Two-Phase Increase in the Maximum Size of Life Over 3.5 Billion Years Reflects Biological Innovation and Environmental Opportunity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cambrian Phytoplankton of the Brunovistulicum – Taxonomy and Biostratigraphy
MONIKA JACHOWICZ-ZDANOWSKA Cambrian phytoplankton of the Brunovistulicum – taxonomy and biostratigraphy Polish Geological Institute Special Papers,28 WARSZAWA 2013 CONTENTS Introduction...........................................................6 Geological setting and lithostratigraphy.............................................8 Summary of Cambrian chronostratigraphy and acritarch biostratigraphy ...........................13 Review of previous palynological studies ...........................................17 Applied techniques and material studied............................................18 Biostratigraphy ........................................................23 BAMA I – Pulvinosphaeridium antiquum–Pseudotasmanites Assemblage Zone ....................25 BAMA II – Asteridium tornatum–Comasphaeridium velvetum Assemblage Zone ...................27 BAMA III – Ichnosphaera flexuosa–Comasphaeridium molliculum Assemblage Zone – Acme Zone .........30 BAMA IV – Skiagia–Eklundia campanula Assemblage Zone ..............................39 BAMA V – Skiagia–Eklundia varia Assemblage Zone .................................39 BAMA VI – Volkovia dentifera–Liepaina plana Assemblage Zone (Moczyd³owska, 1991) ..............40 BAMA VII – Ammonidium bellulum–Ammonidium notatum Assemblage Zone ....................40 BAMA VIII – Turrisphaeridium semireticulatum Assemblage Zone – Acme Zone...................41 BAMA IX – Adara alea–Multiplicisphaeridium llynense Assemblage Zone – Acme Zone...............42 Regional significance of the biostratigraphic -
Molecular Data and the Evolutionary History of Dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Un
Molecular data and the evolutionary history of dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Universitat Heidelberg, 1993 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Botany We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA November 2003 © Juan Fernando Saldarriaga Echavarria, 2003 ABSTRACT New sequences of ribosomal and protein genes were combined with available morphological and paleontological data to produce a phylogenetic framework for dinoflagellates. The evolutionary history of some of the major morphological features of the group was then investigated in the light of that framework. Phylogenetic trees of dinoflagellates based on the small subunit ribosomal RNA gene (SSU) are generally poorly resolved but include many well- supported clades, and while combined analyses of SSU and LSU (large subunit ribosomal RNA) improve the support for several nodes, they are still generally unsatisfactory. Protein-gene based trees lack the degree of species representation necessary for meaningful in-group phylogenetic analyses, but do provide important insights to the phylogenetic position of dinoflagellates as a whole and on the identity of their close relatives. Molecular data agree with paleontology in suggesting an early evolutionary radiation of the group, but whereas paleontological data include only taxa with fossilizable cysts, the new data examined here establish that this radiation event included all dinokaryotic lineages, including athecate forms. Plastids were lost and replaced many times in dinoflagellates, a situation entirely unique for this group. Histones could well have been lost earlier in the lineage than previously assumed. -
Ediacaran) of Earth – Nature’S Experiments
The Early Animals (Ediacaran) of Earth – Nature’s Experiments Donald Baumgartner Medical Entomologist, Biologist, and Fossil Enthusiast Presentation before Chicago Rocks and Mineral Society May 10, 2014 Illinois Famous for Pennsylvanian Fossils 3 In the Beginning: The Big Bang . Earth formed 4.6 billion years ago Fossil Record Order 95% of higher taxa: Random plant divisions domains & kingdoms Cambrian Atdabanian Fauna Vendian Tommotian Fauna Ediacaran Fauna protists Proterozoic algae McConnell (Baptist)College Pre C - Fossil Order Archaean bacteria Source: Truett Kurt Wise The First Cells . 3.8 billion years ago, oxygen levels in atmosphere and seas were low • Early prokaryotic cells probably were anaerobic • Stromatolites . Divergence separated bacteria from ancestors of archaeans and eukaryotes Stromatolites Dominated the Earth Stromatolites of cyanobacteria ruled the Earth from 3.8 b.y. to 600 m. [2.5 b.y.]. Believed that Earth glaciations are correlated with great demise of stromatolites world-wide. 8 The Oxygen Atmosphere . Cyanobacteria evolved an oxygen-releasing, noncyclic pathway of photosynthesis • Changed Earth’s atmosphere . Increased oxygen favored aerobic respiration Early Multi-Cellular Life Was Born Eosphaera & Kakabekia at 2 b.y in Canada Gunflint Chert 11 Earliest Multi-Cellular Metazoan Life (1) Alga Eukaryote Grypania of MI at 1.85 b.y. MI fossil outcrop 12 Earliest Multi-Cellular Metazoan Life (2) Beads Horodyskia of MT and Aust. at 1.5 b.y. thought to be algae 13 Source: Fedonkin et al. 2007 Rise of Animals Tappania Fungus at 1.5 b.y Described now from China, Russia, Canada, India, & Australia 14 Earliest Multi-Cellular Metazoan Animals (3) Worm-like Parmia of N.E. -
Sponges Cnidarians Chordates Brachiopods Annelids Molluscs Ediacaran Arthropods 635 Cambrian PALEOZOIC PROTEROZOIC 605 Time (Mil
© 2014 Pearson Education, Inc. 1 Sponges Cnidarians Echinoderms Chordates Brachiopods Annelids Molluscs Arthropods PROTEROZOIC PALEOZOIC Ediacaran Cambrian 635 605 575 545 515 485 0 Time (millions of years age) © 2014 Pearson Education, Inc. 2 Food particles in mucus Choanocyte Collar Flagellum Choanocyte Phagocytosis of Amoebocyte food particles Pores Spicules Water flow Amoebocytes Azure vase sponge (Callyspongia plicifera) © 2014 Pearson Education, Inc. 3 (a) Hydrozoa (b) Scyphozoa (c) Anthozoa © 2014 Pearson Education, Inc. 4 15 µm 75 µm (a) Valeria (800 mya): (b) Spiny acritarch roughly spherical, no (575 mya): about five structural defenses, times larger than soft-bodied Valeria and covered in hard spines © 2014 Pearson Education, Inc. 5 (a) Radial symmetry (b) Bilateral symmetry © 2014 Pearson Education, Inc. 6 Body cavity Body covering (from ectoderm) Tissue layer lining body cavity and suspending Digestive tract internal organs (from endoderm) (from mesoderm) © 2014 Pearson Education, Inc. 7 Porifera Metazoa Ctenophora ANCESTRAL Eumetazoa PROTIST Cnidaria Deuterostomia Hemichordata 770 million Echinodermata years ago 680 million Chordata years ago Lophotrochozoa Lophotrochozoa Platyhelminthes Bilateria Rotifera Ectoprocta Brachiopoda 670 million years ago Mollusca Ecdysozoa Annelida Nematoda Arthropoda © 2014 Pearson Education, Inc. 8 © 2014 Pearson Education, Inc. 9 Notochord Dorsal, hollow nerve cord Muscle segments Mouth Anus Post-anal tail Pharyngeal slits or clefts © 2014 Pearson Education, Inc. 10 (a) Lancelet (b) Tunicate -
New Dinoflagellate Cyst and Acritarch Taxa from the Pliocene and Pleistocene of the Eastern North Atlantic (DSDP Site 610)
Journal of Systematic Palaeontology 6 (1): 101–117 Issued 22 February 2008 doi:10.1017/S1477201907002167 Printed in the United Kingdom C The Natural History Museum New dinoflagellate cyst and acritarch taxa from the Pliocene and Pleistocene of the eastern North Atlantic (DSDP Site 610) Stijn De Schepper∗ Cambridge Quaternary, Department of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, United Kingdom Martin J. Head† Department of Earth Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario L2S 3A1, Canada SYNOPSIS A palynological study of Pliocene and Pleistocene deposits from DSDP Hole 610A in the eastern North Atlantic has revealed the presence of several new organic-walled dinoflagellate cyst taxa. Impagidinium cantabrigiense sp. nov. first appeared in the latest Pliocene, within an inter- val characterised by a paucity of new dinoflagellate cyst species. Operculodinium? eirikianum var. crebrum var. nov. is mostly restricted to a narrow interval near the Mammoth Subchron within the Plio- cene (Piacenzian Stage) and may be a morphological adaptation to the changing climate at that time. An unusual morphotype of Melitasphaeridium choanophorum (Deflandre & Cookson, 1955) Harland & Hill, 1979 characterised by a perforated cyst wall is also documented. In addition, the stratigraphic utility of small acritarchs in the late Cenozoic of the northern North Atlantic region is emphasised and three stratigraphically restricted acritarchs Cymatiosphaera latisepta sp. nov., Lavradosphaera crista gen. et sp. nov. -
The Biodiversity of Organic-Walled Eukaryotic Microfossils from the Tonian Visingsö Group, Sweden
Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences ISSN 1650-6553 Nr 366 The Biodiversity of Organic-Walled Eukaryotic Microfossils from the Tonian Visingsö Group, Sweden Biodiversiteten av eukaryotiska mikrofossil med organiska cellväggar från Visingsö- gruppen (tonian), Sverige Corentin Loron INSTITUTIONEN FÖR GEOVETENSKAPER DEPARTMENT OF EARTH SCIENCES Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences ISSN 1650-6553 Nr 366 The Biodiversity of Organic-Walled Eukaryotic Microfossils from the Tonian Visingsö Group, Sweden Biodiversiteten av eukaryotiska mikrofossil med organiska cellväggar från Visingsö- gruppen (tonian), Sverige Corentin Loron ISSN 1650-6553 Copyright © Corentin Loron Published at Department of Earth Sciences, Uppsala University (www.geo.uu.se), Uppsala, 2016 Abstract The Biodiversity of Organic-Walled Eukaryotic Microfossils from the Tonian Visingsö Group, Sweden Corentin Loron The diversification of unicellular, auto- and heterotrophic protists and the appearance of multicellular microorganisms is recorded in numerous Tonian age successions worldwide, including the Visingsö Group in southern Sweden. The Tonian Period (1000-720 Ma) was a time of changes in the marine environments with increasing oxygenation and a high input of mineral nutrients from the weathering continental margins to shallow shelves, where marine life thrived. This is well documented by the elevated level of biodiversity seen in global microfossil -
Acritarchsa Review
Biol. Rev. (1993), 68, pp. 475-538 475 Printed in Great Britain ACRITARCHS: A REVIEW B y FRANCINE MARTIN Département de Paléontologie, Institut royal des Sciences naturelles de Belgique, rue Vautier 29, R-1040 B ruxelles, Belgium (Received 21 Ja n u a ry 1993; accepted 23 M arch 1993) CONTENTS I. Introduction 47^ II. How to find, isolate and recognize an acritarch ........ 476 (1) Sampling. ........................................ • 47Ó (2) Preparation .............. 47$ (3) Size and morphology .................................................. 479 (4) Organic wall 4^7 (i) Sporopollenin-like material .......... 487 (ii) Thermal alteration ............ 489 III. Biological affinities. ............. 491 (1) Before and after Evitt (1963) ........... 491 (2) Reassessment of some acritarchs .......... 493 (i) Links with dinoflagellates.............................................................. 494 (ii) Links with prasinophytes ......................................................................... 497 (iii) Enigmatic sphaeromorphs .......... 499 (iv) Acritarchs, euglenoids or single spore-like bodies ? ...... 501 (v) Recent incertae sedis and crustacean eggs........ 501 IV. Reworking and palaeoecology ........... 5° 2 (1) Durable microfossils ............ 502 (2) Life-style of acritarchs ............ 503 V. Acritarchs through geological time .......... 504 (1) Precambrian .............. 5°5 (i) Before acritarchs ............ 5°6 (ii) Appearance of acritarchs ........... 506 (2) Precambrian-Cambrian boundary ......................................................5°9 -
Palaeobiology and Diversification of Proterozoic-Cambrian Photosynthetic Eukaryotes
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1308 Palaeobiology and diversification of Proterozoic-Cambrian photosynthetic eukaryotes ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-554-9389-9 UPPSALA urn:nbn:se:uu:diva-265229 2015 Dissertation presented at Uppsala University to be publicly examined in Hambergsalen, Geocentrum, Villavägen 16, 752 36, Uppsala, Friday, 11 December 2015 at 10:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Shuhai Xiao (Geosciences, Virginia Polytechnic Institute and State University). Abstract Agić, H. 2015. Palaeobiology and diversification of Proterozoic-Cambrian photosynthetic eukaryotes. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1308. 47 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9389-9. One of the most important events in the history of life is the evolution of the complex, eukaryotic cell. The eukaryotes are complex organisms with membrane-bound intracellular structures, and they include a variety of both single-celled and multicellular organisms: plants, animals, fungi and various protists. The evolutionary origin of this group may be studied by direct evidence of past life: fossils. The oldest traces of eukaryotes have appeared by 2.4 billion years ago (Ga), and have additionally diversified in the period around 1.8 Ga. The Mesoproterozoic Era (1.6-1 Ga) is characterised by the first evidence of the appearance complex unicellular microfossils, as well as innovative morphologies, and the evolution of sexual reproduction and multicellularity. For a better understanding of the early eukaryotic evolution and diversification patterns, a part of this thesis has focused on the microfossil records from various time periods and geographic locations. -
Papers in Press
Papers in Press “Papers in Press” includes peer-reviewed, accepted manuscripts of research articles, reviews, and short notes to be published in Paleontological Research. They have not yet been copy edited and/or formatted in the publication style of Paleontological Research. As soon as they are printed, they will be removed from this website. Please note they can be cited using the year of online publication and the DOI, as follows: Humblet, M. and Iryu, Y. 2014: Pleistocene coral assemblages on Irabu-jima, South Ryukyu Islands, Japan. Paleontological Research, doi: 10.2517/2014PR020. doi:10.2517/2017PR005 Globusphyton Wang et al., an Ediacaran macroalga, crept on seafloor in the Yangtze Block, South China AcceptedYE WANG1 AND YUE WANG2 1School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China 2School of Resources and Environments, Guizhou University, Guiyang 550025, China (e-mail: [email protected]) Abstract. The Ediacaran genus Globusphyton Wang et al., only including one species G. lineare Wang et al., is a eukaryotic macroalgamanuscript in the Wenghui biota from black shale of the upper Doushantuo Formation (ca. 560–551 Ma) in northeastern Guizhou, South China. It was assigned as one of significant fossils in the assemblage and biozone divisions in the middle-late Ediacaran Period. Morphologically, Globusphyton is composed of several structural components, displaying that it had tissue differentiation to serve various bio-functions. Its prostrate stolon, a long ribbon bundled by unbranching filaments, crept by holdfasts on the seafloor. Its pompon-like thalli, the circular to oval thallus-tuft composed of many filamentous dichotomies, may have served for photosynthesis. -
Outline 11: Fossil Record of Early Life Life in the Precambrian Time Line
Outline 11: Fossil Record of Early Life Life in the Precambrian Time Line • 0.545 BY – animals with hard parts, start of the Phanerozoic Eon • 0.600 BY – first animals, no hard parts • 2.0 BY – first definite eukaryotes • 2.0-3.5 BY – formation of BIF’s, stromatolites common • 3.5 BY – oldest definite fossils: stromatolites • 3.8 BY – C12 enrichment in sedimentary rocks, chemical evidence for life; not definitive of life • 4.0 BY – oldest rocks of sedimentary origin Fossil Evidence • 3.8 BY ago: small carbon compound spheres - early cells? Maybe not. • 3.5 BY ago: definite fossils consisting of stromatolites and the cyanobacteria that formed them. The cyanobacteria resemble living aerobic photosynthesizers. • 3.2 BY ago: rod-shaped bacteria Fossil Cell? 3.8 BY old from Greenland Modern stromatolites, Bahamas Modern stromatolites produced by cyanobacteria, Sharks Bay, Australia Modern stromatolites produced by cyanobacteria, Sharks Bay, Australia 2 B.Y. old stromatolites from NW Canada Stromatolites, 2 BY old, Minnesota Cyanobacteria, makers of stromatolites Microscopic views Cyanobacteria, makers of stromatolites 1.0 BY old Cyanobacteria 3.5 BY old, Australia Microscopic views Stromatolite, 3.5 BY old, Australia Closeup of stromatolite layers in last slide Modern archaea Fossil archaea or bacteria, 3.2 BY old from Africa Fossil bacteria 2BY Modern bacteria old from Minnesota The Banded Iron Formations • Billions of tons of iron ore, the world’s chief reserves. • Formed between 3.5 and 2.0 BY ago. • They record the gradual oxidation of the oceans by photosynthetic cyanobacteria. • When the oceans finished rusting, oxygen accumulated in the atmosphere. -
Fossil Record of Early Life
Origin of Life on Earth: The Precambrian Fossil Record Geology 230 Fossils and Evolution Time Line • 0.55 BY – animals with hard parts, start of the Phanerozoic Era • 2.0 BY – first definite eukaryotes • 2.0-3.5 BY – formation of BIF’s, stromatolites common • 3.5 BY – oldest probable fossils: stromatolites • 3.8 BY – C12 enrichment in sedimentary rocks, chemical evidence for life; not definitive of life • 4.0 BY – oldest rocks of sedimentary origin Fossil Evidence • 3.8 BY ago: small carbon compound spheres - early cells? • 3.5 BY ago: probable fossils consisting of stromatolites and the microbes that formed them. • 3.2 BY ago: rod-shaped bacteria Fossil Cell? 3.8 BY old from Greenland Modern stromatolites, Bahamas Modern stromatolites produced by cyanobacteria, Sharks Bay, Australia Modern stromatolites produced by cyanobacteria, Sharks Bay, Australia 2 B.Y. old stromatolites from Canada Stromatolites, 2 BY old, Minnesota Cyanobacteria, makers of stromatolites since 2.6 Ga Microscopic views Cyanobacteria, makers of stromatolites 1.0 Ga Cyanobacteria fossils, 1 BY old Microscopic views 3.5 BY old Australia, cyanobacteria or not? Microscopic views Stromatolite, 3.5 BY old, Australia Closeup of stromatolite layers in last slide Modern archaea Fossil archaea or bacteria, 3.2 BY old from Africa Fossil bacteria 2BY Modern bacteria old from Minnesota The Banded Iron Formations • Billions of tons of iron ore, the world’s chief reserves. • Formed between 3.5 and 2.0 BY ago. • They record the gradual oxidation of the oceans by photosynthetic cyanobacteria. • When the oceans finished rusting, oxygen accumulated in the atmosphere. -
Palynological and Foraminiferal Biostratigraphy of (Upper Pliocene) Nordland Group Mudstones at Sleipner, Northern North Sea
Marine and Petroleum Geology 21 (2004) 277–297 www.elsevier.com/locate/marpetgeo Palynological and foraminiferal biostratigraphy of (Upper Pliocene) Nordland Group mudstones at Sleipner, northern North Sea Martin J. Heada,*, James B. Ridingb, Tor Eidvinc, R. Andrew Chadwickb aDepartment of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, UK bBritish Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham NG12 5GG, UK cNorwegian Petroleum Directorate, P.O. Box 600, N-4003 Stavanger, Norway Received 8 September 2003; received in revised form 5 December 2003; accepted 9 December 2003 Abstract The Nordland Group is an important stratigraphical unit within the upper Cenozoic of the northern North Sea. At its base lies the Utsira Sand, a dominantly sandy regional saline aquifer that is currently being utilized for carbon dioxide sequestration from the Sleipner gas and condensate field. A ‘mudstone drape’ immediately overlies the Utsira Sand, forming the caprock for this aquifer. The upper part of the Utsira Sand was recently dated as Early Pliocene, but the precise age of the overlying Nordland Group mudstones has remained uncertain. Dinoflagellate cyst, pollen and spore, foraminiferal and stable isotopic analyses have been performed on these mudstones from a conventional core within the interval 913.10–906.00 m (drilled depth) in Norwegian sector well 15/9-A-11. The samples lie closely above the Utsira Sand. Results give a Gelasian (late Late Pliocene) age for this interval, with a planktonic foraminiferal assemblage at 913.10 m indicating warm climatic conditions and an age between 2.4 and 1.8 Ma. An abundance of the cool-tolerant dinoflagellate cysts Filisphaera filifera and Habibacysta tectata at 906.00 m, along with evidence from pollen and foraminifera, points to deposition during a cool phase of the Gelasian.