New Dinoflagellate Cyst and Acritarch Taxa from the Pliocene and Pleistocene of the Eastern North Atlantic (DSDP Site 610)

Total Page:16

File Type:pdf, Size:1020Kb

New Dinoflagellate Cyst and Acritarch Taxa from the Pliocene and Pleistocene of the Eastern North Atlantic (DSDP Site 610) Journal of Systematic Palaeontology 6 (1): 101–117 Issued 22 February 2008 doi:10.1017/S1477201907002167 Printed in the United Kingdom C The Natural History Museum New dinoflagellate cyst and acritarch taxa from the Pliocene and Pleistocene of the eastern North Atlantic (DSDP Site 610) Stijn De Schepper∗ Cambridge Quaternary, Department of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, United Kingdom Martin J. Head† Department of Earth Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario L2S 3A1, Canada SYNOPSIS A palynological study of Pliocene and Pleistocene deposits from DSDP Hole 610A in the eastern North Atlantic has revealed the presence of several new organic-walled dinoflagellate cyst taxa. Impagidinium cantabrigiense sp. nov. first appeared in the latest Pliocene, within an inter- val characterised by a paucity of new dinoflagellate cyst species. Operculodinium? eirikianum var. crebrum var. nov. is mostly restricted to a narrow interval near the Mammoth Subchron within the Plio- cene (Piacenzian Stage) and may be a morphological adaptation to the changing climate at that time. An unusual morphotype of Melitasphaeridium choanophorum (Deflandre & Cookson, 1955) Harland & Hill, 1979 characterised by a perforated cyst wall is also documented. In addition, the stratigraphic utility of small acritarchs in the late Cenozoic of the northern North Atlantic region is emphasised and three stratigraphically restricted acritarchs Cymatiosphaera latisepta sp. nov., Lavradosphaera crista gen. et sp. nov. and Lavradosphaera lucifer gen. et sp. nov. are formally described. KEY WORDS taxonomy, palynology, marine, Quaternary, Neogene Contents Introduction 102 DSDP Hole 610A 102 Materials and methods 103 Samples 103 Methods 103 Repository 103 Systematic palaeontology 103 Dinoflagellate cysts 103 Division Dinoflagellata (Butschli,¨ 1885) Fensome et al., 1993 103 Subdivision Dinokaryota Fensome et al., 1993 103 Class Dinophyceae Pascher, 1914 103 Subclass Peridiniphycidae Fensome et al., 1993 103 Order Gonyaulacales Taylor, 1980 103 Suborder Gonyaulacineae (Autonym) 103 Family Gonyaulacaceae Lindemann, 1928 103 Subfamily Cribroperidinioideae Fensome et al., 1993 103 Genus Operculodinium Wall, 1967 emend. Matsuoka et al., 1997 103 Operculodinium? eirikianum Head et al., 1989b emend. Head, 1997 103 Operculodinium? eirikianum var. crebrum varietas nov. 103 ∗ Present address: Fachbereich-5, Geowissenschaften, Universitat¨ Bremen, Postfach 330 440, D-28334, Germany. E-mail: sdeschepper@uni-bremen. † de. E-mail: [email protected] 102 S. De Schepper and M. J. Head Subfamily Gonyaulacoideae (Autonym) 106 Genus Impagidinium Stover & Evitt, 1978 106 Impagidinium cantabrigiense sp. nov. 106 Subfamily uncertain 107 Genus Melitasphaeridium Harland & Hill, 1979 107 Melitasphaeridium choanophorum (Deflandre & Cookson, 1955) Harland & Hill, 1979 var. A 107 Acritarchs 109 Genus Cymatiosphaera Wetzel, 1933 ex Deflandre, 1954 109 Cymatiosphaera latisepta sp. nov. 109 Genus Lavradosphaera gen. nov. 111 Lavradosphaera crista gen. et sp. nov. 111 Lavradosphaera lucifer gen. et sp. nov. 113 Discussion 113 Acknowledgements 115 References 115 Introduction The lithology is fundamentally pelagic, comprising cal- careous nannofossil ooze, calcareous mud and calcareous The taxonomy of dinoflagellate cysts for the Pliocene and nannofossil ooze containing biogenic silica. Two litholo- Pleistocene has undergone progressive refinement in recent gical units have been recognised at Site 610. Unit I (0– years (e.g. Versteegh & Zevenboom 1995; Head 1996, 1997, 135 mbsf, 0–2.7 Ma) consists of interbedded calcareous 2003a; Head & Westphal 1999; Head & Norris 2003; De mud and foraminiferal–nannofossil ooze of Quaternary and Schepper et al. 2004; Head et al. 2004). Acritarch tax- Middle Pliocene (Piacenzian) age. Unit II is represen- onomy is less well developed for the Cenozoic, although the ted by two subunits in Hole 610A. Subunit IIA (135– biostratigraphical value of small acritarchs in the Pliocene 165 mbsf; 2.7–3.5 Ma) consists of white siliceous nanno- and Pleistocene is becoming increasingly recognised, espe- fossil ooze of Middle Pliocene age. Only the upper part cially for the higher latitudes of the North Atlantic (e.g. de of Subunit IIB (165–201 mbsf; 3.5–4.0 Ma) is represen- Vernal & Mudie 1989a,b; Head 2003b; Head & Norris 2003). ted in Hole 610A and consists of white to very light grey The present study describes three new dinoflagellate cyst taxa and three new acritarch species from Deep Sea Drilling Project (DSDP) Hole 610A, drilled in the sub- 80˚ polar eastern North Atlantic. It highlights, in particular, the Latitude Longitude DSDP 610A 53˚13’ N 18˚53’ W biostratigraphical value of small acritarchs in the higher lat- DSDP 603C 35˚30’ N 70˚2’ W itudes of the North Atlantic and adjacent seas. The study is ODP 642 67˚13’ N 2˚56’ E part of a larger investigation into the palynology of DSDP ODP 643 67˚43’ N 1˚2’ E ODP 644 66˚41’ N 4˚35’ E Hole 610A (De Schepper 2006). This hole was chosen for ODP 645 70˚27’ N 64˚39’ W ODP 646 58˚13’ N 48˚22’ W the completeness of its sedimentary record, relatively high ODP 963 37˚2’ N 13˚11’ E Baffin Bay sedimentation rates and independent age control (Shipboard Norwegian- Scientific Party 1987; Kleiven et al. 2002). 645 Greenland Sea 643 642 644 DSDP Hole 610A 60˚ Labrador Sea ◦ ◦ DSDP Hole 610A (53 13.297 N, 18 53.213 W; water depth, 646 2417 m) is located approximately 700 km due west of Ireland on the Feni Drift at the south-western edge of the Rockall 610A Trough (Fig. 1). The hole was drilled in 1983 on the crest of North Atlantic Ocean a sediment wave on the Feni Drift, as part of DSDP Leg 94. This major sediment drift is nearly 600 km in length, up to 40˚ 603C 700–1000 m thick and is characterised by rapid sedimenta- 963 tion controlled by bottom currents. It has been accumulating since Oligocene or Miocene time (Shipboard Scientific Party -60˚ -30˚ 0˚ 1987) or possibly as early as the Eocene (Kidd & Hill 1987). DSDP Hole 610A was drilled to a total depth of 201 m Figure 1 Location of Deep Sea Drilling Project (DSDP) Hole 610A in below sea floor (mbsf) and terminated in the Lower Plio- the eastern North Atlantic Ocean and location of other DSDP and cene at about 4.0 Ma (De Schepper 2006; unpublished data). Ocean Drilling Program (ODP) sites mentioned in the text. New Pliocene and Pleistocene dinoflagellates and acritarchs 103 nannofossil ooze of Middle Pliocene and Early Pliocene scope slides were scanned along non-overlapping traverses (Zanclean) age (Shipboard Scientific Party 1987, based on under a 40× objective and acritarchs and dinoflagellate cysts our new time scale). were counted until at least 300 dinoflagellate cysts had been This hole was chosen specifically for its excellent core enumerated (Fig. 2). After reaching this number, the re- recovery (95%), absence of hiatuses and high sedimentation mainder of the slide was searched for rare species using rates (Shipboard Scientific Party 1987). The accumulation a20× objective. Detailed morphological analysis of dino- rate during the Pliocene and Quaternary is high and fairly flagellate cysts and small acritarch species was undertaken constant, with rates approximating 5 cm/kyr (Shipboard Sci- using a 100× objective. entific Party 1987). Moreover, Hole 610A has detailed and Most photomicrographs were taken on a Leica DMR independent age control based on magnetostratigraphy for microscope with a Leica DC300 or DFC490 digital camera. the entire section (Clement & Robinson 1987) and marine Selected photomicrographs were taken on a Zeiss Axioplan isotope stratigraphy for the time interval between 3.6 and 2 microscope with a digital MRc5 Zeiss camera at the Pa- 2.4 Ma (Kleiven et al. 2002). Baldauf et al. (1987) combined laeontology Research Unit of Ghent University, Belgium. the available palaeontological data (nannofossils, planktonic Scanning electron microscopy was also performed there on foraminifera and diatoms) with the magnetostratigraphy for selected samples to elucidate the taxonomy of several small the core. This interpretation has largely been followed, except acritarchs and dinoflagellate cysts. Residue was mounted on for the lower part of the core, where evidence from calcareous a circular glass slide, which was attached to a metal stub nannofossils, dinoflagellate cysts and a reappraisal of the using carbon stickers. Stubs were coated with gold using a magnetostratigraphical datums has led to the construction of Bal-Tec MED 010 Planar-magnetron Sputtering Device. The a new age model (De Schepper 2006; unpublished data). This distance between the stub surface and the gold sputtering age model is adopted in the present study, where it provides head was set at 5.2 cm. A gold coating of about 15 nm was an interpolated age for every biostratigraphical datum. applied. The scanning electron microscope (SEM) used was a JEOL 6400. Pictures were acquired digitally using Noran Vantage software. The ATNTS2004 timescale of Lourens et al. (2004) is Materials and methods used throughout. Samples Repository A total of 102 samples were analysed for biostratigraphy All microscope slides containing holotypes and other figured from the Lower Pliocene through lowermost Middle Pleis- specimens are housed in the Invertebrate Section of the De- tocene of DSDP Hole 610A, covering ca. 170 m (199.11– partment of Palaeobiology, Royal Ontario Museum, Toronto, 28.71 mbsf). One sample from each section of core was taken Ontario, under the catalogue numbers ROMP 57983–57996. between sections 610A-21-6 and 610A-4-1, providing an av- erage sampling interval of ca. 1.5 m. Additional samples were taken for taxonomic purposes at selected intervals in the lower part of the hole. Systematic palaeontology Methods Dinoflagellate cysts Samples of ca. 25–30 cm3 volume were cleaned with a knife Division DINOFLAGELLATA (Butschli,¨ 1885) to remove any modern microbial growth and other contam- Fensome et al., 1993 ination and oven dried at ca. 50◦C. The sediment was then Subdivision DINOKARYOTA Fensome et al., 1993 weighed and one or more Lycopodium clavatum tablets were Class DINOPHYCEAE Pascher, 1914 added to each sample to determine palynomorph concentra- tions.
Recommended publications
  • Cambrian Phytoplankton of the Brunovistulicum – Taxonomy and Biostratigraphy
    MONIKA JACHOWICZ-ZDANOWSKA Cambrian phytoplankton of the Brunovistulicum – taxonomy and biostratigraphy Polish Geological Institute Special Papers,28 WARSZAWA 2013 CONTENTS Introduction...........................................................6 Geological setting and lithostratigraphy.............................................8 Summary of Cambrian chronostratigraphy and acritarch biostratigraphy ...........................13 Review of previous palynological studies ...........................................17 Applied techniques and material studied............................................18 Biostratigraphy ........................................................23 BAMA I – Pulvinosphaeridium antiquum–Pseudotasmanites Assemblage Zone ....................25 BAMA II – Asteridium tornatum–Comasphaeridium velvetum Assemblage Zone ...................27 BAMA III – Ichnosphaera flexuosa–Comasphaeridium molliculum Assemblage Zone – Acme Zone .........30 BAMA IV – Skiagia–Eklundia campanula Assemblage Zone ..............................39 BAMA V – Skiagia–Eklundia varia Assemblage Zone .................................39 BAMA VI – Volkovia dentifera–Liepaina plana Assemblage Zone (Moczyd³owska, 1991) ..............40 BAMA VII – Ammonidium bellulum–Ammonidium notatum Assemblage Zone ....................40 BAMA VIII – Turrisphaeridium semireticulatum Assemblage Zone – Acme Zone...................41 BAMA IX – Adara alea–Multiplicisphaeridium llynense Assemblage Zone – Acme Zone...............42 Regional significance of the biostratigraphic
    [Show full text]
  • Molecular Data and the Evolutionary History of Dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Un
    Molecular data and the evolutionary history of dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Universitat Heidelberg, 1993 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Botany We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA November 2003 © Juan Fernando Saldarriaga Echavarria, 2003 ABSTRACT New sequences of ribosomal and protein genes were combined with available morphological and paleontological data to produce a phylogenetic framework for dinoflagellates. The evolutionary history of some of the major morphological features of the group was then investigated in the light of that framework. Phylogenetic trees of dinoflagellates based on the small subunit ribosomal RNA gene (SSU) are generally poorly resolved but include many well- supported clades, and while combined analyses of SSU and LSU (large subunit ribosomal RNA) improve the support for several nodes, they are still generally unsatisfactory. Protein-gene based trees lack the degree of species representation necessary for meaningful in-group phylogenetic analyses, but do provide important insights to the phylogenetic position of dinoflagellates as a whole and on the identity of their close relatives. Molecular data agree with paleontology in suggesting an early evolutionary radiation of the group, but whereas paleontological data include only taxa with fossilizable cysts, the new data examined here establish that this radiation event included all dinokaryotic lineages, including athecate forms. Plastids were lost and replaced many times in dinoflagellates, a situation entirely unique for this group. Histones could well have been lost earlier in the lineage than previously assumed.
    [Show full text]
  • Geological-Geomorphological and Paleontological Heritage in the Algarve (Portugal) Applied to Geotourism and Geoeducation
    land Article Geological-Geomorphological and Paleontological Heritage in the Algarve (Portugal) Applied to Geotourism and Geoeducation Antonio Martínez-Graña 1,* , Paulo Legoinha 2 , José Luis Goy 1, José Angel González-Delgado 1, Ildefonso Armenteros 1, Cristino Dabrio 3 and Caridad Zazo 4 1 Department of Geology, Faculty of Sciences, University of Salamanca, 37008 Salamanca, Spain; [email protected] (J.L.G.); [email protected] (J.A.G.-D.); [email protected] (I.A.) 2 GeoBioTec, Department of Earth Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, 2829-516 Almada, Portugal; [email protected] 3 Department of Stratigraphy, Faculty of Geology, Complutense University of Madrid, 28040 Madrid, Spain; [email protected] 4 Department of Geology, Museo Nacional de Ciencias Naturales, 28006 Madrid, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-923294496 Abstract: A 3D virtual geological route on Digital Earth of the geological-geomorphological and paleontological heritage in the Algarve (Portugal) is presented, assessing the geological heritage of nine representative geosites. Eighteen quantitative parameters are used, weighing the scientific, didactic and cultural tourist interest of each site. A virtual route has been created in Google Earth, with overlaid georeferenced cartographies, as a field guide for students to participate and improve their learning. This free application allows loading thematic georeferenced information that has Citation: Martínez-Graña, A.; previously been evaluated by means of a series of parameters for identifying the importance and Legoinha, P.; Goy, J.L.; interest of a geosite (scientific, educational and/or tourist). The virtual route allows travelling from González-Delgado, J.A.; Armenteros, one geosite to another, interacting in real time from portable devices (e.g., smartphone and tablets), I.; Dabrio, C.; Zazo, C.
    [Show full text]
  • Sponges Cnidarians Chordates Brachiopods Annelids Molluscs Ediacaran Arthropods 635 Cambrian PALEOZOIC PROTEROZOIC 605 Time (Mil
    © 2014 Pearson Education, Inc. 1 Sponges Cnidarians Echinoderms Chordates Brachiopods Annelids Molluscs Arthropods PROTEROZOIC PALEOZOIC Ediacaran Cambrian 635 605 575 545 515 485 0 Time (millions of years age) © 2014 Pearson Education, Inc. 2 Food particles in mucus Choanocyte Collar Flagellum Choanocyte Phagocytosis of Amoebocyte food particles Pores Spicules Water flow Amoebocytes Azure vase sponge (Callyspongia plicifera) © 2014 Pearson Education, Inc. 3 (a) Hydrozoa (b) Scyphozoa (c) Anthozoa © 2014 Pearson Education, Inc. 4 15 µm 75 µm (a) Valeria (800 mya): (b) Spiny acritarch roughly spherical, no (575 mya): about five structural defenses, times larger than soft-bodied Valeria and covered in hard spines © 2014 Pearson Education, Inc. 5 (a) Radial symmetry (b) Bilateral symmetry © 2014 Pearson Education, Inc. 6 Body cavity Body covering (from ectoderm) Tissue layer lining body cavity and suspending Digestive tract internal organs (from endoderm) (from mesoderm) © 2014 Pearson Education, Inc. 7 Porifera Metazoa Ctenophora ANCESTRAL Eumetazoa PROTIST Cnidaria Deuterostomia Hemichordata 770 million Echinodermata years ago 680 million Chordata years ago Lophotrochozoa Lophotrochozoa Platyhelminthes Bilateria Rotifera Ectoprocta Brachiopoda 670 million years ago Mollusca Ecdysozoa Annelida Nematoda Arthropoda © 2014 Pearson Education, Inc. 8 © 2014 Pearson Education, Inc. 9 Notochord Dorsal, hollow nerve cord Muscle segments Mouth Anus Post-anal tail Pharyngeal slits or clefts © 2014 Pearson Education, Inc. 10 (a) Lancelet (b) Tunicate
    [Show full text]
  • The Gelasian Stage (Upper Pliocene): a New Unit of the Global Standard Chronostratigraphic Scale
    82 by D. Rio1, R. Sprovieri2, D. Castradori3, and E. Di Stefano2 The Gelasian Stage (Upper Pliocene): A new unit of the global standard chronostratigraphic scale 1 Department of Geology, Paleontology and Geophysics , University of Padova, Italy 2 Department of Geology and Geodesy, University of Palermo, Italy 3 AGIP, Laboratori Bolgiano, via Maritano 26, 20097 San Donato M., Italy The Gelasian has been formally accepted as third (and Of course, this consideration alone does not imply that a new uppermost) subdivision of the Pliocene Series, thus rep- stage should be defined to represent the discovered gap. However, the top of the Piacenzian stratotype falls in a critical point of the evo- resenting the Upper Pliocene. The Global Standard lution of Earth climatic system (i.e. close to the final build-up of the Stratotype-section and Point for the Gelasian is located Northern Hemisphere Glaciation), which is characterized by plenty in the Monte S. Nicola section (near Gela, Sicily, Italy). of signals (magnetostratigraphic, biostratigraphic, etc; see further on) with a worldwide correlation potential. Therefore, Rio et al. (1991, 1994) argued against the practice of extending the Piacenzian Stage up to the Pliocene-Pleistocene boundary and proposed the Introduction introduction of a new stage (initially “unnamed” in Rio et al., 1991), the Gelasian, in the Global Standard Chronostratigraphic Scale. This short report announces the formal ratification of the Gelasian Stage as the uppermost subdivision of the Pliocene Series, which is now subdivided into three stages (Lower, Middle, and Upper). Fur- The Gelasian Stage thermore, the Global Standard Stratotype-section and Point (GSSP) of the Gelasian is briefly presented and discussed.
    [Show full text]
  • GEOLOGIC TIME SCALE V
    GSA GEOLOGIC TIME SCALE v. 4.0 CENOZOIC MESOZOIC PALEOZOIC PRECAMBRIAN MAGNETIC MAGNETIC BDY. AGE POLARITY PICKS AGE POLARITY PICKS AGE PICKS AGE . N PERIOD EPOCH AGE PERIOD EPOCH AGE PERIOD EPOCH AGE EON ERA PERIOD AGES (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) HIST HIST. ANOM. (Ma) ANOM. CHRON. CHRO HOLOCENE 1 C1 QUATER- 0.01 30 C30 66.0 541 CALABRIAN NARY PLEISTOCENE* 1.8 31 C31 MAASTRICHTIAN 252 2 C2 GELASIAN 70 CHANGHSINGIAN EDIACARAN 2.6 Lopin- 254 32 C32 72.1 635 2A C2A PIACENZIAN WUCHIAPINGIAN PLIOCENE 3.6 gian 33 260 260 3 ZANCLEAN CAPITANIAN NEOPRO- 5 C3 CAMPANIAN Guada- 265 750 CRYOGENIAN 5.3 80 C33 WORDIAN TEROZOIC 3A MESSINIAN LATE lupian 269 C3A 83.6 ROADIAN 272 850 7.2 SANTONIAN 4 KUNGURIAN C4 86.3 279 TONIAN CONIACIAN 280 4A Cisura- C4A TORTONIAN 90 89.8 1000 1000 PERMIAN ARTINSKIAN 10 5 TURONIAN lian C5 93.9 290 SAKMARIAN STENIAN 11.6 CENOMANIAN 296 SERRAVALLIAN 34 C34 ASSELIAN 299 5A 100 100 300 GZHELIAN 1200 C5A 13.8 LATE 304 KASIMOVIAN 307 1250 MESOPRO- 15 LANGHIAN ECTASIAN 5B C5B ALBIAN MIDDLE MOSCOVIAN 16.0 TEROZOIC 5C C5C 110 VANIAN 315 PENNSYL- 1400 EARLY 5D C5D MIOCENE 113 320 BASHKIRIAN 323 5E C5E NEOGENE BURDIGALIAN SERPUKHOVIAN 1500 CALYMMIAN 6 C6 APTIAN LATE 20 120 331 6A C6A 20.4 EARLY 1600 M0r 126 6B C6B AQUITANIAN M1 340 MIDDLE VISEAN MISSIS- M3 BARREMIAN SIPPIAN STATHERIAN C6C 23.0 6C 130 M5 CRETACEOUS 131 347 1750 HAUTERIVIAN 7 C7 CARBONIFEROUS EARLY TOURNAISIAN 1800 M10 134 25 7A C7A 359 8 C8 CHATTIAN VALANGINIAN M12 360 140 M14 139 FAMENNIAN OROSIRIAN 9 C9 M16 28.1 M18 BERRIASIAN 2000 PROTEROZOIC 10 C10 LATE
    [Show full text]
  • The Biodiversity of Organic-Walled Eukaryotic Microfossils from the Tonian Visingsö Group, Sweden
    Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences ISSN 1650-6553 Nr 366 The Biodiversity of Organic-Walled Eukaryotic Microfossils from the Tonian Visingsö Group, Sweden Biodiversiteten av eukaryotiska mikrofossil med organiska cellväggar från Visingsö- gruppen (tonian), Sverige Corentin Loron INSTITUTIONEN FÖR GEOVETENSKAPER DEPARTMENT OF EARTH SCIENCES Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences ISSN 1650-6553 Nr 366 The Biodiversity of Organic-Walled Eukaryotic Microfossils from the Tonian Visingsö Group, Sweden Biodiversiteten av eukaryotiska mikrofossil med organiska cellväggar från Visingsö- gruppen (tonian), Sverige Corentin Loron ISSN 1650-6553 Copyright © Corentin Loron Published at Department of Earth Sciences, Uppsala University (www.geo.uu.se), Uppsala, 2016 Abstract The Biodiversity of Organic-Walled Eukaryotic Microfossils from the Tonian Visingsö Group, Sweden Corentin Loron The diversification of unicellular, auto- and heterotrophic protists and the appearance of multicellular microorganisms is recorded in numerous Tonian age successions worldwide, including the Visingsö Group in southern Sweden. The Tonian Period (1000-720 Ma) was a time of changes in the marine environments with increasing oxygenation and a high input of mineral nutrients from the weathering continental margins to shallow shelves, where marine life thrived. This is well documented by the elevated level of biodiversity seen in global microfossil
    [Show full text]
  • Acritarchsa Review
    Biol. Rev. (1993), 68, pp. 475-538 475 Printed in Great Britain ACRITARCHS: A REVIEW B y FRANCINE MARTIN Département de Paléontologie, Institut royal des Sciences naturelles de Belgique, rue Vautier 29, R-1040 B ruxelles, Belgium (Received 21 Ja n u a ry 1993; accepted 23 M arch 1993) CONTENTS I. Introduction 47^ II. How to find, isolate and recognize an acritarch ........ 476 (1) Sampling. ........................................ • 47Ó (2) Preparation .............. 47$ (3) Size and morphology .................................................. 479 (4) Organic wall 4^7 (i) Sporopollenin-like material .......... 487 (ii) Thermal alteration ............ 489 III. Biological affinities. ............. 491 (1) Before and after Evitt (1963) ........... 491 (2) Reassessment of some acritarchs .......... 493 (i) Links with dinoflagellates.............................................................. 494 (ii) Links with prasinophytes ......................................................................... 497 (iii) Enigmatic sphaeromorphs .......... 499 (iv) Acritarchs, euglenoids or single spore-like bodies ? ...... 501 (v) Recent incertae sedis and crustacean eggs........ 501 IV. Reworking and palaeoecology ........... 5° 2 (1) Durable microfossils ............ 502 (2) Life-style of acritarchs ............ 503 V. Acritarchs through geological time .......... 504 (1) Precambrian .............. 5°5 (i) Before acritarchs ............ 5°6 (ii) Appearance of acritarchs ........... 506 (2) Precambrian-Cambrian boundary ......................................................5°9
    [Show full text]
  • Paleogeographic Maps Earth History
    History of the Earth Age AGE Eon Era Period Period Epoch Stage Paleogeographic Maps Earth History (Ma) Era (Ma) Holocene Neogene Quaternary* Pleistocene Calabrian/Gelasian Piacenzian 2.6 Cenozoic Pliocene Zanclean Paleogene Messinian 5.3 L Tortonian 100 Cretaceous Serravallian Miocene M Langhian E Burdigalian Jurassic Neogene Aquitanian 200 23 L Chattian Triassic Oligocene E Rupelian Permian 34 Early Neogene 300 L Priabonian Bartonian Carboniferous Cenozoic M Eocene Lutetian 400 Phanerozoic Devonian E Ypresian Silurian Paleogene L Thanetian 56 PaleozoicOrdovician Mesozoic Paleocene M Selandian 500 E Danian Cambrian 66 Maastrichtian Ediacaran 600 Campanian Late Santonian 700 Coniacian Turonian Cenomanian Late Cretaceous 100 800 Cryogenian Albian 900 Neoproterozoic Tonian Cretaceous Aptian Early 1000 Barremian Hauterivian Valanginian 1100 Stenian Berriasian 146 Tithonian Early Cretaceous 1200 Late Kimmeridgian Oxfordian 161 Callovian Mesozoic 1300 Ectasian Bathonian Middle Bajocian Aalenian 176 1400 Toarcian Jurassic Mesoproterozoic Early Pliensbachian 1500 Sinemurian Hettangian Calymmian 200 Rhaetian 1600 Proterozoic Norian Late 1700 Statherian Carnian 228 1800 Ladinian Late Triassic Triassic Middle Anisian 1900 245 Olenekian Orosirian Early Induan Changhsingian 251 2000 Lopingian Wuchiapingian 260 Capitanian Guadalupian Wordian/Roadian 2100 271 Kungurian Paleoproterozoic Rhyacian Artinskian 2200 Permian Cisuralian Sakmarian Middle Permian 2300 Asselian 299 Late Gzhelian Kasimovian 2400 Siderian Middle Moscovian Penn- sylvanian Early Bashkirian
    [Show full text]
  • Ratification of Subseries/Subepochs As Formal Rank/Units in International Chronostratigraphy
    Communication of IUGS Geological Standards 1 by Marie-Pierre Aubry1, Werner E. Piller2*, Philip L. Gibbard 3, David A. T. Harper4, and Stanley C. Finney5 Ratification of subseries/subepochs as formal rank/units in international chronostratigraphy 1 Department of Earth and Planetary Sciences, Rutgers University, Piscataway, NJ 08873, USA 2 Institute of Earth Sciences, University of Graz, NAWI Graz Geocenter, Heinrichstrasse 26, 8010 Graz, Austria; *Corresponding author: E-mail: [email protected] 3 Scott Polar Research Institute, University of Cambridge, Lensfield Road, Cambridge CB2 1ER, UK 4 Department of Earth Sciences, Durham University, Durham DH1 3LE, UK 5 Department of Geological Sciences, California State University, Long Beach, USA (Received: May 27, 2021; Revised accepted: July 8, 2021) https://doi.org/10.18814/epiiugs/2021/021016 The IUGS Executive Committee has voted unanimously should they remain informal subdivisions of series and epochs in a to ratify the proposal for formal adoption of the five-tiered hierarchy? This dilemma was at the heart of the conflicting posi- chronostratigraphical/geochronological unit divisions tions expressed in Head et al. (2017) and Pearson et al. (2017). A subseries/subepoch within the International Stratigraphic temporary resolution to the situation was recommended, so that sub- Guide as approved by the International Commission on commissions had the freedom to choose between formal and infor- Stratigraphy and forwarded to the IUGS EC on 24 March mal status based on individual preference (Finney and Bown, 2017). 2021**. The subseries/subepochs are now incorporated This led to glaring inconsistency in Cenozoic chronostratigraphy, in that the Subcommission on Quaternary Stratigraphy (SQS) adopted a in a six-tiered chronostratigraphic hierarchy of units that formal status for subseries whereas the subcommissions on Neogene are formally defined by a designated GSSP (Global Stage and Paleogene Stratigraphy (SNS and ISPS) continued to use sub- Stratotype and Point) at the base of designated type stages.
    [Show full text]
  • Palynological and Foraminiferal Biostratigraphy of (Upper Pliocene) Nordland Group Mudstones at Sleipner, Northern North Sea
    Marine and Petroleum Geology 21 (2004) 277–297 www.elsevier.com/locate/marpetgeo Palynological and foraminiferal biostratigraphy of (Upper Pliocene) Nordland Group mudstones at Sleipner, northern North Sea Martin J. Heada,*, James B. Ridingb, Tor Eidvinc, R. Andrew Chadwickb aDepartment of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, UK bBritish Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham NG12 5GG, UK cNorwegian Petroleum Directorate, P.O. Box 600, N-4003 Stavanger, Norway Received 8 September 2003; received in revised form 5 December 2003; accepted 9 December 2003 Abstract The Nordland Group is an important stratigraphical unit within the upper Cenozoic of the northern North Sea. At its base lies the Utsira Sand, a dominantly sandy regional saline aquifer that is currently being utilized for carbon dioxide sequestration from the Sleipner gas and condensate field. A ‘mudstone drape’ immediately overlies the Utsira Sand, forming the caprock for this aquifer. The upper part of the Utsira Sand was recently dated as Early Pliocene, but the precise age of the overlying Nordland Group mudstones has remained uncertain. Dinoflagellate cyst, pollen and spore, foraminiferal and stable isotopic analyses have been performed on these mudstones from a conventional core within the interval 913.10–906.00 m (drilled depth) in Norwegian sector well 15/9-A-11. The samples lie closely above the Utsira Sand. Results give a Gelasian (late Late Pliocene) age for this interval, with a planktonic foraminiferal assemblage at 913.10 m indicating warm climatic conditions and an age between 2.4 and 1.8 Ma. An abundance of the cool-tolerant dinoflagellate cysts Filisphaera filifera and Habibacysta tectata at 906.00 m, along with evidence from pollen and foraminifera, points to deposition during a cool phase of the Gelasian.
    [Show full text]
  • INTERNATIONAL CHRONOSTRATIGRAPHIC CHART International Commission on Stratigraphy V 2020/03
    INTERNATIONAL CHRONOSTRATIGRAPHIC CHART www.stratigraphy.org International Commission on Stratigraphy v 2020/03 numerical numerical numerical numerical Series / Epoch Stage / Age Series / Epoch Stage / Age Series / Epoch Stage / Age GSSP GSSP GSSP GSSP EonothemErathem / Eon System / Era / Period age (Ma) EonothemErathem / Eon System/ Era / Period age (Ma) EonothemErathem / Eon System/ Era / Period age (Ma) Eonothem / EonErathem / Era System / Period GSSA age (Ma) present ~ 145.0 358.9 ±0.4 541.0 ±1.0 U/L Meghalayan 0.0042 Holocene M Northgrippian 0.0082 Tithonian Ediacaran L/E Greenlandian 0.0117 152.1 ±0.9 ~ 635 U/L Upper Famennian Neo- 0.129 Upper Kimmeridgian Cryogenian M Chibanian 157.3 ±1.0 Upper proterozoic ~ 720 0.774 372.2 ±1.6 Pleistocene Calabrian Oxfordian Tonian 1.80 163.5 ±1.0 Frasnian 1000 L/E Callovian Quaternary 166.1 ±1.2 Gelasian 2.58 382.7 ±1.6 Stenian Bathonian 168.3 ±1.3 Piacenzian Middle Bajocian Givetian 1200 Pliocene 3.600 170.3 ±1.4 387.7 ±0.8 Meso- Zanclean Aalenian Middle proterozoic Ectasian 5.333 174.1 ±1.0 Eifelian 1400 Messinian Jurassic 393.3 ±1.2 Calymmian 7.246 Toarcian Devonian Tortonian 182.7 ±0.7 Emsian 1600 11.63 Pliensbachian Statherian Lower 407.6 ±2.6 Serravallian 13.82 190.8 ±1.0 Lower 1800 Miocene Pragian 410.8 ±2.8 Proterozoic Neogene Sinemurian Langhian 15.97 Orosirian 199.3 ±0.3 Lochkovian Paleo- Burdigalian Hettangian proterozoic 2050 20.44 201.3 ±0.2 419.2 ±3.2 Rhyacian Aquitanian Rhaetian Pridoli 23.03 ~ 208.5 423.0 ±2.3 2300 Ludfordian 425.6 ±0.9 Siderian Mesozoic Cenozoic Chattian Ludlow
    [Show full text]