Supplementary Tables Supplementary Table S1. a List of 3,039 Genes

Total Page:16

File Type:pdf, Size:1020Kb

Supplementary Tables Supplementary Table S1. a List of 3,039 Genes Supplementary Tables Supplementary Table S1. A List of 3,039 Genes Correlated with HDAC2 Gene Expression from a HCC Large Cohort Study. AACS CSDA KLF15 PAFAH2 AASS CSE1L KLF9 PAH ABAT CSE1L KLHL2 PAK1IP1 ABCA2 CSE1L KLKB1 PAK4 ABCA5 CSNK1G1 KMO PAK6 ABCA5 CSNK2A1 KNG1 PAN3 ABCA6 CSNK2A1P KNTC1 PANK1 ABCA9 CSPP1 KPNA2 PAOX ABCA9 CTBP2 KPNA4 PAPOLA ABCB1 CTDSP2 KPNA5 PAPSS1 ABCB4 CTDSPL2 KPNB1 PAQR8 ABCC10 CTH KRAS PARD6A ABCC6 CTHRC1 KRT3 PARD6G ABCC6 CTNND2 L3MBTL3 PARP1 ABCC6 CTSB LACTB PARP10 ABCC9 CTSL2 LAMB1 PARP10 ABCF1 CTSO LAMC1 PARP3 ABCG5 CTXN1 LAMC2 PBLD ABCG8 CUX2 LAMP2 PBX1 ABHD15 CWC22 LAMP2 PBX2 ABHD2 CXXC6 LAPTM4B PCBD1 ABHD5 CYB5A LARP1B PCBP2 ABHD6 CYB5D2 LARP4 PCCA ABHD7 CYP11A1 LCAT PCCB ABL1 CYP26B1 LCN12 PCK1 ABTB2 CYP27A1 LCOR PCK2 ACAA1 CYP2A7 LDHD PCK2 ACAA2 CYP2C8 LDOC1 PCK2 ACACB CYP2C9 LDOC1L PCMT1 ACAD10 CYP2D6 LEAP-2 PCNA ACAD11 CYP2D7P1 LEMD3 PCNP ACADL CYP2J2 LEPR PCSK1N ACADM CYP2W1 LEPR PCSK6 ACADS CYP3A4 LEPR PCTP ACAT1 CYP3A43 LGALS2 PDCD2 ACBD3 CYP3A5 LGALS7 PDCD2 ACBD4 CYP4A11 LIMA1 PDCL3 ACBD5 CYP4A22 LIMS2 PDE5A ACCN3 CYP4F11 LINGO1 PDK2 ACMSD CYP4F12 LIPG PDK4 ACO1 CYP4F2 LMAN1 PDS5B ACOT1 CYP4F3 LMAN2 PEA15 ACOT12 CYP7B1 LMAN2L PEBP1 ACOT4 CYP8B1 LMCD1 PECR ACOT8 DAK LMNB2 PELI1 ACOX1 DAO LOC120376 PELP1 ACOX2 DARS LOC123876 PEMT ACPL2 DBF4 LOC127295 PEPD ACSL1 DBN1 LOC130773 PER1 ACSM2A DBNDD2 LOC136143 PEX11G ACSM2B DBNL LOC143543 PEX13 ACSM2B DBT LOC143941 PEX14 ACSM2B DCAF16 LOC146439 PFDN5 ACSM3 DCAF7 LOC147710 PFKFB1 ACSM3 DCDC2 LOC158345 PGF ACSM5 DCTN2 LOC201725 PGM1 ACSM5 DCXR LOC220433 PGM2L1 ACTL6A DDAH1 LOC284821 PGRMC1 ACTR3 DDT LOC285176 PHC1 ACTRT1 DDX42 LOC285216 PHF17 ACVR1 DDX47 LOC285900 PHF19 ACY1 DDX50 LOC339766 PHF21A ACY3 DECR1 LOC347376 PHIP ACYP2 DECR2 LOC347544 PHLDB1 ADAM15 DENR LOC387841 PHYH ADAM28 DEPDC1B LOC387867 PI4K2B ADAMTS9 DEPDC7 LOC387934 PIAS4 ADAMTSL3 DEXI LOC388122 PIB5PA ADCY3 DGCR14 LOC388275 PIGS ADD3 DGCR6 LOC388474 PIGU ADD3 DGUOK LOC388503 PIGV ADH1B DHODH LOC388532 PIK3R1 ADH4 DHRS1 LOC388621 PIK3R2 ADHFE1 DHRS12 LOC388654 PIK4CA ADM2 DHRS3 LOC388681 PINK1 ADNP DHRS4 LOC388720 PKIA ADO DHRS4L2 LOC388814 PKLR ADRA1B DHTKD1 LOC389672 PLAG1 ADSL DHX57 LOC389901 PLAGL1 AEBP2 DHX58 LOC390354 PLAGL2 AFAP1L2 DHX9 LOC391092 PLAU AFAR3 DIAPH3 LOC400464 PLCL1 AFP DIAPH3 LOC400879 PLD2 AGL DIO1 LOC400890 PLEKHB1 AGPAT3 DIO1 LOC400963 PLEKHF1 AGR2 DKC1 LOC402057 PLGLA AGR3 DKK1 LOC402694 PLGLB1 AGXT DLEU2 LOC439949 PLK1 AGXT2 DLG3 LOC440055 PLK4 AGXT2L1 DLGAP5 LOC440104 PLXNA1 AGXT2L2 DLK2 LOC440145 PLXNA3 AGXT2L2 DMD LOC440589 PM20D2 AHNAK DMKN LOC440589 PMS1 AIFM1 DMRTA1 LOC440737 PMS2L1 AIFM1 DNA2 LOC440927 PMS2L2 AKAP13 DNAJC10 LOC441034 PNCK AKR1A1 DNAJC18 LOC441775 PNMA1 AKR1C4 DNAJC19 LOC441876 PNPLA2 ALAD DNAJC25 LOC493869 PNPLA4 ALAS1 DNAJC9 LOC554235 PNPLA7 ALDH1A1 DNAL4 LOC641798 PNPO ALDH1L1 DNASE1 LOC641848 POGK ALDH2 DNCL1 LOC641849 POLA2 ALDH4A1 DNMT1 LOC641983 POLD3 ALDH6A1 DNMT3B LOC642062 POLD4 ALDH7A1 DPP6 LOC642132 POLDIP2 ALDH7A1 DPYS LOC642236 POLDIP3 ALDH8A1 DQX1 LOC642250 POLQ ALDH8A1 DRAM1 LOC642252 POLR1D ALDH9A1 DSCC1 LOC642252 POLR2D ALG1 DTNBP1 LOC642412 POLR2H ALG2 DTWD2 LOC642489 POLR3C ALPL DUSP1 LOC642755 POLR3H ALS2CR4 DUSP12 LOC642755 PON1 AMD1 DVL2 LOC642989 POR AMDHD1 DYNC1I2 LOC643007 POSTN AMFR DYNLT1 LOC643031 POU2F1 AMFR DYRK2 LOC643109 PPAP2B AMY1B DYSF LOC643224 PPARBP AMY1C E2F6 LOC643284 PPARD AMY2A ECHDC2 LOC643287 PPARGC1A AMY2B ECHS1 LOC643357 PPHLN1 ANAPC1 ECM2 LOC643550 PPP1CC ANAPC5 EDN3 LOC643831 PPP1R12A ANG EDNRA LOC643949 PPP2R1A ANG EED LOC644029 PPP2R1B ANGPTL3 EEF1E1 LOC644029 PPRC1 ANGPTL4 EFNA4 LOC644313 PPT1 ANGPTL4 EFTUD2 LOC644322 PQLC1 ANGPTL6 EGFR LOC644330 PRAME ANKRD13D EHBP1 LOC644511 PRAMEF10 ANKRD24 EI24 LOC644624 PRAMEF10 ANKRD37 EIF2C2 LOC644624 PRC1 ANLN EIF2C4 LOC644655 PRDM4 ANO6 EIF3A LOC644844 PREP ANP32B EIF3D LOC644889 PRICKLE4 ANXA10 EIF3E LOC645052 PRKAG2 AOF2 EIF3L LOC645138 PRKAG2 AP3M2 EIF4A1 LOC645241 PRKCI AP4M1 EIF4A3 LOC645385 PRKDC APAF1 EIF4ENIF1 LOC645436 PRKRIR APBB3 EIF4G2 LOC645522 PRMT1 APCS ELF3 LOC645634 PRMT2 APEH ELF4 LOC645683 PRND APOA5 EMG1 LOC645688 PRODH2 APOC1 EMILIN2 LOC645968 PROM1 APOC2 ENC1 LOC646123 PROM2 APOC3 ENDOG LOC646197 PROS1 APOC4 ENOSF1 LOC646310 PROZ APOE ENPEP LOC646766 PRR11 APOF ENPP7 LOC646783 PRR15L APOH ENTPD5 LOC646849 PRR3 AQP9 ENTPD8 LOC647000 PRRX2 AR EP400 LOC647000 PRSS21 AR EPHX1 LOC647169 PRSS35 ARFGEF1 EPHX2 LOC647361 PSCD2 ARHGAP11A EPRS LOC647363 PSD3 ARHGAP18 ERGIC1 LOC647786 PSORS1C1 ARHGAP19 ERH LOC647856 PSPC1 ARHGEF17 ERP27 LOC648000 PSPC1 ARHGEF2 ETFA LOC648099 PSRC1 ARHGEF3 ETNK2 LOC648189 PTBP1 ARHGEF4 ETV6 LOC648210 PTGR1 ARID3A EVC LOC648210 PTK7 ARID3B EVC2 LOC648210 PTMA ARID5B EVI1 LOC648249 PTMS ARL2 EVPL LOC648622 PTPDC1 ARL5A EWSR1 LOC648749 PTPN12 ARL6IP6 EXO1 LOC649009 PTPN3 ARMC5 EXOC6 LOC649023 PTPRK ARMC6 EXOC7 LOC649049 PTS ARPC2 EXOSC3 LOC649447 PTTG1 ARRDC4 EXOSC8 LOC649495 PUS10 ARSD F11 LOC649540 PUS7 ARSD F11 LOC649548 PUS7L ART3 F13B LOC649639 PWP1 ASAP1 F7 LOC649754 PXMP2 ASB13 F8 LOC649944 PXMP2 ASF1B F8A1 LOC649970 PYCR1 ASPM FAAH LOC650116 QARS ASS1 FABP5 LOC650152 QDPR ASTN1 FAH LOC650254 QSOX1 ATG2A FAHD1 LOC650276 R3HDM1 ATIC FAHD2A LOC650369 RAB11A ATN1 FAM100A LOC650739 RAB25 ATP1B3 FAM101A LOC651202 RAB26 ATP1B3 FAM102B LOC651772 RAB34 ATP2B1 FAM104A LOC651894 RAB3GAP1 ATP2C2 FAM116A LOC651894 RABGAP1L ATP5D FAM117B LOC652071 RACGAP1 ATP6V0A4 FAM119A LOC652324 RAD1 ATP6V0E2 FAM122A LOC652408 RAD17 ATP6V1B1 FAM136A LOC652489 RAD51AP1 ATP8B2 FAM150A LOC652624 RAD54L ATPIF1 FAM164A LOC652773 RALA ATXN2 FAM168B LOC653210 RALY AURKB FAM173A LOC653232 RAMP3 AZGP1 FAM174A LOC653232 RANBP10 B3GALNT1 FAM177A1 LOC653242 RAP2A B3GALNT1 FAM195A LOC653314 RAPGEF4 B4GALT3 FAM24B LOC653342 RAVER2 BAAT FAM46C LOC653381 RBKS BARHL2 FAM48A LOC653472 RBL1 BAT1 FAM54A LOC653498 RBL2 BAT2D1 FAM57A LOC653658 RBM12 BBC3 FAM63B LOC653773 RBM14 BCAS4 FAM64A LOC653879 RBM16 BCKDHB FAM72D LOC654155 RBM25 BCKDHB FAM82A2 LOC654194 RBMS1 BCKDK FAM99A LOC727825 RBMS1 BCL7B FANCB LOC728037 RBP4 BCL9 FANCB LOC728160 RBX1 BCLAF1 FANCD2 LOC728481 RCAN1 BCOR FANCI LOC728564 RCC2 BDH1 FASTK LOC728635 RCE1 BDH1 FBL LOC728739 RCL1 BHMT FBLN1 LOC728811 RCN2 BHMT2 FBLN1 LOC728910 RCOR3 BLM FBLN1 LOC728973 RDH16 BLMH FBP1 LOC729351 RDH5 BLVRB FBXL19 LOC729446 REEP5 BMF FBXL2 LOC729559 REEP6 BMP7 FBXO2 LOC729559 REPS2 BMPR1A FBXO28 LOC729764 REPS2 BOLA2 FBXO30 LOC730012 RFC3 BOLL FBXO36 LOC730024 RFC4 BPHL FBXO46 LOC730226 RFWD2 BRCA1 FBXO5 LOC730740 RFWD3 BRIX1 FBXW5 LOC730746 RFX3 BTBD3 FGA LOC730805 RFX3 BTBD7 FGA LOC731002 RFXAP BTF3L4 FGA LOC731096 RFXDC2 BTG1 FGFR3 LOC731314 RGN BUB3 FGG LOC731365 RGN BZRPL1 FGL1 LOC731640 RGN BZW2 FGL1 LOC731950 RHOB C10orf119 FGL1 LOC731985 RIOK1 C10orf125 FH LOC91561 RNASET2 C10orf137 FIG4 LONP2 RND1 C10orf2 FIGNL1 LOX RNF122 C10orf59 FIS LPA RNF123 C10orf88 FIS1 LPCAT4 RNF130 C11orf35 FKBP10 LPIN2 RNF14 C11orf54 FKBP1A LRP11 RNF144 C11orf82 FKBP2 LRP2 RNF149 C12orf26 FLJ10803 LRP8 RNF216 C12orf30 FLJ10986 LRRC1 RNF24 C12orf41 FLJ20674 LRRC2 RNF34 C12orf48 FLJ20920 LRRC3 RNF38 C13orf23 FLJ21986 LRRC59 RNF7 C13orf3 FLRT2 LRRC67 RNGTT C13orf34 FMNL2 LSM8 RNH1 C13orf7 FMO3 LTA4H RNPC2 C14orf106 FNDC4 LTV1 ROD1 C14orf43 FOLH1 LYPD6 ROGDI C15orf39 FOLR1 LYPD6B ROM1 C15orf42 FOXM1 LYRM4 RPF2 C15orf5 FOXO3 LYRM5 RPIA C16orf45 FOXO3 LZTS1 RPL10A C17orf41 FOXQ1 LZTS2 RPL12 C17orf41 FRAS1 MACROD1 RPL13A C17orf45 FRAS1 MAD2L1 RPL14 C17orf49 FTCD MAGED1 RPL15 C17orf63 FUBP1 MAGED2 RPL17 C17orf69 FUCA1 MAGED4B RPL19 C18orf54 FUCA2 MAN1C1 RPL23 C19orf2 FUT8 MAN2B2 RPL23A C19orf21 FXR1 MANBAL RPL26 C19orf24 FXYD3 MANSC1 RPL27 C19orf36 FZD2 MAOB RPL31 C19orf48 G6PC MAP2K7 RPL32 C19orf6 GAA MAP3K1 RPL35A C19orf66 GABRR1 MAP3K4 RPL39 C1GALT1 GADD45A MAP3K7 RPL4 C1orf106 GADD45G MAP4K5 RPL6 C1orf112 GAL3ST1 MAPK1 RPL6 C1orf116 GALNT12 MAPK13 RPL7 C1orf131 GALNT4 MAPRE1 RPL7A C1orf135 GALNT6 MAPRE3 RPLP0 C1orf54 GALNT7 MARCKS RPLP1 C1orf9 GAMT MARCKSL1 RPN2 C1R GAMT MARK3 RPS10 C1R GARS MARS RPS11 C1R GATM MASP1 RPS12 C1RL GBA3 MASP2 RPS16 C1S GBE1 MASP2 RPS18 C1S GC MASTL RPS19 C20orf177 GCH1 MAT1A RPS21 C20orf20 GCH1 MATR3 RPS27 C21orf33 GCHFR MBOAT2 RPS27A C21orf33 GCKR MCCC2 RPS3 C21orf45 GCN1L1 MCEE RPS3A C22orf29 GDA MCM2 RPS4X C22orf9 GDI2 MCM3 RPS5 C2orf15 GEMIN4 MCM5 RPSA C2orf18 GFM2 MCM7 RTKN2 C2orf27A GFOD2 MDC1 RTN4 C2orf29 GFRA1 MDK RTN4RL2 C2orf44 GHR MED15 RUNDC1 C3orf10 GIT1 MED20 RUNDC3B C3orf21 GJA1 MED23 RWDD1 C3orf23 GJB1 MED23 RWDD2B C3orf23 GLRX MED28 S100A14 C3orf70 GLS2 MED30 SAA4 C4orf34 GLYAT MELK SAC C5orf13 GLYAT METAP2 SACS C5orf34 GLYAT METRN SAE1 C5orf4 GLYATL1 METT10D SALL2 C5orf44 GLYCTK METTL7A SALL4 C6 GMNN METTL8 SAP30L C6orf145 GNG4 METTL9 SAR1B C6orf162 GNL3 MEX3C SARDH C6orf167 GNMT MFAP2 SBF1 C6orf168 GNPTG MFGE8 SBK1 C6orf173 GOLGA4 MFN2 SC4MOL C6orf182 GOLSYN MFSD10 SC5DL C6orf192 GORASP2 MFSD6 SC65 C6orf25 GOT2 MGAT3 SCAF1 C6orf48 GPATCH8 MGAT4B SCARA3 C6orf54 GPLD1 MGAT4B SCIN C7orf28A GPLD1 MGC13168 SCMH1 C8B GPM6B MGC15634 SCP2 C8G GPN1 MGC16703 SCRN2 C8orf80 GPR146 MGC33556 SDC1 C9orf100 GPR161 MGC35361 SDCCAG10 C9orf100 GPT MGC3731 SDF4 C9orf100 GPX3 MGC39900 SDHA C9orf103 GPX7 MGC39900 SDHALP1 C9orf125 GRHPR MGC39900 SDHB C9orf140 GRINA MGC40489 SDHD C9orf150 GRLF1 MGC42630 SDS C9orf78 GRPEL1 MGC57346 SDSL C9orf95 GSG2 MGC57359 SEC11A CA8 GSTA1 MGC61598 SEC14L2 CACHD1 GSTA2 MGC70857 SEC23IP CALM2 GSTA5 MGC70870 SELENBP1 CALM3 GSTK1 MGST1 SELO CALU GSTZ1 MGST1 SEMA3C CAMSAP1L1 GTF3C2 MIB1 SEPHS1 CAPRIN1 GTF3C3 MIPOL1 SEPP1 CBL GTPBP4 MKI67 SEPSECS CBR1 GTSE1 MKI67IP SEPSECS CBR4 GYS2 MLF1 SEPX1 CBS H2AFY MLL5 SERAC1 CBX2 H2AFY2 MLLT3 SERINC3
Recommended publications
  • Identification and Developmental Expression of the Full Complement Of
    Goldstone et al. BMC Genomics 2010, 11:643 http://www.biomedcentral.com/1471-2164/11/643 RESEARCH ARTICLE Open Access Identification and developmental expression of the full complement of Cytochrome P450 genes in Zebrafish Jared V Goldstone1, Andrew G McArthur2, Akira Kubota1, Juliano Zanette1,3, Thiago Parente1,4, Maria E Jönsson1,5, David R Nelson6, John J Stegeman1* Abstract Background: Increasing use of zebrafish in drug discovery and mechanistic toxicology demands knowledge of cytochrome P450 (CYP) gene regulation and function. CYP enzymes catalyze oxidative transformation leading to activation or inactivation of many endogenous and exogenous chemicals, with consequences for normal physiology and disease processes. Many CYPs potentially have roles in developmental specification, and many chemicals that cause developmental abnormalities are substrates for CYPs. Here we identify and annotate the full suite of CYP genes in zebrafish, compare these to the human CYP gene complement, and determine the expression of CYP genes during normal development. Results: Zebrafish have a total of 94 CYP genes, distributed among 18 gene families found also in mammals. There are 32 genes in CYP families 5 to 51, most of which are direct orthologs of human CYPs that are involved in endogenous functions including synthesis or inactivation of regulatory molecules. The high degree of sequence similarity suggests conservation of enzyme activities for these CYPs, confirmed in reports for some steroidogenic enzymes (e.g. CYP19, aromatase; CYP11A, P450scc; CYP17, steroid 17a-hydroxylase), and the CYP26 retinoic acid hydroxylases. Complexity is much greater in gene families 1, 2, and 3, which include CYPs prominent in metabolism of drugs and pollutants, as well as of endogenous substrates.
    [Show full text]
  • Computational Genome-Wide Identification of Heat Shock Protein Genes in the Bovine Genome [Version 1; Peer Review: 2 Approved, 1 Approved with Reservations]
    F1000Research 2018, 7:1504 Last updated: 08 AUG 2021 RESEARCH ARTICLE Computational genome-wide identification of heat shock protein genes in the bovine genome [version 1; peer review: 2 approved, 1 approved with reservations] Oyeyemi O. Ajayi1,2, Sunday O. Peters3, Marcos De Donato2,4, Sunday O. Sowande5, Fidalis D.N. Mujibi6, Olanrewaju B. Morenikeji2,7, Bolaji N. Thomas 8, Matthew A. Adeleke 9, Ikhide G. Imumorin2,10,11 1Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Nigeria 2International Programs, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA 3Department of Animal Science, Berry College, Mount Berry, GA, 30149, USA 4Departamento Regional de Bioingenierias, Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Queretaro, Mexico 5Department of Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria 6Usomi Limited, Nairobi, Kenya 7Department of Animal Production and Health, Federal University of Technology, Akure, Nigeria 8Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY, 14623, USA 9School of Life Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa 10School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30032, USA 11African Institute of Bioscience Research and Training, Ibadan, Nigeria v1 First published: 20 Sep 2018, 7:1504 Open Peer Review https://doi.org/10.12688/f1000research.16058.1 Latest published: 20 Sep 2018, 7:1504 https://doi.org/10.12688/f1000research.16058.1 Reviewer Status Invited Reviewers Abstract Background: Heat shock proteins (HSPs) are molecular chaperones 1 2 3 known to bind and sequester client proteins under stress. Methods: To identify and better understand some of these proteins, version 1 we carried out a computational genome-wide survey of the bovine 20 Sep 2018 report report report genome.
    [Show full text]
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • Datasheet PB1029 Anti-AEBP2 Antibody
    Product datasheet Anti-AEBP2 Antibody Catalog Number: PB1029 BOSTER BIOLOGICAL TECHNOLOGY Special NO.1, International Enterprise Center, 2nd Guanshan Road, Wuhan, China Web: www.boster.com.cn Phone: +86 27 67845390 Fax: +86 27 67845390 Email: [email protected] Basic Information Product Name Anti-AEBP2 Antibody Gene Name AEBP2 Source Rabbit IgG Species Reactivity human,mouse,rat Tested Application WB,IHC-P,ICC/IF,FCM Contents 500ug/ml antibody with PBS ,0.02% NaN3 , 1mg BSA and 50% glycerol. Immunogen E.coli-derived human AEBP2 recombinant protein (Position: K424-Q517). Human AEBP2 shares 98.8% amino acid (aa) sequence identity with mouse AEBP2. Purification Immunogen affinity purified. Observed MW 54KD Dilution Ratios Western blot: 1:500-2000 Immunohistochemistry(Paraffin-embedded Section): 1:50-400 Immunocytochemistry/Immunofluorescence (ICC/IF): 1:50-400 Flow cytometry (FCM): 1-3μg/1x106 cells Storage 12 months from date of receipt,-20℃ as supplied.6 months 2 to 8℃ after reconstitution. Avoid repeated freezing and thawing Background Information Adipocyte Enhancer-Binding Protein is a zinc finger protein that in humans is encoded by the evolutionarily well-conserved gene AEBP2. This gene is mapped to 12p12.3. AEBP2 is a DNA-binding transcriptional repressor. It may regulate the migration and development of the neural crest cells through the PRC2-mediated epigenetic mechanism and is most likely a targeting protein for the mammalian PRC2 complex. Reference Anti-AEBP2 Antibody被引用在0文献中。 暂无引用 FOR RESEARCH USE ONLY. NOT FOR DIAGNOSTIC AND CLINICAL USE. 1 Product datasheet Anti-AEBP2 Antibody Catalog Number: PB1029 BOSTER BIOLOGICAL TECHNOLOGY Special NO.1, International Enterprise Center, 2nd Guanshan Road, Wuhan, China Web: www.boster.com.cn Phone: +86 27 67845390 Fax: +86 27 67845390 Email: [email protected] Selected Validation Data Figure 1.
    [Show full text]
  • Regulation of Transcription and Regulatory Networks for Muscle Growth * * * * A
    Regulation Of Transcription And Regulatory Networks For Muscle Growth * * * * A. Reverter , N.J. Hudson , Q. Gu and B.P. Dalrymple Introduction The advent of microarray gene expression technology has provided animal scientists with an unprecedented ability to profile the transcriptional changes during skeletal muscle growth. With respect to meat quality, most of the effort has concentrated on the understanding of fat and energy metabolism (reviewed by Hausman et al . (2009)). Graugnard et al . (2009) explored the network among 31 genes associated with aspects of adipogenesis and energy metabolism in bovine skeletal muscle and in response to two distinct diets. Also, Freyssenet (2007) reviewed the roles that energy-sensing molecules and mitochondria have in the regulation of gene expression in muscle. However, other mechanisms such as cell cycle, glycolysis, extra-cellular matrix, ribosomal proteins and the immune system play a significant role in development, and this role can work in a tissue-specific manner. Hudson et al . (2009a) reported various functional modules underpinning the transcriptional regulation of bovine skeletal muscle. The authors integrated a total of six gene co-expression networks, each developed using the PCIT algorithm (Reverter and Chan (2008)), and proposed a Module-to-Regulator heuristic by which those transcription factors (TF) with the highest average absolute correlation co-expression with the genes present in each module are deemed to be the relevant regulators. However, this Module-to-Regulator approach failed to capture some well-known regulators of muscle fibre type composition, and the use of more sophisticated methods such as the differential wiring approach of Hudson et al .
    [Show full text]
  • Transcriptomic Characterization of Fibrolamellar Hepatocellular
    Transcriptomic characterization of fibrolamellar PNAS PLUS hepatocellular carcinoma Elana P. Simona, Catherine A. Freijeb, Benjamin A. Farbera,c, Gadi Lalazara, David G. Darcya,c, Joshua N. Honeymana,c, Rachel Chiaroni-Clarkea, Brian D. Dilld, Henrik Molinad, Umesh K. Bhanote, Michael P. La Quagliac, Brad R. Rosenbergb,f, and Sanford M. Simona,1 aLaboratory of Cellular Biophysics, The Rockefeller University, New York, NY 10065; bPresidential Fellows Laboratory, The Rockefeller University, New York, NY 10065; cDivision of Pediatric Surgery, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065; dProteomics Resource Center, The Rockefeller University, New York, NY 10065; ePathology Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY 10065; and fJohn C. Whitehead Presidential Fellows Program, The Rockefeller University, New York, NY 10065 Edited by Susan S. Taylor, University of California, San Diego, La Jolla, CA, and approved September 22, 2015 (received for review December 29, 2014) Fibrolamellar hepatocellular carcinoma (FLHCC) tumors all carry a exon of DNAJB1 and all but the first exon of PRKACA. This deletion of ∼400 kb in chromosome 19, resulting in a fusion of the produced a chimeric RNA transcript and a translated chimeric genes for the heat shock protein, DNAJ (Hsp40) homolog, subfam- protein that retains the full catalytic activity of wild-type PKA. ily B, member 1, DNAJB1, and the catalytic subunit of protein ki- This chimeric protein was found in 15 of 15 FLHCC patients nase A, PRKACA. The resulting chimeric transcript produces a (21) in the absence of any other recurrent mutations in the DNA fusion protein that retains kinase activity.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Synonymous Single Nucleotide Polymorphisms in Human Cytochrome
    DMD Fast Forward. Published on February 9, 2009 as doi:10.1124/dmd.108.026047 DMD #26047 TITLE PAGE: A BIOINFORMATICS APPROACH FOR THE PHENOTYPE PREDICTION OF NON- SYNONYMOUS SINGLE NUCLEOTIDE POLYMORPHISMS IN HUMAN CYTOCHROME P450S LIN-LIN WANG, YONG LI, SHU-FENG ZHOU Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, P. R. China (LL Wang & Y Li) Discipline of Chinese Medicine, School of Health Sciences, RMIT University, Bundoora, Victoria 3083, Australia (LL Wang & SF Zhou). 1 Copyright 2009 by the American Society for Pharmacology and Experimental Therapeutics. DMD #26047 RUNNING TITLE PAGE: a) Running title: Prediction of phenotype of human CYPs. b) Author for correspondence: A/Prof. Shu-Feng Zhou, MD, PhD Discipline of Chinese Medicine, School of Health Sciences, RMIT University, WHO Collaborating Center for Traditional Medicine, Bundoora, Victoria 3083, Australia. Tel: + 61 3 9925 7794; fax: +61 3 9925 7178. Email: [email protected] c) Number of text pages: 21 Number of tables: 10 Number of figures: 2 Number of references: 40 Number of words in Abstract: 249 Number of words in Introduction: 749 Number of words in Discussion: 1459 d) Non-standard abbreviations: CYP, cytochrome P450; nsSNP, non-synonymous single nucleotide polymorphism. 2 DMD #26047 ABSTRACT Non-synonymous single nucleotide polymorphisms (nsSNPs) in coding regions that can lead to amino acid changes may cause alteration of protein function and account for susceptivity to disease. Identification of deleterious nsSNPs from tolerant nsSNPs is important for characterizing the genetic basis of human disease, assessing individual susceptibility to disease, understanding the pathogenesis of disease, identifying molecular targets for drug treatment and conducting individualized pharmacotherapy.
    [Show full text]
  • Supplemental Materials ZNF281 Enhances Cardiac Reprogramming
    Supplemental Materials ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression Huanyu Zhou, Maria Gabriela Morales, Hisayuki Hashimoto, Matthew E. Dickson, Kunhua Song, Wenduo Ye, Min S. Kim, Hanspeter Niederstrasser, Zhaoning Wang, Beibei Chen, Bruce A. Posner, Rhonda Bassel-Duby and Eric N. Olson Supplemental Table 1; related to Figure 1. Supplemental Table 2; related to Figure 1. Supplemental Table 3; related to the “quantitative mRNA measurement” in Materials and Methods section. Supplemental Table 4; related to the “ChIP-seq, gene ontology and pathway analysis” and “RNA-seq” and gene ontology analysis” in Materials and Methods section. Supplemental Figure S1; related to Figure 1. Supplemental Figure S2; related to Figure 2. Supplemental Figure S3; related to Figure 3. Supplemental Figure S4; related to Figure 4. Supplemental Figure S5; related to Figure 6. Supplemental Table S1. Genes included in human retroviral ORF cDNA library. Gene Gene Gene Gene Gene Gene Gene Gene Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol AATF BMP8A CEBPE CTNNB1 ESR2 GDF3 HOXA5 IL17D ADIPOQ BRPF1 CEBPG CUX1 ESRRA GDF6 HOXA6 IL17F ADNP BRPF3 CERS1 CX3CL1 ETS1 GIN1 HOXA7 IL18 AEBP1 BUD31 CERS2 CXCL10 ETS2 GLIS3 HOXB1 IL19 AFF4 C17ORF77 CERS4 CXCL11 ETV3 GMEB1 HOXB13 IL1A AHR C1QTNF4 CFL2 CXCL12 ETV7 GPBP1 HOXB5 IL1B AIMP1 C21ORF66 CHIA CXCL13 FAM3B GPER HOXB6 IL1F3 ALS2CR8 CBFA2T2 CIR1 CXCL14 FAM3D GPI HOXB7 IL1F5 ALX1 CBFA2T3 CITED1 CXCL16 FASLG GREM1 HOXB9 IL1F6 ARGFX CBFB CITED2 CXCL3 FBLN1 GREM2 HOXC4 IL1F7
    [Show full text]
  • A Comprehensive Analysis of the Expression of Crystallins in Mouse Retina Jinghua Xi Washington University School of Medicine in St
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2003 A comprehensive analysis of the expression of crystallins in mouse retina Jinghua Xi Washington University School of Medicine in St. Louis Rafal Farjo University of Michigan - Ann Arbor Shigeo Yoshida University of Michigan - Ann Arbor Timothy S. Kern Case Western Reserve University Anand Swaroop University of Michigan - Ann Arbor See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Xi, Jinghua; Farjo, Rafal; Yoshida, Shigeo; Kern, Timothy S.; Swaroop, Anand; and Andley, Usha P., ,"A comprehensive analysis of the expression of crystallins in mouse retina." Molecular Vision.9,. 410-419. (2003). https://digitalcommons.wustl.edu/open_access_pubs/1801 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Authors Jinghua Xi, Rafal Farjo, Shigeo Yoshida, Timothy S. Kern, Anand Swaroop, and Usha P. Andley This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/open_access_pubs/1801 Molecular Vision 2003; 9:410-9 <http://www.molvis.org/molvis/v9/a53> © 2003 Molecular Vision Received 28 May 2003 | Accepted 19 August 2003 | Published 28 August 2003 A comprehensive analysis of the expression of crystallins in mouse retina Jinghua Xi,1 Rafal Farjo,3 Shigeo Yoshida,3 Timothy S. Kern,5 Anand Swaroop,3,4 Usha P. Andley1,2 Departments of 1Ophthalmology and Visual Sciences and 2Biochemistry and Molecular Biophysics, Washington University School of Medicine, St.
    [Show full text]
  • Related Macular Degeneration and Cutis Laxa
    UvA-DARE (Digital Academic Repository) Genetic studies of age-related macular degeneration Baas, D.C. Publication date 2012 Document Version Final published version Link to publication Citation for published version (APA): Baas, D. C. (2012). Genetic studies of age-related macular degeneration. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:05 Oct 2021 G������ S������ �� A��-������� M������ D����������� D����������� M������ G������ S������ �� A��-������� | 2012 D�������� C. B��� G������ S������ �� A��-������� M������ D����������� D�������� C. B��� cover.indd 1 31-10-12 08:36 Genetic Studies of Age-related Macular Degeneration Dominique C. Baas Chapter 0.indd 1 23-10-12 19:24 The research described in this thesis was conducted at the Netherlands Institute for Neuroscience (NIN), an institute of the Royal Netherlands Academy of Arts and Sciences, Department of Clinical and Molecular Ophthalmogenetics, Amsterdam, The Netherlands.
    [Show full text]
  • Hepatic Gene Expression of Bile Acid Synthesis Genes from Wild-Type and Fxr−/− Mice
    A 2.0 Acox2 B 2.0 Akr1c14 C 2.0 Akr1d1 D 2.0 Amacr ** 1.5 1.5 1.5 1.5 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.5 mRNA (Fold Change) mRNA mRNA (Fold Change) mRNA mRNA (Fold Change) mRNA mRNA (Fold Change) mRNA 0.0 0.0 0.0 0.0 GSK − 30’ 1h 2h − 30’ 1h 2h GSK − 30’ 1h 2h − 30’ 1h 2h GSK − 30’ 1h 2h − 30’ 1h 2h GSK − 30’ 1h 2h − 30’ 1h 2h FXR WT Fxr−/− FXR WT Fxr−/− FXR WT Fxr−/− FXR WT Fxr−/− E F 2.0 Cyp7b1 2.0 Cyp27a1 G 2.0 Cyp39a1 H 2.0 Hsd3b7 1.5 1.5 1.5 1.5 * 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.5 mRNA (Fold Change) mRNA mRNA (Fold Change) mRNA mRNA (Fold Change) mRNA mRNA (Fold Change) mRNA 0.0 0.0 0.0 0.0 GSK − 30’ 1h 2h − 30’ 1h 2h GSK − 30’ 1h 2h − 30’ 1h 2h GSK − 30’ 1h 2h − 30’ 1h 2h GSK − 30’ 1h 2h − 30’ 1h 2h FXR WT Fxr−/− FXR WT Fxr−/− FXR WT Fxr−/− FXR WT Fxr−/− I J K 2.0 Hsd17b4 2.0 Scp2 2.0 Slc27a5 L Fxr Cyp7a1 Cyp8b1 1.0 1.5 1.5 1.5 * 1.0 1.0 1.0 0.5 *** *** 0.5 0.5 0.5 mRNA (Fold Change) mRNA mRNA (Fold Change) mRNA mRNA (Fold Change) mRNA mRNA (Fold Change) mRNA *** *** *** 0.0 0.0 0.0 0.0 *** GSK − 30’ 1h 2h − 30’ 1h 2h GSK − 30’ 1h 2h − 30’ 1h 2h GSK − 30’ 1h 2h − 30’ 1h 2h Time (h) 0 4 16 0 4 16 0 4 16 FXR WT Fxr−/− FXR WT Fxr−/− FXR WT Fxr−/− post plating M N CYP7A1 CYP8B1 Supplementary Figure 1 – FXR activation leads to rapid changes in gene expression 1.0 1.0 (A-K) Hepatic gene expression of bile acid synthesis genes from wild-type and Fxr−/− mice.
    [Show full text]