Radial Glia Axon Guidance

Total Page:16

File Type:pdf, Size:1020Kb

Radial Glia Axon Guidance Radial Glia Axon Guidance Is Benn susceptible or measliest after uretic Pace caponises so thick-wittedly? Footiest Marlon transhipped or enlaces some regatta hand-to-hand, however pulverizable Ezechiel royalises crudely or housed. Lambert reinstating her Butterworth unconcernedly, demurest and unexpectant. For CPNs migrating in neocortical slices and CINs migrating in slices or in vitro, myosin seems to act at the rear. Developmental expression pattern of the cdo gene. Cells were also found scattered in adjacent tissue. Neuronal or glial progeny: Regional differences in radial glia fate. Retzius cells and the first cohort of pyramidal neurons, which will eventually populate the subplate. The axon of the motor neuron induces ACh receptors to cluster on muscle fibers. The journal is archived in Portico and via the LOCKSS initiative, which provides permanent archiving for electronic scholarly journals. Following the growth of the leading process past this position, a cytoplasmic dilation forms distal to the cell nucleus. Draxin overexpression in the chick neural tube disrupted the navigation of commissural axons. You have to be logged in to use this feature. Further experiments in a paradigm of axon regeneration would help to understand the true importance of each one of these markers for regenerating axonal guidance into the brain, including the ability to modulate their expression. Neurocan is dispensable for brain development. Radial glia are specialized cells in the developing nervous system of all vertebrates, and are characterized by long radial processes. Neocortical callosal axons also use another type of neuronal support. Cdc42 and Gsk3 modulate the dynamics of radial glial growth. Interestingly, microglial depletion resulted in enhanced growth of the dopaminergic axons within the subpallium, while maternal excess immune activation of microglia resulted in reduced axon growth. To establish new treatments for demyelinating diseases, a better understanding of myelin biology and pathology is absolutely required. Myelin defects also occur by genetic abnormalities that affect glial cells. Astrocytes migrate from human neural stem cell grafts and functionally integrate into the injured rat spinal cord. The earliest patterns of neuronal differentiation and migration in the mammalian central nervous system. The matrix cell any cytogenesis in the developing central nervous system. Increase in Growth Cone Size Correlates with Decrease in Neurite Growth Rate. Diverse mechanisms regulate stabilization and guidance of the leading process. Very little is yet known on how these adherent and guidance forces are integrated. Nevertheless, advances in genetics and neuroimaging clearly sparked a growing interest for axon guidance mechanisms and the potential pathogenic consequences of their alterations. Mechanisms of glial development. Sequence of developmental abnormalities leading to granule cell deficit in cerebellar cortex of weaver mutant mice. The floor plate is a transient structure formed by a small group of ependymal cells at the border of the ventral canal. Oligodendrocytes comprise several short processes, which wrap themselves around neurons present in the CNS. These steps are repeated continuously with the generation of a new branch in the leading process in each migratory cycle. Thus, this study provided evidence that meningeal tissue contributes to the formation of the corpus callosum. VZ to use a common migratory pathway along the RG fascicle, across the growing intermediate and subplate zones, to settle within the same column in the cortical plate, so that the positional information of their origin is preserved. During development, the meninges surrounding the forebrain arise from cranial neural crest cells, but the origin of the meninges surrounding the caudal CNS had long been controversial. The resident radial glial cells of the roof plate suffer changes in their arrangement and density and express selectively certain ECM molecules, such as keratan and chondroitin sulfates. Despite loss of Purkinje neurons, Jakovcevski et al. Unilateral containment of retinal axons by tectal glia: a possible role for sulfated proteoglycans. Purchase a switch in contrast, cell surface of glial wedge during corticogenesis, we give rise to mediate the radial glia axon guidance molecules. Differences in DCC expression levels might explain the distinct responsiveness of the pioneers and their followers. Identification of a multipotent astrocytic satem cell in the immature and adult mouse brain. For instance, pituicytes are located in the posterior pituitary, which is under the hypothalamus in the brain while tanycytes are located near the median eminence of the hypothalamus. Morphology and differentiation of radial glia in the developing rat spinal cord. The stellate interneurons that reside within the upper half of the cerebellar molecular layer innervate the dendritic shafts of the Purkinje cells that reside below, and they do so by following the BG radial projections. NGF antibodies are added near the target tissue, the supply of NGF is blocked and presynaptic terminals retract. For example, during the development of PNS myelinated nerve fibers, a molecule called gliomedin is secreted from myelinating Schwann cells then incorporated into the extracellular matrix surrounding nodes, where it promotes assembly of nodal axonal molecules. Adult neural precursor cells from the subventricular zone contribute significantly to oligodendrocyte regeneration and remyelination. First, the radial glial endfeet are not static, stable structures. Mary Behan, Mary Halloran, Ronald Kalil, and Michael Merline read earlier versions of the manuscript and provided helpful comments. Guideposts and guidance signaling controlling the corpus callosum formation. See it lacks dna This radial glial cell axon interface is absent in the decussating area of the corticospinal tract axons. PNS border before summarizing our current understanding of how the behavior of neurons and glia at this dividing line is controlled. Thus, despite the fact that the adult tract glial skeleton is quite different from that through which the embryonic axons grew, the adult structure still retains cues sufficient to direct rapid and efficient axon growth from embryonic transplants. Overall, a complex molecular cascade which includes key developmental pathways appears to control the differentiation of the glial lineages acting as guideposts for the corpus callosum formation. In addition, we report that neuroepithelial radial cell processes are present in the presumptive WM prior to axon tract formation. It is NOT the release of ACh from nerve terminals. CB devised, performed, and analyzed all other experiments. Navigational problem for research in early human retina to the radial glia axon guidance mechanisms underlying mechanisms cells were often in. One of the first physiological roles that was discovered for NGF was its importance in the survival of sensory and sympathetic neurons. Neurons migrate along a variety of substrates, including radial glia, other neurons, axons, and ECM. Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. Insets allow for appreciation of the filamentous nature of the nestin immunostaining and proximity to the growth cone. Sequential stages in migration. It is believed these inhibitors assist in directing newly formed RGC axons towards the optic tracts in both sides of the brain, thus avoiding misguidance into surrounding tissue. Furthermore, many axonal projections within the brain require these glial boundaries for normal development. This is the start of the communication network that will enable the individual to generate appropriate behaviours. Intrigued, Magini also observed that the size and number of these varicosities increased later in development, and were absent in the adult nervous system. Mean of each experiment and SEM are indicated. Sulfated proteoglycans in astroglial barriers inhibit neurite outgrowth in vitro. Prenatal formation of the normal mouse corpus callosum: a quantitative study with carbocyanine dyes. The signaling events downstream of the various integrins are not fully elucidated. Innervating axons possess NGF receptors that bind, internalize, and retrogradely transport NGF. Migrating neurons are highly polarized in the direction of their movement. CB and BW conceived and coordinated the study, interpreted the data, and wrote the paper. As a result, the neurons that are born first are located in the deepest layers of the cortex, whereas the younger ones are located in the layers closer to the cortical surface. Trophic factors play important roles in neuronal regeneration. In summary, we have identified nestin intermediate filament at the axonal growth cone where it plays a role in regulating growth cone morphology. Glial cells provide structural and metabolic support to neurons. In addition to Slits, Semaphorins act in the floor plate and regulate midline crossing. What happens if myelin is damaged? Slit is the midline repellent for the robo receptor in Drosophila. DNA, and other proteins. We show that radial glia in dorsomedial cortex retract their apical endfeet at midneurogenesis and translocate to the overlaying pia, forming the indusium griseum. HS in the dorsal diencephalon provides a crucial component of a repulsive signal that is essential for correct axonal guidance in Xenopus. This strategy allows neurons to achieve directional migration
Recommended publications
  • Oligodendrocytes in Development, Myelin Generation and Beyond
    cells Review Oligodendrocytes in Development, Myelin Generation and Beyond Sarah Kuhn y, Laura Gritti y, Daniel Crooks and Yvonne Dombrowski * Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; [email protected] (S.K.); [email protected] (L.G.); [email protected] (D.C.) * Correspondence: [email protected]; Tel.: +0044-28-9097-6127 These authors contributed equally. y Received: 15 October 2019; Accepted: 7 November 2019; Published: 12 November 2019 Abstract: Oligodendrocytes are the myelinating cells of the central nervous system (CNS) that are generated from oligodendrocyte progenitor cells (OPC). OPC are distributed throughout the CNS and represent a pool of migratory and proliferative adult progenitor cells that can differentiate into oligodendrocytes. The central function of oligodendrocytes is to generate myelin, which is an extended membrane from the cell that wraps tightly around axons. Due to this energy consuming process and the associated high metabolic turnover oligodendrocytes are vulnerable to cytotoxic and excitotoxic factors. Oligodendrocyte pathology is therefore evident in a range of disorders including multiple sclerosis, schizophrenia and Alzheimer’s disease. Deceased oligodendrocytes can be replenished from the adult OPC pool and lost myelin can be regenerated during remyelination, which can prevent axonal degeneration and can restore function. Cell population studies have recently identified novel immunomodulatory functions of oligodendrocytes, the implications of which, e.g., for diseases with primary oligodendrocyte pathology, are not yet clear. Here, we review the journey of oligodendrocytes from the embryonic stage to their role in homeostasis and their fate in disease. We will also discuss the most common models used to study oligodendrocytes and describe newly discovered functions of oligodendrocytes.
    [Show full text]
  • Neuregulin 1–Erbb2 Signaling Is Required for the Establishment of Radial Glia and Their Transformation Into Astrocytes in Cerebral Cortex
    Neuregulin 1–erbB2 signaling is required for the establishment of radial glia and their transformation into astrocytes in cerebral cortex Ralf S. Schmid*, Barbara McGrath*, Bridget E. Berechid†, Becky Boyles*, Mark Marchionni‡, Nenad Sˇ estan†, and Eva S. Anton*§ *University of North Carolina Neuroscience Center and Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599; †Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510; and ‡CeNes Pharamceuticals, Inc., Norwood, MA 02062 Communicated by Pasko Rakic, Yale University School of Medicine, New Haven, CT, January 27, 2003 (received for review December 12, 2002) Radial glial cells and astrocytes function to support the construction mine whether NRG-1-mediated signaling is involved in radial and maintenance, respectively, of the cerebral cortex. However, the glial cell development and differentiation in the cerebral cortex. mechanisms that determine how radial glial cells are established, We show that NRG-1 signaling, involving erbB2, may act in maintained, and transformed into astrocytes in the cerebral cortex are concert with Notch signaling to exert a critical influence in the not well understood. Here, we show that neuregulin-1 (NRG-1) exerts establishment, maintenance, and appropriate transformation of a critical role in the establishment of radial glial cells. Radial glial cell radial glial cells in cerebral cortex. generation is significantly impaired in NRG mutants, and this defect can be rescued by exogenous NRG-1. Down-regulation of expression Materials and Methods and activity of erbB2, a member of the NRG-1 receptor complex, leads Clonal Analysis to Study NRG’s Role in the Initial Establishment of to the transformation of radial glial cells into astrocytes.
    [Show full text]
  • Chapter 8 Nervous System
    Chapter 8 Nervous System I. Functions A. Sensory Input – stimuli interpreted as touch, taste, temperature, smell, sound, blood pressure, and body position. B. Integration – CNS processes sensory input and initiates responses categorizing into immediate response, memory, or ignore C. Homeostasis – maintains through sensory input and integration by stimulating or inhibiting other systems D. Mental Activity – consciousness, memory, thinking E. Control of Muscles & Glands – controls skeletal muscle and helps control/regulate smooth muscle, cardiac muscle, and glands II. Divisions of the Nervous system – 2 anatomical/main divisions A. CNS (Central Nervous System) – consists of the brain and spinal cord B. PNS (Peripheral Nervous System) – consists of ganglia and nerves outside the brain and spinal cord – has 2 subdivisions 1. Sensory Division (Afferent) – conducts action potentials from PNS toward the CNS (by way of the sensory neurons) for evaluation 2. Motor Division (Efferent) – conducts action potentials from CNS toward the PNS (by way of the motor neurons) creating a response from an effector organ – has 2 subdivisions a. Somatic Motor System – controls skeletal muscle only b. Autonomic System – controls/effects smooth muscle, cardiac muscle, and glands – 2 branches • Sympathetic – accelerator “fight or flight” • Parasympathetic – brake “resting and digesting” * 4 Types of Effector Organs: skeletal muscle, smooth muscle, cardiac muscle, and glands. III. Cells of the Nervous System A. Neurons – receive stimuli and transmit action potentials
    [Show full text]
  • Neuron Morphology Influences Axon Initial Segment Plasticity1,2,3
    New Research Neuronal Excitability Neuron Morphology Influences Axon Initial Segment Plasticity1,2,3 Allan T. Gulledge1 and Jaime J. Bravo2 DOI:http://dx.doi.org/10.1523/ENEURO.0085-15.2016 1Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03756, and 2Thayer School of Engineering at Dartmouth, Hanover, New Hampshire 03755 Visual Abstract In most vertebrate neurons, action potentials are initiated in the axon initial segment (AIS), a specialized region of the axon containing a high density of voltage-gated sodium and potassium channels. It has recently been proposed that neurons use plasticity of AIS length and/or location to regulate their intrinsic excitability. Here we quantify the impact of neuron morphology on AIS plasticity using computational models of simplified and realistic somatodendritic morphologies. In small neurons (e.g., den- tate granule neurons), excitability was highest when the AIS was of intermediate length and located adjacent to the soma. Conversely, neu- rons having larger dendritic trees (e.g., pyramidal neurons) were most excitable when the AIS was longer and/or located away from the soma. For any given somatodendritic morphology, increasing dendritic mem- brane capacitance and/or conductance favored a longer and more distally located AIS. Overall, changes to AIS length, with corresponding changes in total sodium conductance, were far more effective in regulating neuron excitability than were changes in AIS location, while dendritic capacitance had a larger impact on AIS performance than did dendritic conductance. The somatodendritic influence on AIS performance reflects modest soma- to-AIS voltage attenuation combined with neuron size-dependent changes in AIS input resistance, effective membrane time constant, and isolation from somatodendritic capacitance.
    [Show full text]
  • How Does an Axon Grow?
    Downloaded from genesdev.cshlp.org on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW How does an axon grow? Jeffrey L. Goldberg1 Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305, USA How do axons grow during development, and why do cisions to advance, retract, pause, or turn (Fig. 1). All of they fail to regrow when injured? In the complicated these are potential regulatory sites that could control a mesh of our nervous system, the axon is the information neuron’s ability to elongate or regenerate its axon. superhighway, carrying all of the data we use to sense our environment and carry out behaviors. To wire up our Production of the building blocks, nervous system properly, neurons must elongate their both membrane and cytoplasmic axons during development to reach their targets. This is no simple task, however. The complex morphology of Rapid axon growth requires rapid manufacture and sup- axons and dendrites puts neurons among the most intri- ply of cytoplasm and membrane. Where are the lipid and cate and beautiful cells in the body. Knowledge of how protein building blocks made? It was known from classic neurons extend axons and dendrites, elongate at a par- experiments that axons cut off from the cell bodies of ticular rate, and stop growing at the proper time is criti- adult sensory neurons continue to elongate in culture cal to understanding the development of our nervous (Shaw and Bray 1977), but evidence for local production system, yet the regulation of these processes is poorly of membrane and cytoplasmic elements went lacking for understood.
    [Show full text]
  • Regulation of Myelin Structure and Conduction Velocity by Perinodal Astrocytes
    Correction NEUROSCIENCE Correction for “Regulation of myelin structure and conduc- tion velocity by perinodal astrocytes,” by Dipankar J. Dutta, Dong Ho Woo, Philip R. Lee, Sinisa Pajevic, Olena Bukalo, William C. Huffman, Hiroaki Wake, Peter J. Basser, Shahriar SheikhBahaei, Vanja Lazarevic, Jeffrey C. Smith, and R. Douglas Fields, which was first published October 29, 2018; 10.1073/ pnas.1811013115 (Proc. Natl. Acad. Sci. U.S.A. 115,11832–11837). The authors note that the following statement should be added to the Acknowledgments: “We acknowledge Dr. Hae Ung Lee for preliminary experiments that informed the ultimate experimental approach.” Published under the PNAS license. Published online June 10, 2019. www.pnas.org/cgi/doi/10.1073/pnas.1908361116 12574 | PNAS | June 18, 2019 | vol. 116 | no. 25 www.pnas.org Downloaded by guest on October 2, 2021 Regulation of myelin structure and conduction velocity by perinodal astrocytes Dipankar J. Duttaa,b, Dong Ho Wooa, Philip R. Leea, Sinisa Pajevicc, Olena Bukaloa, William C. Huffmana, Hiroaki Wakea, Peter J. Basserd, Shahriar SheikhBahaeie, Vanja Lazarevicf, Jeffrey C. Smithe, and R. Douglas Fieldsa,1 aSection on Nervous System Development and Plasticity, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892; bThe Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817; cMathematical and Statistical Computing Laboratory, Office of Intramural Research, Center for Information
    [Show full text]
  • NEURAL CONNECTIONS: Some You Use, Some You Lose
    NEURAL CONNECTIONS: Some You Use, Some You Lose by JOHN T. BRUER SOURCE: Phi Delta Kappan 81 no4 264-77 D 1999 . The magazine publisher is the copyright holder of this article and it is reproduced with permission. Further reproduction of this article in violation of the copyright is prohibited JOHN T. BRUER is president of the James S. McDonnell Foundation, St. Louis. This article is adapted from his new book, The Myth of the First Three Years (Free Press, 1999), and is reprinted by arrangement with The Free Press, a division of Simon Schuster Inc. ©1999, John T. Bruer . OVER 20 YEARS AGO, neuroscientists discovered that humans and other animals experience a rapid increase in brain connectivity -- an exuberant burst of synapse formation -- early in development. They have studied this process most carefully in the brain's outer layer, or cortex, which is essentially our gray matter. In these studies, neuroscientists have documented that over our life spans the number of synapses per unit area or unit volume of cortical tissue changes, as does the number of synapses per neuron. Neuroscientists refer to the number of synapses per unit of cortical tissue as the brain's synaptic density. Over our lifetimes, our brain's synaptic density changes in an interesting, patterned way. This pattern of synaptic change and what it might mean is the first neurobiological strand of the Myth of the First Three Years. (The second strand of the Myth deals with the notion of critical periods, and the third takes up the matter of enriched, or complex, environments.) Popular discussions of the new brain science trade heavily on what happens to synapses during infancy and childhood.
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Endogenous Radial Glial Cells Support Regenerating Axons After Spinal
    Cellular, molecular, and developmental neuroscience 871 Endogenous radial glial cells support regenerating axons after spinal cord transection Hiroshi Nomuraa, Howard Kimb, Andrea Mothea, Tasneem Zahirb, Iris Kulbatskia, Cindi M. Morsheadc, Molly S. Shoichetb and Charles H. Tatora During the development of central nervous system, radial NeuroReport 21:871–876 c 2010 Wolters Kluwer Health | glial cells support target-specific neuronal migration. Lippincott Williams & Wilkins. We recently reported that after implantation of chitosan NeuroReport 2010, 21:871–876 channels with complete spinal cord transection, the tissue bridging the spinal cord stumps contained axons and radial Keywords: channel implantation, chitosan, radial glial cell, spinal cord injury, spinal cord transection glial cells. The purpose of this study was to clarify the role of the radial glial cells in the tissue bridges. Chitosan aToronto Western Research Institute, Toronto Western Hospital, bDepartment of Chemical Engineering and Applied Chemistry and cDepartment of Surgery and channels were implanted in rats with thoracic spinal Institute of Medical Sciences, University of Toronto, Terrence Donnelly Centre for cord transection. After 14 weeks, all animals had tissue Cellular and Biomolecular Research, Toronto, Ontario, Canada bridges in the channels that contained many radial glial Correspondence to Charles H. Tator, MD, PhD, Toronto Western Research cells in longitudinal arrangement, some of which were Institute, Toronto Western Hospital, Room 12-423, McLaughlin Wing, 399 Bathurst Street, Toronto, Ontario M5T 2S8, Canada in contact with axons in the bridges. We suggest that Tel: + 1 416 603 5889; fax: + 1 416 603 5298; e-mail:[email protected] radial glial cells can guide regenerating axons across Received 25 May 2010 accepted 25 June 2010 the bridge in the channel after spinal cord transection.
    [Show full text]
  • Extracellular Matrix: Functions in the Nervous System
    Downloaded from http://cshperspectives.cshlp.org/ on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press Extracellular Matrix: Functions in the Nervous System Claudia S. Barros, Santos J. Franco, and Ulrich Mu¨ller The Scripps Research Institute, Department of Cell Biology, Dorris Neuroscience Center, La Jolla, California 92037 Correspondence: [email protected] An astonishing number of extracellular matrix glycoproteins are expressed in dynamic patterns in the developing and adult nervous system. Neural stem cells, neurons, and glia express receptors that mediate interactions with specific extracellular matrix molecules. Functional studies in vitro and genetic studies in mice have provided evidence that the extra- cellular matrix affects virtually all aspects of nervous system development and function. Here we will summarize recent findings that have shed light on the specific functions of defined extracellular matrix molecules on such diverse processes as neural stem cell differentiation, neuronal migration, the formation of axonal tracts, and the maturation and function of syn- apses in the peripheral and central nervous system. xtracellular matrix (ECM) glycoproteins are NEURAL STEM CELL BEHAVIOR AND Ewidely expressed in the developing and adult NEURONAL MIGRATION nervous system. Tremendous progress has been made in defining the roles of specific ECM com- NSCs give rise to neurons and glia, and the ponents in controlling the behavior of neurons ECM provides a microenvironment that mod- and glia (Sanes 1989; Reichardt and Tomaselli ulates NSC behavior (Perris and Perissinotto 1991; Venstrom and Reichardt 1993; Milner 2000; Sobeih and Corfas 2002; Zimmermann and Campbell 2002; Nakamoto et al. 2004). and Dours-Zimmermann 2008). Radial glial Here, we will provide an overview of ECM func- cells (RGCs) of the developing central nervous tions in the nervous system, emphasizing recent system (CNS) are a well-studied class of NSCs findings that have shed light on the mechanisms (Fig.
    [Show full text]
  • New Approaches to Analyse Axon- Oligodendrocyte Communication In
    Neuroforum 2017; 23(4): A175–A181 Tim Czopka* and Franziska Auer New Approaches to Analyse Axon- Oligodendrocyte Communication in vivo https://doi.org/10.1515/nf-2017-A010 the temporal timing, with which signals are exchanged between neurons. Abstract: A major challenge for understanding our nerv- The regions in which axons exchange information ous system is to elucidate how its constituting cells coordi- between different brain areas are called the ‘white mat- nate each other to form and maintain a functional organ. ter’ (the grey matter being the areas where neuronal cell The interaction between neurons and oligodendrocytes bodies reside). White matter appears white due to the represents a unique cellular entity. Oligodendrocytes mye- presence of myelin, a fatty coating that surrounds most ax- linate axons by tightly ensheathing them. Myelination reg- ons. Myelin is an evolutionary acquisition of vertebrates, ulates speed of signal transduction, thus communication which electrically insulates axons and enables rapid between neurons, and supports long-term axonal health. and energy efficient signal transmission. It is likely that Despite their importance, we still have large gaps in our these properties have in fact enabled the evolution of our understanding of the mechanisms underlying myelinated complex nervous system with its high cell number. In the axon formation, remodelling and repair. Zebrafish repre- central nervous system (CNS), myelin is produced by spe- sent an increasingly popular model organism, particular- cialised glial cells, the Oligodendrocytes. Genetic defects ly due to their suitability for live cell imaging and genetic that perturb formation or maintenance of myelin (e.g. in manipulation. Here, we provide an overview about this Leukodystrophies) lead to severe motoric and cognitive research area, describe how zebrafish have helped under- symptoms.
    [Show full text]
  • 11 Introduction to the Nervous System and Nervous Tissue
    11 Introduction to the Nervous System and Nervous Tissue ou can’t turn on the television or radio, much less go online, without seeing some- 11.1 Overview of the Nervous thing to remind you of the nervous system. From advertisements for medications System 381 Yto treat depression and other psychiatric conditions to stories about celebrities and 11.2 Nervous Tissue 384 their battles with illegal drugs, information about the nervous system is everywhere in 11.3 Electrophysiology our popular culture. And there is good reason for this—the nervous system controls our of Neurons 393 perception and experience of the world. In addition, it directs voluntary movement, and 11.4 Neuronal Synapses 406 is the seat of our consciousness, personality, and learning and memory. Along with the 11.5 Neurotransmitters 413 endocrine system, the nervous system regulates many aspects of homeostasis, including 11.6 Functional Groups respiratory rate, blood pressure, body temperature, the sleep/wake cycle, and blood pH. of Neurons 417 In this chapter we introduce the multitasking nervous system and its basic functions and divisions. We then examine the structure and physiology of the main tissue of the nervous system: nervous tissue. As you read, notice that many of the same principles you discovered in the muscle tissue chapter (see Chapter 10) apply here as well. MODULE 11.1 Overview of the Nervous System Learning Outcomes 1. Describe the major functions of the nervous system. 2. Describe the structures and basic functions of each organ of the central and peripheral nervous systems. 3. Explain the major differences between the two functional divisions of the peripheral nervous system.
    [Show full text]