Establishment and Systematic Benchmarking of Innovative Methods for Quantitative Interactome Mapping in Mammalian Cells

Total Page:16

File Type:pdf, Size:1020Kb

Establishment and Systematic Benchmarking of Innovative Methods for Quantitative Interactome Mapping in Mammalian Cells Establishment and Systematic Benchmarking of Innovative Methods for Quantitative Interactome Mapping in Mammalian Cells Inaugural-Dissertation to obtain the academic degree Doctor rerum naturalium (Dr. rer. nat.) submitted to the Department of Biology, Chemistry and Pharmacy of Freie Universität Berlin by PHILIPP TREPTE from Zwenkau January 2016 The work was conducted from January 2011 until January 2016 under supervision of Prof. Dr. Erich E. Wanker at the Max Delbrueck Center for Molecular Medicine in the Helmholtz-Association. I hereby confirm that I have written the thesis independently using solely the aids mentioned and without illicit assistance from third parties. 1. Reviewer: Prof. Dr. Erich E. Wanker 2. Reviewer: Prof. Dr. Fritz G. Rathjen Thesis defense on 29.04.2016 Table of Contents 1. SUMMARY ....................................................................................................................... 1 2. ZUSAMMENFASSUNG .................................................................................................... 3 3. INTRODUCTION ............................................................................................................ 5 3.1. On the binding affinity of protein-protein interactions ................................................... 6 3.2. Quantitative detection of protein-protein interactions in vitro and in cells .................... 8 3.2.1. Available methods to detect protein-protein interactions in vitro .................................. 9 3.2.1.1. Isothermal titration calorimetry (ITC) ......................................................................... 9 3.2.1.2. Surface Plasmon Resonance (SPR) ........................................................................... 10 3.2.2. Available methods to detect protein-protein interactions in cells ................................ 12 3.2.2.1. Yeast two-hybrid (Y2H) ........................................................................................... 12 3.2.2.2. Bimolecular fluorescence/luminescence complementation assay (BiFC/BiLC) .......... 13 3.2.2.3. Luminescence-based Mammalian Interactome Mapping (LUMIER) .......................... 16 3.2.2.4. Fluorescence/Bioluminescence Resonance Energy Transfer (FRET/BRET) ................. 17 3.3. Unraveling the challenges of interactome-research. ..................................................... 23 4. AIMS OF THE STUDY .................................................................................................... 27 5. RESULTS ........................................................................................................................ 29 5.1. DULIP: A Dual Luminescence-based Co-Immunoprecipitation Assay for Interactome Mapping in Mammalian Cells .................................................................................................. 29 5.1.1. Generation of Gateway-compatible vectors suitable for systematic DULIP interaction screening ................................................................................................................................. 30 5.1.2. DULIP assays facilitate the detection of the known interaction between BAD and BCL2L1 .................................................................................................................................. 31 5.1.3. Y2H and FRET assays confirm the interaction between BAD and BCL2L1 .................. 35 5.1.4. Assessment of assay quality ........................................................................................ 36 5.1.5. DULIP is suitable to validate interactions detected with the Y2H ................................ 43 5.1.6. DULIP allows the detection of both low- and high-affinity interactions ....................... 45 5.1.7. Point mutations influence the detection of PPIs with DULIP assays ............................. 46 5.2. BRIP: A Bioluminescence Resonance Energy Transfer (BRET) and Co- Immunoprecipitation (IP)-based PPI detection Assay for Quantitative Interactome Mapping in Mammalian Cells .................................................................................................................... 51 5.2.1. Generation of control and Gateway-compatible vectors suitable for quantitative BRIP interaction screening ............................................................................................................... 52 5.2.2. Establishment of a BRIP assay suitable for high-throughput PPI mapping .................... 54 5.2.3. Detection of known interactions with the BRIP assay .................................................. 56 5.2.4. Estimating the sensitivity and specificity to detect PPIs with the BRIP assay ................ 60 5.2.5. Detecting interactions with known binding affinities in intact cells and after co- immunoprecipitation ............................................................................................................... 64 5.2.6. Quantification of binding affinities altered by missense mutations .............................. 66 5.2.7. Detecting the effects of small-molecules on PPIs using the BRIP assay ........................ 69 6. DISCUSSION ................................................................................................................. 73 6.1. DULIP assays provide quantitative interaction scores for systematic interactome research .................................................................................................................................. 73 6.2. BRIP combines the principles of two mammalian cell-based PPI detection methods in one assay ................................................................................................................................. 76 6.3. Detection of low-affinity PPIs with the DULIP and BRIP assays .................................... 78 6.4. Investigation of the effects of missense mutations on binary interactions using DULIP and BRIP assays ....................................................................................................................... 80 6.5. Application of the BRET component of the BRIP assay for the investigation of the effects of small molecules on PPIs ...................................................................................................... 81 6.6. The innovative PPI detection methods DULIP and BRIP are suitable for quantitative high-throughput PPI screening ................................................................................................ 82 7. MATERIALS AND METHODS ........................................................................................ 85 7.1. Plasmid construction ..................................................................................................... 85 7.2. Cell culture and transfection ......................................................................................... 88 7.3. MDC positive and negative reference set creation ........................................................ 88 7.4. Yeast two-hybrid based reference set creation ............................................................. 88 7.5. Affinity-based interaction reference set creation .......................................................... 89 7.6. DULIP assay .................................................................................................................. 89 7.7. DULIP data analysis ...................................................................................................... 90 7.8. FRET assay ..................................................................................................................... 91 7.9. Y2H assay ..................................................................................................................... 91 7.10. BRIP assay ................................................................................................................... 91 7.11. BRIP data analysis ....................................................................................................... 93 7.12. Western blots .............................................................................................................. 93 7.13. Live-cell imaging ......................................................................................................... 94 8. SUPPLEMENTARY INFORMATION ............................................................................... 95 9. REFERENCES ................................................................................................................ 113 10. CONTRIBUTIONS ....................................................................................................... 125 11. RELEVANT PUBLICATIONS ......................................................................................... 125 12. ACKNOWLEDGEMENTS .............................................................................................. 127 Summary 1 1. Summary Protein-protein interactions (PPIs) play a key role in probably all biological processes. Disease- causing missense mutations act through complicated genotype-to-phenotype associations often resulting in the perturbation of PPIs. Thus, the systematic discovery of PPIs is an important goal of network biology to understand the fundamental mechanisms of cellular function and dysfunction in health and disease. My aim was to establish and benchmark a new set of innovative mammalian cell-based PPI detection assays, DULIP and BRIP, that generate quantitative interaction scores and allow the identification of interactions at medium to high throughput.
Recommended publications
  • Identification of the Binding Partners for Hspb2 and Cryab Reveals
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2013-12-12 Identification of the Binding arP tners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non- Redundant Roles for Small Heat Shock Proteins Kelsey Murphey Langston Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Microbiology Commons BYU ScholarsArchive Citation Langston, Kelsey Murphey, "Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins" (2013). Theses and Dissertations. 3822. https://scholarsarchive.byu.edu/etd/3822 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Julianne H. Grose, Chair William R. McCleary Brian Poole Department of Microbiology and Molecular Biology Brigham Young University December 2013 Copyright © 2013 Kelsey Langston All Rights Reserved ABSTRACT Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactors and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston Department of Microbiology and Molecular Biology, BYU Master of Science Small Heat Shock Proteins (sHSP) are molecular chaperones that play protective roles in cell survival and have been shown to possess chaperone activity.
    [Show full text]
  • An Order Estimation Based Approach to Identify Response Genes
    AN ORDER ESTIMATION BASED APPROACH TO IDENTIFY RESPONSE GENES FOR MICRO ARRAY TIME COURSE DATA A Thesis Presented to The Faculty of Graduate Studies of The University of Guelph by ZHIHENG LU In partial fulfilment of requirements for the degree of Doctor of Philosophy September, 2008 © Zhiheng Lu, 2008 Library and Bibliotheque et 1*1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-47605-5 Our file Notre reference ISBN: 978-0-494-47605-5 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library permettant a la Bibliotheque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par Plntemet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans loan, distribute and sell theses le monde, a des fins commerciales ou autres, worldwide, for commercial or non­ sur support microforme, papier, electronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in et des droits moraux qui protege cette these. this thesis. Neither the thesis Ni la these ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent etre imprimes ou autrement may be printed or otherwise reproduits sans son autorisation.
    [Show full text]
  • Differential Patterns of Allelic Loss in Estrogen Receptor-Positive Infiltrating Lobular and Ductal Breast Cancer
    GENES, CHROMOSOMES & CANCER 47:1049–1066 (2008) Differential Patterns of Allelic Loss in Estrogen Receptor-Positive Infiltrating Lobular and Ductal Breast Cancer L. W. M. Loo,1 C. Ton,1,2 Y.-W. Wang,2 D. I. Grove,2 H. Bouzek,1 N. Vartanian,1 M.-G. Lin,1 X. Yuan,1 T. L. Lawton,3 J. R. Daling,2 K. E. Malone,2 C. I. Li,2 L. Hsu,2 and P.L. Porter1,2,3* 1Division of Human Biology,Fred Hutchinson Cancer Research Center,Seattle,WA 2Division of Public Health Sciences,Fred Hutchinson Cancer Research Center,Seattle,WA 3Departmentof Pathology,Universityof Washington,Seattle,WA The two main histological types of infiltrating breast cancer, lobular (ILC) and the more common ductal (IDC) carcinoma are morphologically and clinically distinct. To assess the molecular alterations associated with these breast cancer subtypes, we conducted a whole-genome study of 166 archival estrogen receptor (ER)-positive tumors (89 IDC and 77 ILC) using the Affy- metrix GeneChip® Mapping 10K Array to identify sites of loss of heterozygosity (LOH) that either distinguished, or were shared by, the two phenotypes. We found single nucleotide polymorphisms (SNPs) of high-frequency LOH (>50%) common to both ILC and IDC tumors predominately in 11q, 16q, and 17p. Overall, IDC had a slightly higher frequency of LOH events across the genome than ILC (fractional allelic loss 5 0.186 and 0.156). By comparing the average frequency of LOH by chro- mosomal arm, we found IDC tumors with significantly (P < 0.05) higher frequency of LOH on 3p, 5q, 8p, 9p, 20p, and 20q than ILC tumors.
    [Show full text]
  • Association of Gene Ontology Categories with Decay Rate for Hepg2 Experiments These Tables Show Details for All Gene Ontology Categories
    Supplementary Table 1: Association of Gene Ontology Categories with Decay Rate for HepG2 Experiments These tables show details for all Gene Ontology categories. Inferences for manual classification scheme shown at the bottom. Those categories used in Figure 1A are highlighted in bold. Standard Deviations are shown in parentheses. P-values less than 1E-20 are indicated with a "0". Rate r (hour^-1) Half-life < 2hr. Decay % GO Number Category Name Probe Sets Group Non-Group Distribution p-value In-Group Non-Group Representation p-value GO:0006350 transcription 1523 0.221 (0.009) 0.127 (0.002) FASTER 0 13.1 (0.4) 4.5 (0.1) OVER 0 GO:0006351 transcription, DNA-dependent 1498 0.220 (0.009) 0.127 (0.002) FASTER 0 13.0 (0.4) 4.5 (0.1) OVER 0 GO:0006355 regulation of transcription, DNA-dependent 1163 0.230 (0.011) 0.128 (0.002) FASTER 5.00E-21 14.2 (0.5) 4.6 (0.1) OVER 0 GO:0006366 transcription from Pol II promoter 845 0.225 (0.012) 0.130 (0.002) FASTER 1.88E-14 13.0 (0.5) 4.8 (0.1) OVER 0 GO:0006139 nucleobase, nucleoside, nucleotide and nucleic acid metabolism3004 0.173 (0.006) 0.127 (0.002) FASTER 1.28E-12 8.4 (0.2) 4.5 (0.1) OVER 0 GO:0006357 regulation of transcription from Pol II promoter 487 0.231 (0.016) 0.132 (0.002) FASTER 6.05E-10 13.5 (0.6) 4.9 (0.1) OVER 0 GO:0008283 cell proliferation 625 0.189 (0.014) 0.132 (0.002) FASTER 1.95E-05 10.1 (0.6) 5.0 (0.1) OVER 1.50E-20 GO:0006513 monoubiquitination 36 0.305 (0.049) 0.134 (0.002) FASTER 2.69E-04 25.4 (4.4) 5.1 (0.1) OVER 2.04E-06 GO:0007050 cell cycle arrest 57 0.311 (0.054) 0.133 (0.002)
    [Show full text]
  • Apoptotic Genes As Potential Markers of Metastatic Phenotype in Human Osteosarcoma Cell Lines
    17-31 10/12/07 14:53 Page 17 INTERNATIONAL JOURNAL OF ONCOLOGY 32: 17-31, 2008 17 Apoptotic genes as potential markers of metastatic phenotype in human osteosarcoma cell lines CINZIA ZUCCHINI1, ANNA ROCCHI2, MARIA CRISTINA MANARA2, PAOLA DE SANCTIS1, CRISTINA CAPANNI3, MICHELE BIANCHINI1, PAOLO CARINCI1, KATIA SCOTLANDI2 and LUISA VALVASSORI1 1Dipartimento di Istologia, Embriologia e Biologia Applicata, Università di Bologna, Via Belmeloro 8, 40126 Bologna; 2Laboratorio di Ricerca Oncologica, Istituti Ortopedici Rizzoli; 3IGM-CNR, Unit of Bologna, c/o Istituti Ortopedici Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy Received May 29, 2007; Accepted July 19, 2007 Abstract. Metastasis is the most frequent cause of death among malignant primitive bone tumor, usually developing in children patients with osteosarcoma. We have previously demonstrated and adolescents, with a high tendency to metastasize (2). in independent experiments that the forced expression of Metastases in osteosarcoma patients spread through peripheral L/B/K ALP and CD99 in U-2 OS osteosarcoma cell lines blood very early and colonize primarily the lung, and later markedly reduces the metastatic ability of these cancer cells. other skeleton districts (3). Since disseminated hidden micro- This behavior makes these cell lines a useful model to assess metastases are present in 80-90% of OS patients at the time the intersection of multiple and independent gene expression of diagnosis, the identification of markers of invasiveness signatures concerning the biological problem of dissemination. and metastasis forms a target of paramount importance in With the aim to characterize a common transcriptional profile planning the treatment of osteosarcoma lesions and enhancing reflecting the essential features of metastatic behavior, we the prognosis.
    [Show full text]
  • Supplemental Figure and Table Legends
    Supplemental figure and table legends Supplementary Figure 1: KIAA1841 is well conserved among vertebrates. NCBI HomoloGene pairwise alignment scores of human KIAA1841 sequence compared to other vertebrate orthologs. Supplementary Figure 2: µ-germline transcripts (GLT) and AID mRNA expression are not affected by overexpression of KIAA1841. Splenic B cells were isolated from wild-type mice, and transduced with retroviral vector control (pMIG) or a vector expressing KIAA1841. Levels of µ-GLT and AID mRNA were determined at 72h post-infection by RT-qPCR, and normalized to -actin mRNA and the pMIG control. The mean of three independent experiments +/- SD is shown. NS, p = not significant, p 0.05, two-tailed paired student’s t-test. Supplementary Figure 3: Overexpression of untagged and Xpress-tagged KIAA1841 does not affect cell proliferation. Splenic B cells were isolated from wild-type mice, stimulated with LPS+IL4, and transduced with retroviral vector control (pMIG) or a vector expressing KIAA1841 or Xpress (Xp)-tagged KIAA1841. Cells are labeled with seminaphthorhodafluor (SNARF) cell tracking dye and SNARF intensity was measured at 0h, 24h, and 48h after retroviral infection. Histograms of transduced cells (GFP+) for pMIG control, KIAA1841 and Xp-KIAA1841 were superimposed at each time point. Three independent retroviral infection experiments are shown. Supplementary Figure 4: Sequence alignment of the putative SANT domain of KIAA1841 with the SANT domain of SWI3. Alignment was performed using ClustalOmega; *, conserved residue, :, strongly similar residues, ., weakly similar residues. Numbers indicate amino acid residues in each sequence. Helix 3, which has been reported to be important for the chromatin remodeling function of SWI3 (Boyer et.
    [Show full text]
  • Molecular Dissection of Inbreeding Depression for Semen Quality Traits in Cattle
    FACULTY OF AGRICULTURE Maja Ferenčaković Molecular dissection of inbreeding depression for semen quality traits in cattle DOCTORAL THESIS Zagreb, 2015 AGRONOMSKI FAKULTET Maja Ferenčaković Molekularna disekcija inbriding depresije za svojstva kvalitete sperme kod goveda DOKTORSKI RAD Zagreb, 2015. FACULTY OF AGRICULTURE Maja Ferenčaković Molecular dissection of inbreeding depression for semen quality traits in cattle DOCTORAL THESIS Supervisors: Professor Ino Čurik, PhD Professor Johann Sölkner, PhD Zagreb, 2015 AGRONOMSKI FAKULTET Maja Ferenčaković Molekularna disekcija inbriding depresije za svojstva kvalitete sperme kod goveda DOKTORSKI RAD Mentori: prof. dr. sc. Ino Čurik Univ. Prof. DI. Dr. Johann Sölkner Zagreb, 2015. Supervisors: prof. dr. sc. Ino Čurik Department of Animal Science Faculty of Agriculture, University of Zagreb Svetošimunska cesta 25, 10000 Zagreb, Croatia [email protected] Univ. Prof. DI. Dr. Johann Sölkner University of Natural Resources and Life Sciences, Vienna, Austria [email protected] This doctoral thesis was evaluated by the Dissertation Evaluation Committee members: 1. Miroslav Kapš, PhD Full professor, Faculty of Agriculture, University of Zagreb, Croatia 2. Johannes Arjen Lenstra, PhD Associate professor, Utrecht University, Institute for Risk Assessment Sciences, The Netherlands 3. Vlatka Čubrić Čurik, PhD Assistant professor, Faculty of Agriculture, University of Zagreb, Croatia Doctoral thesis was defended at Faculty of Agriculture, University of Zagreb on ____________ 2015 in front of the Dissertation Defense Committee members: 1. Miroslav Kapš, PhD, _______________ Full professor, Faculty of Agriculture, University of Zagreb, Croatia, 2. Johannes Arjen Lenstra, PhD, _______________ Associate professor, Utrecht University, Institute for Risk Assessment Sciences, The Netherlands, 3. Vlatka Čubrić Čurik, PhD, _______________ Assistant professor, Faculty of Agriculture, University of Zagreb, Croatia.
    [Show full text]
  • Network of Micrornas-Mrnas Interactions in Pancreatic Cancer
    Hindawi Publishing Corporation BioMed Research International Volume 2014, Article ID 534821, 8 pages http://dx.doi.org/10.1155/2014/534821 Research Article Network of microRNAs-mRNAs Interactions in Pancreatic Cancer Elnaz Naderi,1 Mehdi Mostafaei,2 Akram Pourshams,1 and Ashraf Mohamadkhani1 1 Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran 2 Biotechnology Engineering, Islamic Azad University,Tehran North Branch, Tehran, Iran Correspondence should be addressed to Ashraf Mohamadkhani; [email protected] Received 5 February 2014; Revised 13 April 2014; Accepted 13 April 2014; Published 7 May 2014 Academic Editor: FangXiang Wu Copyright © 2014 Elnaz Naderi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background. MicroRNAs are small RNA molecules that regulate the expression of certain genes through interaction with mRNA targets and are mainly involved in human cancer. This study was conducted to make the network of miRNAs-mRNAs interactions in pancreatic cancer as the fourth leading cause of cancer death. Methods. 56 miRNAs that were exclusively expressed and 1176 genes that were downregulated or silenced in pancreas cancer were extracted from beforehand investigations. MiRNA–mRNA interactions data analysis and related networks were explored using MAGIA tool and Cytoscape 3 software. Functional annotations of candidate genes in pancreatic cancer were identified by DAVID annotation tool. Results. This network is made of 217 nodes for mRNA, 15 nodes for miRNA, and 241 edges that show 241 regulations between 15 miRNAs and 217 target genes.
    [Show full text]
  • 1 SUPPLEMENTAL DATA Figure S1. Poly I:C Induces IFN-Β Expression
    SUPPLEMENTAL DATA Figure S1. Poly I:C induces IFN-β expression and signaling. Fibroblasts were incubated in media with or without Poly I:C for 24 h. RNA was isolated and processed for microarray analysis. Genes showing >2-fold up- or down-regulation compared to control fibroblasts were analyzed using Ingenuity Pathway Analysis Software (Red color, up-regulation; Green color, down-regulation). The transcripts with known gene identifiers (HUGO gene symbols) were entered into the Ingenuity Pathways Knowledge Base IPA 4.0. Each gene identifier mapped in the Ingenuity Pathways Knowledge Base was termed as a focus gene, which was overlaid into a global molecular network established from the information in the Ingenuity Pathways Knowledge Base. Each network contained a maximum of 35 focus genes. 1 Figure S2. The overlap of genes regulated by Poly I:C and by IFN. Bioinformatics analysis was conducted to generate a list of 2003 genes showing >2 fold up or down- regulation in fibroblasts treated with Poly I:C for 24 h. The overlap of this gene set with the 117 skin gene IFN Core Signature comprised of datasets of skin cells stimulated by IFN (Wong et al, 2012) was generated using Microsoft Excel. 2 Symbol Description polyIC 24h IFN 24h CXCL10 chemokine (C-X-C motif) ligand 10 129 7.14 CCL5 chemokine (C-C motif) ligand 5 118 1.12 CCL5 chemokine (C-C motif) ligand 5 115 1.01 OASL 2'-5'-oligoadenylate synthetase-like 83.3 9.52 CCL8 chemokine (C-C motif) ligand 8 78.5 3.25 IDO1 indoleamine 2,3-dioxygenase 1 76.3 3.5 IFI27 interferon, alpha-inducible
    [Show full text]
  • Program in Human Neutrophils Fails To
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 is online at: average * The Journal of Immunology Anaplasma phagocytophilum , 20 of which you can access for free at: 2005; 174:6364-6372; ; from submission to initial decision 4 weeks from acceptance to publication J Immunol doi: 10.4049/jimmunol.174.10.6364 http://www.jimmunol.org/content/174/10/6364 Insights into Pathogen Immune Evasion Mechanisms: Fails to Induce an Apoptosis Differentiation Program in Human Neutrophils Dori L. Borjesson, Scott D. Kobayashi, Adeline R. Whitney, Jovanka M. Voyich, Cynthia M. Argue and Frank R. DeLeo cites 28 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2005/05/03/174.10.6364.DC1 This article http://www.jimmunol.org/content/174/10/6364.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* • Why • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2005 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Insights into Pathogen Immune Evasion Mechanisms: Anaplasma phagocytophilum Fails to Induce an Apoptosis Differentiation Program in Human Neutrophils1 Dori L.
    [Show full text]
  • Ep 2 136 209 A1
    (19) & (11) EP 2 136 209 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (43) Date of publication: (51) Int Cl.: 23.12.2009 Bulletin 2009/52 G01N 33/15 (2006.01) G01N 33/50 (2006.01) (21) Application number: 08721397.1 (86) International application number: PCT/JP2008/053977 (22) Date of filing: 05.03.2008 (87) International publication number: WO 2008/111464 (18.09.2008 Gazette 2008/38) (84) Designated Contracting States: • SAGANE, Koji AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Tsukuba-shi HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT Ibaraki 300-2635 (JP) RO SE SI SK TR • UESUGI, Mai Tsukuba-shi (30) Priority: 05.03.2007 US 904774 P Ibaraki 300-2635 (JP) 28.09.2007 US 960403 P • KADOWAKI, Tadashi Tsukuba-shi (71) Applicant: Eisai R&D Management Co., Ltd. Ibaraki 300-2635 (JP) Tokyo 112-8088 (JP) • YOSHIDA, Taku Tsukuba-shi (72) Inventors: Ibaraki 300-2635 (JP) • MIZUI, Yoshiharu Tsukuba-shi (74) Representative: Woods, Geoffrey Corlett Ibaraki 300-2635 (JP) J.A. Kemp & Co. • HATA, Naoko 14 South Square Tsukuba-shi Gray’s Inn Ibaraki 300-2635 (JP) London • IWATA, Masao WC1R 5JJ (GB) Tsukuba-shi Ibaraki 300-2635 (JP) (54) METHOD FOR EXAMINATION OF ACTION OF ANTI-CANCER AGENT UTILIZING SPLICING DEFECT AS MEASURE (57) An object of the present invention is to provide a method, a probe, a primer, an antibody, a reagent, and a kit for assaying an action of a pladienolide derivative to a living subject.
    [Show full text]
  • Supplemental Solier
    Supplementary Figure 1. Importance of Exon numbers for transcript downregulation by CPT Numbers of down-regulated genes for four groups of comparable size genes, differing only by the number of exons. Supplementary Figure 2. CPT up-regulates the p53 signaling pathway genes A, List of the GO categories for the up-regulated genes in CPT-treated HCT116 cells (p<0.05). In bold: GO category also present for the genes that are up-regulated in CPT- treated MCF7 cells. B, List of the up-regulated genes in both CPT-treated HCT116 cells and CPT-treated MCF7 cells (CPT 4 h). C, RT-PCR showing the effect of CPT on JUN and H2AFJ transcripts. Control cells were exposed to DMSO. β2 microglobulin (β2) mRNA was used as control. Supplementary Figure 3. Down-regulation of RNA degradation-related genes after CPT treatment A, “RNA degradation” pathway from KEGG. The genes with “red stars” were down- regulated genes after CPT treatment. B, Affy Exon array data for the “CNOT” genes. The log2 difference for the “CNOT” genes expression depending on CPT treatment was normalized to the untreated controls. C, RT-PCR showing the effect of CPT on “CNOT” genes down-regulation. HCT116 cells were treated with CPT (10 µM, 20 h) and CNOT6L, CNOT2, CNOT4 and CNOT6 mRNA were analysed by RT-PCR. Control cells were exposed to DMSO. β2 microglobulin (β2) mRNA was used as control. D, CNOT6L down-regulation after CPT treatment. CNOT6L transcript was analysed by Q- PCR. Supplementary Figure 4. Down-regulation of ubiquitin-related genes after CPT treatment A, “Ubiquitin-mediated proteolysis” pathway from KEGG.
    [Show full text]