Patterns of Diversification in Early Eukaryotes Emmanuelle J

Total Page:16

File Type:pdf, Size:1020Kb

Patterns of Diversification in Early Eukaryotes Emmanuelle J Patterns of diversification in early eukaryotes Emmanuelle J. Javaux To cite this version: Emmanuelle J. Javaux. Patterns of diversification in early eukaryotes. Carnets de Geologie, Carnets de Geologie, 2007, CG2007 (M01/06), pp.38-42. hal-00168238 HAL Id: hal-00168238 https://hal.archives-ouvertes.fr/hal-00168238 Submitted on 25 Aug 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Carnets de Géologie / Notebooks on Geology - Memoir 2007/01, Abstract 06 (CG2007_M01/06) Patterns of diversification in early eukaryotes [Modes de diversification des premiers Eucaryotes] Emmanuelle J. JAVAUX1 Citation: JAVAUX E.J. (2007).- Patterns of diversification in early eukaryotes. In: STEEMANS P. & JAVAUX E. (eds.), Recent Advances in Palynology.- Carnets de Géologie / Notebooks on Geology, Brest, Memoir 2007/01, Abstract 06 (CG2007_M01/06) Key Words: Proterozoic; early eukaryotes; diversification Mots-Clefs : Protérozoïque ; premiers eucaryotes ; diversification 1 - Introduction Fossils may also record ancestral forms (and steps in evolution) that might not have any The Precambrian includes: the Hadean (4.6 extant relatives. The position of the root of the to 4 Ga), the period of solar system formation tree of life is not yet understood. Within the and Earth accretion; the Archean (4 to 2.5 Ga) eukaryotic tree, the eukaryotes are divided into when life appeared, and the Proterozoic (2.5 to several supergroups whose relationships are not 0.56 Ga) subdivided into the Paleo-, Meso-, and well resolved. Lineages thought to have Neoproterozoic. During this major part of Earth branched early because they seemed to lack history (about 90%), major environmental mitochondria, actually host derived changes were registered in the geological mitochondrial organelles (EMBLEY & MARTIN, record. These events include the step-wise 2006). Nevertheless, calibration of phylogenies oxygenation of the atmosphere and oceans, using dates from fossils, biomarkers, and meteoritic impacts, supercontinent formation isotopes, shows that a major diversification of and breakup, and severe glaciations; they may extant clades occurred in the Neoproterozoic, have had a profound effect on the early preceded by a long evolution of eukaryotic evolution of the eukaryotes. Several lines of fossils starting in the late Archean -as evidence from the geological record, the fossil suggested by biomarkers- or in the late history and molecular phylogenies can be used Paleoproterozoic, when the oldest eukaryotic to decipher the early record of the domain microfossils are found (see reviews in JAVAUX, Eucarya and its evolution. 2006; KNOLL et alii, 2006; PORTER, 2004). Genetic material is rarely preserved in the Superimposing the record of biological rock record, so paleontologists have to rely on innovations and environmental changes on the other features to identify microfossils as fossil record might reveal possible explanations members of the domain Eucarya. Fossils of the pattern of diversification in the middle provide direct evidence of early cells, and Neoproterozoic, long after the origin of the document steps in biological and biochemical domain and possible early divergence of major innovations. Organisms can be preserved by a clades in the Paleo- and Mesoproterozoic when variety of processes in a range of substrates. eukaryotic fossils of unknown biological Early eukaryotic fossils include: carbonaceous affinities are preserved. compressions (the organisms are preserved as As discussed elsewhere (JAVAUX & MARSHALL, a thin film of carbon); acritarchs (organic- 2006; JAVAUX et alii, 2003, 2004; MARSHALL et walled vesicles with unknown biological alii, 2005), in order to determine the biological affinities, they can be extracted from shales affinities of these fossils at the level of domain using strong acids, or observed in thin sections or beyond, we have defined a set of criteria to of shale, chert or phosphorite); multicellular differentiate prokaryotic from eukaryotic organic-walled organisms (chert, shale); vase- microfossils and have formulated a shaped microfossils; molds and casts in methodology combining microscopy and sandstone or shale; skeletons preserved in microchemistry of single acritarchs. Fossils can carbonates or phosphorite; and phylogenetically display morphological and ultrastructural informative molecules (biomarkers and features showing a degree of complexity and/or biopolymers preserved in the rocks that provide particular features unknown in prokaryotic information about past ecosystems and the organisms, therefore pointing to a eukaryotic evolution of biosynthetic pathways). affinity. Indeed, the wall structure and Molecular phylogenies yield important ornamentation, the presence of processes that information or hypotheses about relationships extend from the vesicle wall, the presence of between clades and their order of branching. excystment structures (openings through which However paleobiological data are essential for cyst liberate their content), wall ultrastructure testing these trees and for constraining the and wall chemistry can clarify the biological (minimum age of) timing of diversification. affinities of organic-walled microfossils at the 1 Département de Géologie, Université de Liège, Allée du 6 août, B18, Sart-Tilman, 4000 Liège (Belgium) [email protected] Manuscript online since March 22, 2007 38 Carnets de Géologie / Notebooks on Geology - Memoir 2007/01, Abstract 06 (CG2007_M01/06) level of the domain, and in some cases even at - The bangiophyte red alga Bangiomorpha the level of class. Microchemical analyses such pubescens is so far the oldest taxonomically as micro infra-red and Raman spectroscopy, resolved eukaryote, and records the evolution secondary ion mass spectrometry, and other of complex multicellularity, cell differentiation, techniques applicable to very small samples and sexual reproduction, eukaryotic such as one acritarch can be used to photosynthesis, primary endosymbiosis of a characterize the chemistry of organic chloroplast ancestor by 1.2-1 Ga. Note that microfossils and might even reveal biomolecules these biological innovations are recorded in this specific to extant clades. one fossil population of bangiophyte red algae that chronostratigraphy dates at 1.2 Ga-750 One limitation of this approach is the limited Ma. Chemostratigraphy and lithostratigraphy knowledge that we have about extant indicate an age closer to 1.2 Ga. However other organisms producing fossilizable structures and multicellular photosynthetic eukaryotes also their morphological, ultrastructural and appeared around 1 Ga. chemical properties. This approach requires investigation of preservable biological - Upper Mesoproterozoic / Lower properties and comparative actualistic studies Neoproterozoic rocks (and possibly of taphonomic processes affecting diverse Paleoproterozoic rocks) have yielded organisms in diverse environments (JAVAUX & biomarkers of alveolates (which include MARSHALL, 2006). dinoflagellates and ciliates, among other groups). 2 - The fossil record of biological innovations in early eukaryotes - Palaeovaucheria, a 1 Ga xanthophyte alga, indicates the appearance of stramenopiles Fossils can inform about the evolution of (which include diatoms, xanthophytes, and biological innovations, regardless of their brown algae) and of secondary symbiosis biological affinities, as briefly summarized (involving a red alga-like endosymbiont). below (see reviews in JAVAUX, 2006; KNOLL et - The 750 Ma vase-shaped microfossils alii, 2006 and reference therein). provide a firm calibration point for the - Biomarkers in 2.7 Ga kerogens of the opisthokonts, the clade that includes animals, Fortescue Group, Australia, indicate that fungi and the amoebozoans not to mention contemporaneous cells were able to synthesize direct evidence for heterotrophic eukaryotes sterols, requiring a minimum of oxygen. and eukaryotic biomineralization, and possibly predation. Cladophorales green algae also - Paleo- and Mesoproterozoic macroscopic appeared, recording again multicellular compressions or mold and cast structures have photosynthetic eukaryotes, and implying earlier been compared to algae but this interpretation evolution and diversification of green algae, as remains controversial. clearly underlined by BUTTERFIELD et alii (1994), - The first ornamented acritarchs are KNOLL (2003) and other Precambrian populations of Valeria lophostriata recorded in paleontologists, but recently misunderstood by the Paleoproterozoic of China (~1.8 Ga) and TEYSSÈDRE (2006). Australia (+1.65 Ga). Early Mesoproterozoic - The late Neoproterozoic appearance of acritarchs Shuiyousphaeridium macro- animals preserved as calcareous skeletons reticulatum, Valeria lophostriata, Tappania forming large reefs or as possible animal plana, and Satka favosa exhibits a complexity embryos in phosphorites added another of form observed with TEM, SEM, and light dimension to ecosystems and predation microscopy that is unknown in prokaryotes. pressure. Prokaryotes can be large, they can have
Recommended publications
  • Cambrian Phytoplankton of the Brunovistulicum – Taxonomy and Biostratigraphy
    MONIKA JACHOWICZ-ZDANOWSKA Cambrian phytoplankton of the Brunovistulicum – taxonomy and biostratigraphy Polish Geological Institute Special Papers,28 WARSZAWA 2013 CONTENTS Introduction...........................................................6 Geological setting and lithostratigraphy.............................................8 Summary of Cambrian chronostratigraphy and acritarch biostratigraphy ...........................13 Review of previous palynological studies ...........................................17 Applied techniques and material studied............................................18 Biostratigraphy ........................................................23 BAMA I – Pulvinosphaeridium antiquum–Pseudotasmanites Assemblage Zone ....................25 BAMA II – Asteridium tornatum–Comasphaeridium velvetum Assemblage Zone ...................27 BAMA III – Ichnosphaera flexuosa–Comasphaeridium molliculum Assemblage Zone – Acme Zone .........30 BAMA IV – Skiagia–Eklundia campanula Assemblage Zone ..............................39 BAMA V – Skiagia–Eklundia varia Assemblage Zone .................................39 BAMA VI – Volkovia dentifera–Liepaina plana Assemblage Zone (Moczyd³owska, 1991) ..............40 BAMA VII – Ammonidium bellulum–Ammonidium notatum Assemblage Zone ....................40 BAMA VIII – Turrisphaeridium semireticulatum Assemblage Zone – Acme Zone...................41 BAMA IX – Adara alea–Multiplicisphaeridium llynense Assemblage Zone – Acme Zone...............42 Regional significance of the biostratigraphic
    [Show full text]
  • Molecular Data and the Evolutionary History of Dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Un
    Molecular data and the evolutionary history of dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Universitat Heidelberg, 1993 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Botany We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA November 2003 © Juan Fernando Saldarriaga Echavarria, 2003 ABSTRACT New sequences of ribosomal and protein genes were combined with available morphological and paleontological data to produce a phylogenetic framework for dinoflagellates. The evolutionary history of some of the major morphological features of the group was then investigated in the light of that framework. Phylogenetic trees of dinoflagellates based on the small subunit ribosomal RNA gene (SSU) are generally poorly resolved but include many well- supported clades, and while combined analyses of SSU and LSU (large subunit ribosomal RNA) improve the support for several nodes, they are still generally unsatisfactory. Protein-gene based trees lack the degree of species representation necessary for meaningful in-group phylogenetic analyses, but do provide important insights to the phylogenetic position of dinoflagellates as a whole and on the identity of their close relatives. Molecular data agree with paleontology in suggesting an early evolutionary radiation of the group, but whereas paleontological data include only taxa with fossilizable cysts, the new data examined here establish that this radiation event included all dinokaryotic lineages, including athecate forms. Plastids were lost and replaced many times in dinoflagellates, a situation entirely unique for this group. Histones could well have been lost earlier in the lineage than previously assumed.
    [Show full text]
  • Sponges Cnidarians Chordates Brachiopods Annelids Molluscs Ediacaran Arthropods 635 Cambrian PALEOZOIC PROTEROZOIC 605 Time (Mil
    © 2014 Pearson Education, Inc. 1 Sponges Cnidarians Echinoderms Chordates Brachiopods Annelids Molluscs Arthropods PROTEROZOIC PALEOZOIC Ediacaran Cambrian 635 605 575 545 515 485 0 Time (millions of years age) © 2014 Pearson Education, Inc. 2 Food particles in mucus Choanocyte Collar Flagellum Choanocyte Phagocytosis of Amoebocyte food particles Pores Spicules Water flow Amoebocytes Azure vase sponge (Callyspongia plicifera) © 2014 Pearson Education, Inc. 3 (a) Hydrozoa (b) Scyphozoa (c) Anthozoa © 2014 Pearson Education, Inc. 4 15 µm 75 µm (a) Valeria (800 mya): (b) Spiny acritarch roughly spherical, no (575 mya): about five structural defenses, times larger than soft-bodied Valeria and covered in hard spines © 2014 Pearson Education, Inc. 5 (a) Radial symmetry (b) Bilateral symmetry © 2014 Pearson Education, Inc. 6 Body cavity Body covering (from ectoderm) Tissue layer lining body cavity and suspending Digestive tract internal organs (from endoderm) (from mesoderm) © 2014 Pearson Education, Inc. 7 Porifera Metazoa Ctenophora ANCESTRAL Eumetazoa PROTIST Cnidaria Deuterostomia Hemichordata 770 million Echinodermata years ago 680 million Chordata years ago Lophotrochozoa Lophotrochozoa Platyhelminthes Bilateria Rotifera Ectoprocta Brachiopoda 670 million years ago Mollusca Ecdysozoa Annelida Nematoda Arthropoda © 2014 Pearson Education, Inc. 8 © 2014 Pearson Education, Inc. 9 Notochord Dorsal, hollow nerve cord Muscle segments Mouth Anus Post-anal tail Pharyngeal slits or clefts © 2014 Pearson Education, Inc. 10 (a) Lancelet (b) Tunicate
    [Show full text]
  • New Dinoflagellate Cyst and Acritarch Taxa from the Pliocene and Pleistocene of the Eastern North Atlantic (DSDP Site 610)
    Journal of Systematic Palaeontology 6 (1): 101–117 Issued 22 February 2008 doi:10.1017/S1477201907002167 Printed in the United Kingdom C The Natural History Museum New dinoflagellate cyst and acritarch taxa from the Pliocene and Pleistocene of the eastern North Atlantic (DSDP Site 610) Stijn De Schepper∗ Cambridge Quaternary, Department of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, United Kingdom Martin J. Head† Department of Earth Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario L2S 3A1, Canada SYNOPSIS A palynological study of Pliocene and Pleistocene deposits from DSDP Hole 610A in the eastern North Atlantic has revealed the presence of several new organic-walled dinoflagellate cyst taxa. Impagidinium cantabrigiense sp. nov. first appeared in the latest Pliocene, within an inter- val characterised by a paucity of new dinoflagellate cyst species. Operculodinium? eirikianum var. crebrum var. nov. is mostly restricted to a narrow interval near the Mammoth Subchron within the Plio- cene (Piacenzian Stage) and may be a morphological adaptation to the changing climate at that time. An unusual morphotype of Melitasphaeridium choanophorum (Deflandre & Cookson, 1955) Harland & Hill, 1979 characterised by a perforated cyst wall is also documented. In addition, the stratigraphic utility of small acritarchs in the late Cenozoic of the northern North Atlantic region is emphasised and three stratigraphically restricted acritarchs Cymatiosphaera latisepta sp. nov., Lavradosphaera crista gen. et sp. nov.
    [Show full text]
  • The Biodiversity of Organic-Walled Eukaryotic Microfossils from the Tonian Visingsö Group, Sweden
    Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences ISSN 1650-6553 Nr 366 The Biodiversity of Organic-Walled Eukaryotic Microfossils from the Tonian Visingsö Group, Sweden Biodiversiteten av eukaryotiska mikrofossil med organiska cellväggar från Visingsö- gruppen (tonian), Sverige Corentin Loron INSTITUTIONEN FÖR GEOVETENSKAPER DEPARTMENT OF EARTH SCIENCES Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences ISSN 1650-6553 Nr 366 The Biodiversity of Organic-Walled Eukaryotic Microfossils from the Tonian Visingsö Group, Sweden Biodiversiteten av eukaryotiska mikrofossil med organiska cellväggar från Visingsö- gruppen (tonian), Sverige Corentin Loron ISSN 1650-6553 Copyright © Corentin Loron Published at Department of Earth Sciences, Uppsala University (www.geo.uu.se), Uppsala, 2016 Abstract The Biodiversity of Organic-Walled Eukaryotic Microfossils from the Tonian Visingsö Group, Sweden Corentin Loron The diversification of unicellular, auto- and heterotrophic protists and the appearance of multicellular microorganisms is recorded in numerous Tonian age successions worldwide, including the Visingsö Group in southern Sweden. The Tonian Period (1000-720 Ma) was a time of changes in the marine environments with increasing oxygenation and a high input of mineral nutrients from the weathering continental margins to shallow shelves, where marine life thrived. This is well documented by the elevated level of biodiversity seen in global microfossil
    [Show full text]
  • Acritarchsa Review
    Biol. Rev. (1993), 68, pp. 475-538 475 Printed in Great Britain ACRITARCHS: A REVIEW B y FRANCINE MARTIN Département de Paléontologie, Institut royal des Sciences naturelles de Belgique, rue Vautier 29, R-1040 B ruxelles, Belgium (Received 21 Ja n u a ry 1993; accepted 23 M arch 1993) CONTENTS I. Introduction 47^ II. How to find, isolate and recognize an acritarch ........ 476 (1) Sampling. ........................................ • 47Ó (2) Preparation .............. 47$ (3) Size and morphology .................................................. 479 (4) Organic wall 4^7 (i) Sporopollenin-like material .......... 487 (ii) Thermal alteration ............ 489 III. Biological affinities. ............. 491 (1) Before and after Evitt (1963) ........... 491 (2) Reassessment of some acritarchs .......... 493 (i) Links with dinoflagellates.............................................................. 494 (ii) Links with prasinophytes ......................................................................... 497 (iii) Enigmatic sphaeromorphs .......... 499 (iv) Acritarchs, euglenoids or single spore-like bodies ? ...... 501 (v) Recent incertae sedis and crustacean eggs........ 501 IV. Reworking and palaeoecology ........... 5° 2 (1) Durable microfossils ............ 502 (2) Life-style of acritarchs ............ 503 V. Acritarchs through geological time .......... 504 (1) Precambrian .............. 5°5 (i) Before acritarchs ............ 5°6 (ii) Appearance of acritarchs ........... 506 (2) Precambrian-Cambrian boundary ......................................................5°9
    [Show full text]
  • Palynological and Foraminiferal Biostratigraphy of (Upper Pliocene) Nordland Group Mudstones at Sleipner, Northern North Sea
    Marine and Petroleum Geology 21 (2004) 277–297 www.elsevier.com/locate/marpetgeo Palynological and foraminiferal biostratigraphy of (Upper Pliocene) Nordland Group mudstones at Sleipner, northern North Sea Martin J. Heada,*, James B. Ridingb, Tor Eidvinc, R. Andrew Chadwickb aDepartment of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, UK bBritish Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham NG12 5GG, UK cNorwegian Petroleum Directorate, P.O. Box 600, N-4003 Stavanger, Norway Received 8 September 2003; received in revised form 5 December 2003; accepted 9 December 2003 Abstract The Nordland Group is an important stratigraphical unit within the upper Cenozoic of the northern North Sea. At its base lies the Utsira Sand, a dominantly sandy regional saline aquifer that is currently being utilized for carbon dioxide sequestration from the Sleipner gas and condensate field. A ‘mudstone drape’ immediately overlies the Utsira Sand, forming the caprock for this aquifer. The upper part of the Utsira Sand was recently dated as Early Pliocene, but the precise age of the overlying Nordland Group mudstones has remained uncertain. Dinoflagellate cyst, pollen and spore, foraminiferal and stable isotopic analyses have been performed on these mudstones from a conventional core within the interval 913.10–906.00 m (drilled depth) in Norwegian sector well 15/9-A-11. The samples lie closely above the Utsira Sand. Results give a Gelasian (late Late Pliocene) age for this interval, with a planktonic foraminiferal assemblage at 913.10 m indicating warm climatic conditions and an age between 2.4 and 1.8 Ma. An abundance of the cool-tolerant dinoflagellate cysts Filisphaera filifera and Habibacysta tectata at 906.00 m, along with evidence from pollen and foraminifera, points to deposition during a cool phase of the Gelasian.
    [Show full text]
  • The Ediacaran Diversification of Organic-Walled Microbiota
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 428 The Ediacaran Diversification of Organic-walled Microbiota Ocean Life 600 Million Years Ago SEBASTIAN WILLMAN ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 UPPSALA ISBN 978-91-554-7185-9 2008 urn:nbn:se:uu:diva-8684 !""# "$"" % & % % '& &( )& * + &( , -( !""#( )& + % % . /* ( . 0% "" 1 ( ( 2!#( 33 ( ( 4-56 78#/7/992/8#9/7( )& % % % ( & % % +& & ( )& + ' : & 39/92! ; & & % % & % % < ( ,/ /* % % & + & .%% 5 - & ( & % & & * * & ( & & & *&& & % %% < ( )& % * - 5 =& % % & + -( + % & * % & % & * & > % % ( , % / &/ % / % & ( )& * %% & %% % & % < ( * % *& % % & % ? ( ,& % % & & *& & & % *& % & % % ( - & @ 99" > ( )& @ % & > & < & &/ ( & + & % ! "# $% !&'()*% A - , !""# 4--6 9/!2 4-56 78#/7/992/8#9/7 $ $$$ /##2 :& $BB (>(B C D $ $$$ /##2; Till min familj List of publications I Willman S, Moczydowska M, Grey K (2006) Neoprotero- zoic (Ediacaran) diversification of acritarchs – A new record from the Murnaroo 1 drillcore, eastern Officer Basin, Austra- lia. Review of Palaeobotany and Palynology 139, 17–39.
    [Show full text]
  • Sedimentological and Palynological Investigations of the Neoproterozoic Valdres Group
    NORWEGIAN JOURNAL OF GEOLOGY Vol 99 Nr. 4 https://dx.doi.org/10.17850/njg99-4-2 Sedimentological and palynological investigations of the Neoproterozoic Valdres Group Even Stokkebekk1, Eirik N. Nordeng1, Henning Dypvik1, Rikke Ø. Småkasin1, Kathrine Sørhus1 & Wolfram M. Kürschner1 1Department of Geosciences, University of Oslo, P.O.Box 1047, NO–0316 Oslo, Norway E-mail corresponding author (Henning Dypvik): [email protected] The Valdres Group (?Cryogenian) has been sedimentologically and stratigraphically studied and sampled in a few key sites (Grønsennknippa, Mellane, Ormtjernkampen). The search for fossils in selected formations has been the target and one identified acantomorphic acritarch was discovered along with other organic matter of more uncertain heritage. In addition to the diamictite/tillite present in the Valdres Group succession, this facilitates a correlation with the well-known Hedmark Group to the east. Keywords:Valdres Group, sedimentology, stratigraphy, palynology, acritarch Received 17. June 2019 / Accepted 4. October 2019 / Published online 30. October 2019 Introduction Group (Nystuen, 1982; Lamminen et al., 2015), but so far no fossils or radiometric datings have been reported. Consequently, the ongoing Valdres Project at the In southern Norway a possibly more than 4000 m-thick University of Oslo (UiO) aims to shed new light on the Neoproterozoic succession exists in the Hedmark and geological development of the Valdres Group (Småkasin, Valdres basins (Figs. 1, 2 & 3). The Hedmark Group of 2017; Sørhus, 2017; Nordeng, 2018; Stokkebekk, 2018). the Hedmark Basin is well studied and palynomorphs have been found (Vidal & Nystuen, 1990b) in the The current paper presents the first discovery of organic- succession, which was formed by rifting along the walled microfossils from the Valdres Group.
    [Show full text]
  • Two-Phase Increase in the Maximum Size of Life Over 3.5 Billion Years Reflects Biological Innovation and Environmental Opportunity
    Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity Jonathan L. Paynea,1, Alison G. Boyerb, James H. Brownb, Seth Finnegana, Michał Kowalewskic, Richard A. Krause, Jr.d, S. Kathleen Lyonse, Craig R. McClainf, Daniel W. McSheag, Philip M. Novack-Gottshallh, Felisa A. Smithb, Jennifer A. Stempieni, and Steve C. Wangj aDepartment of Geological and Environmental Sciences, Stanford University, 450 Serra Mall, Building 320, Stanford, CA 94305; bDepartment of Biology, University of New Mexico, Albuquerque, NM 87131; cDepartment of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061; dMuseum fu¨r Naturkunde der Humboldt–Universita¨t zu Berlin, D-10115, Berlin, Germany; eDepartment of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560; fMonterey Bay Aquarium Research Institute, Moss Landing, CA 95039; gDepartment of Biology, Box 90338, Duke University, Durham, NC 27708; hDepartment of Geosciences, University of West Georgia, Carrollton, GA 30118; iDepartment of Geological Sciences, University of Colorado, Boulder, CO 80309; and jDepartment of Mathematics and Statistics, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081 Edited by James W. Valentine, University of California, Berkeley, CA, and approved November 14, 2008 (received for review July 1, 2008) The maximum size of organisms has increased enormously since and avoids the more substantial empirical difficulties in deter- the initial appearance of life >3.5 billion years ago (Gya), but the mining mean, median, or minimum size for all life or even for pattern and timing of this size increase is poorly known. Conse- many individual taxa. For each era within the Archean Eon quently, controls underlying the size spectrum of the global biota (4,000–2,500 Mya) and for each period within the Proterozoic have been difficult to evaluate.
    [Show full text]
  • The Nonesuch Formation Lagerstätte: a Rare Window Into Freshwater Life One Billion Years Ago
    Downloaded from http://jgs.lyellcollection.org/ by guest on September 25, 2021 Review focus Journal of the Geological Society Published Online First https://doi.org/10.1144/jgs2020-133 The Nonesuch Formation Lagerstätte: a rare window into freshwater life one billion years ago Paul K. Strother1* and Charles H. Wellman2 1 Weston Observatory, Boston College, Department of Earth & Environmental Sciences, 381 Concord Road, Weston, MA 02493-1340, USA 2 Department of Animal & Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK PKS, 0000-0003-0550-1704; CHW, 0000-0001-7511-0464 * Correspondence: [email protected] Abstract: The Nonesuch Formation in the clastic sedimentary Oronto Group on the Keweenaw Peninsula of the Upper Peninsula, Michigan, USA most likely represents an ancient lake that formed between 1083 and 1070 Ma. Exceptional preservation, seen in palynological preparations, provides a snapshot of cell morphology, biological complexity and ecology at an early stage in the evolution of the eukaryotes. A wide range of unicellular organization is documented in both vegetative and encysted cell morphologies, but the extent to which multicellularity is developed seems very limited at this time. Overall, the Nonesuch microbiota, when viewed as a Lagerstätte, opens up a window onto the early evolution of unicellular eukaryotes, presenting an essential baseline of both eukaryotic diversity and cell structure well in advance of eukaryotic diversification documented in marine deposits from the later
    [Show full text]
  • Pellicle Ultrastructure Demonstrates That Moyeria Is a Fossil Euglenid
    This is a repository copy of Pellicle ultrastructure demonstrates that Moyeria is a fossil euglenid. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/165337/ Version: Published Version Article: Strother, P.K., Taylor, W.A., van de Schootbrugge, B. et al. (2 more authors) (2020) Pellicle ultrastructure demonstrates that Moyeria is a fossil euglenid. Palynology, 44 (3). pp. 461-471. ISSN 0191-6122 https://doi.org/10.1080/01916122.2019.1625457 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Palynology ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tpal20 Pellicle ultrastructure demonstrates that Moyeria is a fossil euglenid Paul K. Strother , Wilson A. Taylor , Bas van de Schootbrugge , Brian S. Leander & Charles H. Wellman To cite this article: Paul K. Strother , Wilson A. Taylor , Bas van de Schootbrugge , Brian S. Leander & Charles H. Wellman (2020) Pellicle ultrastructure demonstrates that Moyeria is a fossil euglenid, Palynology, 44:3, 461-471, DOI: 10.1080/01916122.2019.1625457 To link to this article: https://doi.org/10.1080/01916122.2019.1625457 © 2019 The Author(s).
    [Show full text]