aigialosaurian,” the particu- ing Camp’s (1923) results. What Camp’s (1923) lar habits of Lanthanotus, a secretive creature monograph established for “lizard” classification, found on the banks of the Sarawak River in Bor- Underwood’s (1967) seminal contribution pro- neo, would nicely bridge the gap
Recommended publications
  • JVP 26(3) September 2006—ABSTRACTS
    Neoceti Symposium, Saturday 8:45 acid-prepared osteolepiforms Medoevia and Gogonasus has offered strong support for BODY SIZE AND CRYPTIC TROPHIC SEPARATION OF GENERALIZED Jarvik’s interpretation, but Eusthenopteron itself has not been reexamined in detail. PIERCE-FEEDING CETACEANS: THE ROLE OF FEEDING DIVERSITY DUR- Uncertainty has persisted about the relationship between the large endoskeletal “fenestra ING THE RISE OF THE NEOCETI endochoanalis” and the apparently much smaller choana, and about the occlusion of upper ADAM, Peter, Univ. of California, Los Angeles, Los Angeles, CA; JETT, Kristin, Univ. of and lower jaw fangs relative to the choana. California, Davis, Davis, CA; OLSON, Joshua, Univ. of California, Los Angeles, Los A CT scan investigation of a large skull of Eusthenopteron, carried out in collaboration Angeles, CA with University of Texas and Parc de Miguasha, offers an opportunity to image and digital- Marine mammals with homodont dentition and relatively little specialization of the feeding ly “dissect” a complete three-dimensional snout region. We find that a choana is indeed apparatus are often categorized as generalist eaters of squid and fish. However, analyses of present, somewhat narrower but otherwise similar to that described by Jarvik. It does not many modern ecosystems reveal the importance of body size in determining trophic parti- receive the anterior coronoid fang, which bites mesial to the edge of the dermopalatine and tioning and diversity among predators. We established relationships between body sizes of is received by a pit in that bone. The fenestra endochoanalis is partly floored by the vomer extant cetaceans and their prey in order to infer prey size and potential trophic separation of and the dermopalatine, restricting the choana to the lateral part of the fenestra.
    [Show full text]
  • Scale Sensillae of the File Snake (Serpentes: Acrochordidae) and Some Other Aquatic and Burrowing Snakes
    SCALE SENSILLAE OF THE FILE SNAKE (SERPENTES: ACROCHORDIDAE) AND SOME OTHER AQUATIC AND BURROWING SNAKES by DAVID POVEL and JEROEN VAN DER KOOIJ (Section Dynamic Morphology,Institute of Evolutionaryand Ecological Sciences, Leiden University,P.O. Box 9516, 2300 RA Leiden, The Netherlands) ABSTRACT The acrochordid snakes are aquatic, living in environmentswith often a poor visibility. It therefore was investigatedhow these animals detect their prey. Two earlier studies of their scales revealed a rather complex scale organ, composedof hairlike protrusions and plate-like structures. However, no satisfactory explanation was given for the structures found, e.g., an undefined sensilla or a gland. Skin samples from various sites of the body of Acrochordus granulatus and A. javanicus were studied. Scanning electron microscopic pictures revealed that each scale of the head contains up to seven sensillae, and each of the keeled scales of the rest of the body has one. Also a modified Allochrome staining procedure on tissue samples was performed to detect glycogen, which is known to occur in discoidal nerve endings of tactile sense organs of reptiles. Light microscopicslides revealedglycogen particles in a small pillow-shaped area just below the hairlike protrusions of an organ. Moreover, small nerves were recognized near the same location. No indications were found for the scale organs to have a glandular function. Because of the reported reactions of a snake when it is touched by a fish, these scale sensilla are proposed to be very sensitivemechanoreceptors. Comparisons were made with the scale organs of snakes from various habitats, viz. the seasnake Lapemis hardwicki, and burrowing snakes such as Xenopeltis unicolor and Cylindrophisrufus.
    [Show full text]
  • Phylogenetic Relationships and Subgeneric Taxonomy of ToadHeaded Agamas Phrynocephalus (Reptilia, Squamata, Agamidae) As Determined by Mitochondrial DNA Sequencing E
    ISSN 00124966, Doklady Biological Sciences, 2014, Vol. 455, pp. 119–124. © Pleiades Publishing, Ltd., 2014. Original Russian Text © E.N. Solovyeva, N.A. Poyarkov, E.A. Dunayev, R.A. Nazarov, V.S. Lebedev, A.A. Bannikova, 2014, published in Doklady Akademii Nauk, 2014, Vol. 455, No. 4, pp. 484–489. GENERAL BIOLOGY Phylogenetic Relationships and Subgeneric Taxonomy of ToadHeaded Agamas Phrynocephalus (Reptilia, Squamata, Agamidae) as Determined by Mitochondrial DNA Sequencing E. N. Solovyeva, N. A. Poyarkov, E. A. Dunayev, R. A. Nazarov, V. S. Lebedev, and A. A. Bannikova Presented by Academician Yu.Yu. Dgebuadze October 25, 2013 Received October 30, 2013 DOI: 10.1134/S0012496614020148 Toadheaded agamas (Phrynocephalus) is an essen Trapelus, and Stellagama) were used in molecular tial element of arid biotopes throughout the vast area genetic analysis. In total, 69 sequences from the Gen spanning the countries of Middle East and Central Bank were studied, 28 of which served as outgroups (the Asia. They constitute one of the most diverse genera of members of Agamidae, Chamaeleonidae, Iguanidae, the agama family (Agamidae), variously estimated to and Lacertidae). comprise 26 to 40 species [1]. The subgeneric Phryno The fragment sequences of the following four cephalus taxonomy is poorly studied: recent taxo mitochondrial DNA genes were used in phylogenetic nomic revision have been conducted without analysis analysis: the genes of subunit I of cytochrome c oxi of the entire genus diversity [1]; therefore, its phyloge dase (COI), of subunits II and IV of NADHdehydro netic position within Agamidae family remains genase (ND2 and ND4), and of cytochrome b (cyt b).
    [Show full text]
  • The Skull of the Upper Cretaceous Snake Dinilysia Patagonica Smith-Woodward, 1901, and Its Phylogenetic Position Revisited
    Zoological Journal of the Linnean Society, 2012, 164, 194–238. With 24 figures The skull of the Upper Cretaceous snake Dinilysia patagonica Smith-Woodward, 1901, and its phylogenetic position revisited HUSSAM ZAHER1* and CARLOS AGUSTÍN SCANFERLA2 1Museu de Zoologia da Universidade de São Paulo, Avenida Nazaré 481, Ipiranga, 04263-000, São Paulo, SP, Brasil 2Laboratorio de Anatomía Comparada y Evolución de los Vertebrados. Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’, Av. Angel Gallardo 470 (1405), Buenos Aires, Argentina Received 23 April 2010; revised 5 April 2011; accepted for publication 18 April 2011 The cranial anatomy of Dinilysia patagonica, a terrestrial snake from the Upper Cretaceous of Argentina, is redescribed and illustrated, based on high-resolution X-ray computed tomography and better preparations made on previously known specimens, including the holotype. Previously unreported characters reinforce the intriguing mosaic nature of the skull of Dinilysia, with a suite of plesiomorphic and apomorphic characters with respect to extant snakes. Newly recognized plesiomorphies are the absence of the medial vertical flange of the nasal, lateral position of the prefrontal, lizard-like contact between vomer and palatine, floor of the recessus scalae tympani formed by the basioccipital, posterolateral corners of the basisphenoid strongly ventrolaterally projected, and absence of a medial parietal pillar separating the telencephalon and mesencephalon, amongst others. We also reinterpreted the structures forming the otic region of Dinilysia, confirming the presence of a crista circumfenes- tralis, which represents an important derived ophidian synapomorphy. Both plesiomorphic and apomorphic traits of Dinilysia are treated in detail and illustrated accordingly. Results of a phylogenetic analysis support a basal position of Dinilysia, as the sister-taxon to all extant snakes.
    [Show full text]
  • Temperature-Dependent Sex Determination and Gonadal Differentiation in Reptiles
    CMLS, Cell. Mol. Life Sci. 55 (1999) 887–900 1420-682X/99/070887-14 $ 1.50+0.20/0 © Birkha¨user Verlag, Basel, 1999 Temperature-dependent sex determination and gonadal differentiation in reptiles C. Pieau*, M. Dorizzi and N. Richard-Mercier Institut Jacques Monod, CNRS, and Universite´s Paris 6 et Paris 7, 2 Place Jussieu, F-75251 Paris Cedex 05 (France), Fax +33 1 44 27 36 60, e-mail: [email protected] Abstract. In many reptile species, sexual differentiation weak differences in aromatase activity, suggesting subtle of gonads is sensitive to temperature during a critical regulations of the aromatase gene at the transcription period of embryonic development (thermosensitive pe- level. Temperature could intervene in these regulations. riod, TSP). Experiments carried out with different mod- Present studies deal with cloning (complementary els among which turtles, crocodilians and lizards have DNAs) and expression (messenger RNAs) of genes that demonstrated the implication of estrogens and the key have been shown, or are expected, to be involved in role played by aromatase (the enzyme complex that gonadal formation and/or differentiation in mammals. converts androgens to estrogens) in ovary differentiation Preliminary results indicate that homologues of AMH, during TSP and in maintenance of the ovarian structure DAX1, SF1, SOX9 and WT1 genes with the same after TSP. In some of these experiments, the occurrence function(s) as in mammals exist in reptiles. How these of various degrees of gonadal intersexuality is related to genes could interact with aromatase is being examined. Key words. Gonadal differentiation; intersexuality; temperature; estrogens; aromatase; AMH, DAX1, SF1, SOX9, WT1 genes; reptiles.
    [Show full text]
  • Snakes of the Siwalik Group (Miocene of Pakistan): Systematics and Relationship to Environmental Change
    Palaeontologia Electronica http://palaeo-electronica.org SNAKES OF THE SIWALIK GROUP (MIOCENE OF PAKISTAN): SYSTEMATICS AND RELATIONSHIP TO ENVIRONMENTAL CHANGE Jason J. Head ABSTRACT The lower and middle Siwalik Group of the Potwar Plateau, Pakistan (Miocene, approximately 18 to 3.5 Ma) is a continuous fluvial sequence that preserves a dense fossil record of snakes. The record consists of approximately 1,500 vertebrae derived from surface-collection and screen-washing of bulk matrix. This record represents 12 identifiable taxa and morphotypes, including Python sp., Acrochordus dehmi, Ganso- phis potwarensis gen. et sp. nov., Bungarus sp., Chotaophis padhriensis, gen. et sp. nov., and Sivaophis downsi gen. et sp. nov. The record is dominated by Acrochordus dehmi, a fully-aquatic taxon, but diversity increases among terrestrial and semi-aquatic taxa beginning at approximately 10 Ma, roughly coeval with proxy data indicating the inception of the Asian monsoons and increasing seasonality on the Potwar Plateau. Taxonomic differences between the Siwalik Group and coeval European faunas indi- cate that South Asia was a distinct biogeographic theater from Europe by the middle Miocene. Differences between the Siwalik Group and extant snake faunas indicate sig- nificant environmental changes on the Plateau after the last fossil snake occurrences in the Siwalik section. Jason J. Head. Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013-7012, USA. [email protected] School of Biological Sciences, Queen Mary, University of London, London, E1 4NS, United Kingdom. KEY WORDS: Snakes, faunal change, Siwalik Group, Miocene, Acrochordus. PE Article Number: 8.1.18A Copyright: Society of Vertebrate Paleontology May 2005 Submission: 3 August 2004.
    [Show full text]
  • Studies on African Agama III. Resurrection of Agama Agama Turuensis Loveridge, 1932 (Squamata: Agamidae) from Synonymy and Elevation to Species Rank
    Th e status of Agama agama turuensis SALAMANDRA 44 1 35-42 Rheinbach, 20 February 2008 ISSN 0036-3375 Studies on African Agama III. Resurrection of Agama agama turuensis Loveridge, 1932 (Squamata: Agamidae) from synonymy and elevation to species rank Philipp Wagner, Patrick Krause & Wolfgang Böhme Abstract. New material of Agama agama Linnaeus, 758 from Mount Hanang, Tanzania is indistingu- ishable from the type material of Agama agama turuensis Loveridge, 932, a taxon which is so far con- sidered to be a synonym of Agama lionotus elgonis Lönnberg, 922. Our comparative morphological study demonstrates turuensis is most similar to Agama mwanzae Loveridge, 923 and Agama kaimosae Loveridge, 935, and distinct from both A. agama and A. lionotus Boulenger, 896. Agama turuensis can likewise neither be assigned to A. mwanzae nor A. kaimosae but has to be rather considered as a dis- tinct species. Key words. Squamata, Agamidae, Agama turuensis, new status, Africa, Tanzania, Mount Hanang, taxo- nomy. Introduction and subdivided the genus Agama into the fol- lowing six genera: Agama, Stellio, Trapelus, Th e genus Agama is endemic to Africa and Pseudotrapelus, Brachysaura and Xenagama. its species are very widespread in the savan- Later, Joger (99) identifi ed both Laudakia nah regions of Africa. Currently, 34 species and Phrynocephalus as sister taxa of Agama. are recognized but the genus in general, and At present the genus can be divided into especially the Agama agama species complex three diff erent species groups: the Agama and the clade including the East African are agama group which includes the West Af- in need of a thorough taxonomic revision.
    [Show full text]
  • Fossil Amphibians and Reptiles from the Neogene Locality of Maramena (Greece), the Most Diverse European Herpetofauna at the Miocene/Pliocene Transition Boundary
    Palaeontologia Electronica palaeo-electronica.org Fossil amphibians and reptiles from the Neogene locality of Maramena (Greece), the most diverse European herpetofauna at the Miocene/Pliocene transition boundary Georgios L. Georgalis, Andrea Villa, Martin Ivanov, Davit Vasilyan, and Massimo Delfino ABSTRACT We herein describe the fossil amphibians and reptiles from the Neogene (latest Miocene or earliest Pliocene; MN 13/14) locality of Maramena, in northern Greece. The herpetofauna is shown to be extremely diverse, comprising at least 30 different taxa. Amphibians include at least six urodelan (Cryptobranchidae indet., Salamandrina sp., Lissotriton sp. [Lissotriton vulgaris group], Lissotriton sp., Ommatotriton sp., and Sala- mandra sp.), and three anuran taxa (Latonia sp., Hyla sp., and Pelophylax sp.). Rep- tiles are much more speciose, being represented by two turtle (the geoemydid Mauremys aristotelica and a probable indeterminate testudinid), at least nine lizard (Agaminae indet., Lacertidae indet., ?Lacertidae indet., aff. Palaeocordylus sp., ?Scin- cidae indet., Anguis sp., five morphotypes of Ophisaurus, Pseudopus sp., and at least one species of Varanus), and 10 snake taxa (Scolecophidia indet., Periergophis micros gen. et sp. nov., Paraxenophis spanios gen. et sp. nov., Hierophis cf. hungaricus, another distinct “colubrine” morphotype, Natrix aff. rudabanyaensis, and another dis- tinct species of Natrix, Naja sp., cf. Micrurus sp., and a member of the “Oriental Vipers” complex). The autapomorphic features and bizarre vertebral morphology of Perier- gophis micros gen. et sp. nov. and Paraxenophis spanios gen. et sp. nov. render them readily distinguishable among fossil and extant snakes. Cryptobranchids, several of the amphibian genera, scincids, Anguis, Pseudopus, and Micrurus represent totally new fossil occurrences, not only for the Greek area, but for the whole southeastern Europe.
    [Show full text]
  • Tylosaurine Mosasaurs (Squamata) from the Late Cretaceous of Northern Germany
    Netherlands Journal of Geosciences —– Geologie en Mijnbouw | 94 – 1 | 55-71 | 2015 doi: 10.1017/njg.2014.31 Tylosaurine mosasaurs (Squamata) from the Late Cretaceous of northern Germany J.J. Hornung1,2,* &M.Reich3,4 1 Georg-August University Gottingen,¨ Geoscience Centre, Department of Geobiology, Goldschmidt-Straße 3, 37077 Gottingen,¨ Germany 2 Current address: Fuhlsbuttler¨ Str. 611, 22337 Hamburg, Germany 3 SNSB - Bavarian State Collection for Palaeontology and Geology, Richard-Wagner-Str. 10, 80333 Munich, Germany 4 Department of Earth and Environmental Sciences, Ludwig-Maximilians University Munchen,¨ Richard-Wagner-Str. 10, 80333 Munich, Germany * Corresponding author. Email: [email protected] Manuscript received: 27 April 2014, accepted: 18 September 2014 Abstract Two genera of tylosaurine mosasaurs, Tylosaurus and Hainosaurus, are recorded for the first time from Germany. Tylosaurus sp. is represented by two isolated tooth crowns, originally described as Mosasaurus? alseni (here considered a nomen dubium) from the latest Santonian–Early Campanian, which are very similar to T. ivoensis and T. gaudryi.ThematerialofHainosaurus sp. comprises a maxillary with associated postorbitofrontal, two pterygoid teeth and several indeterminate cranial fragments. The specimen from the Late Campanian is slightly less derived than H. bernardi from the Maastrichtian in retaining labiolingually less compressed anterior maxillary teeth and unserrated pterygoid teeth with only very weak carinae. Despite only minor skeletal differences, the genus Hainosaurus is considered to be distinct from Tylosaurus because of its significant modification of the dental apparatus compared to the plesiomorphic condition in the latter. This dental morphology suggests a phylogenetic trend from a generalised-piercing marginal dentition in Tylosaurus towards the increasingly labiolingually compressed, symmetrical, strongly bicarinate cutting marginal teeth in Hainosaurus spp.
    [Show full text]
  • Estesia Mongoliensis (Squamata: Anguimorpha) and the Evolution of Venom Grooves in Lizards
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by American Museum of Natural History Scientific Publications AMERICAN MUSEUM NOVITATES Number 3767, 31 pp. January 25, 2013 New materials of Estesia mongoliensis (Squamata: Anguimorpha) and the evolution of venom grooves in lizards HONG-YU YI1,2 AND MARK A. NORELL1,2 ABSTRACT New specimens of the fossil lizard Estesia mongoliensis are described from the Upper Cre- taceous of Mongolia. Phylogenetic analysis of 86 anguimorph taxa coded with 435 morphologi- cal characters and four genes confirms the placement of Estesia mongoliensis in a monophyletic Monstersauria. Extant monstersaurs, the genus Heloderma, are the only extant lizards bearing venom-transmitting teeth with a deep venom grove in the rostral carina. Compared to the crown group, stem monstersaurs are morphologically more variable in venom-delivery appa- ratus. This study has found that Estesia mongoliensis has two shallow grooves in the rostral and caudal carinae of its dentary teeth, demonstrating a primary venom-delivery apparatus. A sum- mary of venom-delivering tooth specialization in the Anguimorpha is provided, and related morphological characters are optimized on the strict consensus tree resulting from the com- bined morphological and molecular analysis of anguimorph phylogeny. The phylogeny supports a single origination of venom grooves in the Monstersauria, and indicates that grooved teeth are currently the only reliable venom-delivery apparatus to be recognized in fossil lizards. Key Words: Estesia mongoliensis, Monstersauria, venom groove, Anguimorpha INTRODUCTION Estesia mongoliensis is the oldest fossil squamate with dental grooves comparable to venom grooves in extant species.
    [Show full text]
  • Forest Stewardship Workshop
    Aquatic Invasives Workshop Presented by the: Central Florida Cooperative Invasive Species Management Area (CISMA), East Central Florida CISMA & Florida Forest Stewardship Program May 13, 2016; 8:30 am – 2:30 pm ET UF/IFAS Orange County Extension Office Many exotic plants are invasive weeds that form expanding populations on our landscape and waterways, making management a challenge. Some exotic animals have also become a problem for resource managers. The rapid and effective dispersal characteristics of these invaders make them extremely difficult to eliminate. This workshop will describe some of the more common and troublesome aquatic invasive exotic species in central Florida, current methods being used to manage them and opportunities to partner and get assistance. Tentative Agenda: 8:30 am Sign-in, meet & greet (finish refreshments before entering meeting room) 8:50 Welcome & introduction, Sherry Williams, Seminole County Natural Lands Program 9:00 Aquatic herbicides and application techniques, Dr. Stephen Enloe, UF/IFAS Center for Aquatic and Invasive Plants 9:50 Mosquito biology and disease, Ed Northey, Volusia County Mosquito Control 10:15 Algae, Michael Shaner, SePRO 10:40 Networking break 11:00 Ludwigia plant complex, Kelli Gladding, SePRO 11:25 Introduced aquatic herpetofauna in Florida, Dr. Steve Johnson, UF/IFAS Dept. of Wildlife Ecology and Conservation 11:50 Lunch 1:00 pm Hands-on plant and animal ID round-robin, all staff 2:30 Evaluation, CEUs, adjourn Funding for this workshop is provided by the USDA Forest Service through the Florida Department of Agriculture and Consumer Services Florida Forest Service, the Florida Sustainable Forestry Initiative Implementation Committee, Applied Aquatic Management, Inc., Aquatic Vegetation Control, Inc., Dow Chemical, Earth Balance, Florida’s Aquatic Preserves, Modica & Associates, Florida Aquatic Plant Management Society, and SePro.
    [Show full text]
  • Estimating the Evolutionary Rates in Mosasauroids and Plesiosaurs: Discussion of Niche Occupation in Late Cretaceous Seas
    Estimating the evolutionary rates in mosasauroids and plesiosaurs: discussion of niche occupation in Late Cretaceous seas Daniel Madzia1 and Andrea Cau2 1 Department of Evolutionary Paleobiology, Institute of Paleobiology, Polish Academy of Sciences, Warsaw, Poland 2 Independent, Parma, Italy ABSTRACT Observations of temporal overlap of niche occupation among Late Cretaceous marine amniotes suggest that the rise and diversification of mosasauroid squamates might have been influenced by competition with or disappearance of some plesiosaur taxa. We discuss that hypothesis through comparisons of the rates of morphological evolution of mosasauroids throughout their evolutionary history with those inferred for contemporary plesiosaur clades. We used expanded versions of two species- level phylogenetic datasets of both these groups, updated them with stratigraphic information, and analyzed using the Bayesian inference to estimate the rates of divergence for each clade. The oscillations in evolutionary rates of the mosasauroid and plesiosaur lineages that overlapped in time and space were then used as a baseline for discussion and comparisons of traits that can affect the shape of the niche structures of aquatic amniotes, such as tooth morphologies, body size, swimming abilities, metabolism, and reproduction. Only two groups of plesiosaurs are considered to be possible niche competitors of mosasauroids: the brachauchenine pliosaurids and the polycotylid leptocleidians. However, direct evidence for interactions between mosasauroids and plesiosaurs is scarce and limited only to large mosasauroids as the Submitted 31 July 2019 predators/scavengers and polycotylids as their prey. The first mosasauroids differed Accepted 18 March 2020 from contemporary plesiosaurs in certain aspects of all discussed traits and no evidence Published 13 April 2020 suggests that early representatives of Mosasauroidea diversified after competitions with Corresponding author plesiosaurs.
    [Show full text]