1/3 PDF Document
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Report on Biodiversity and Tropical Forests in Indonesia
Report on Biodiversity and Tropical Forests in Indonesia Submitted in accordance with Foreign Assistance Act Sections 118/119 February 20, 2004 Prepared for USAID/Indonesia Jl. Medan Merdeka Selatan No. 3-5 Jakarta 10110 Indonesia Prepared by Steve Rhee, M.E.Sc. Darrell Kitchener, Ph.D. Tim Brown, Ph.D. Reed Merrill, M.Sc. Russ Dilts, Ph.D. Stacey Tighe, Ph.D. Table of Contents Table of Contents............................................................................................................................. i List of Tables .................................................................................................................................. v List of Figures............................................................................................................................... vii Acronyms....................................................................................................................................... ix Executive Summary.................................................................................................................... xvii 1. Introduction............................................................................................................................1- 1 2. Legislative and Institutional Structure Affecting Biological Resources...............................2 - 1 2.1 Government of Indonesia................................................................................................2 - 2 2.1.1 Legislative Basis for Protection and Management of Biodiversity and -
Table 7: Species Changing IUCN Red List Status (2018-2019)
IUCN Red List version 2019-3: Table 7 Last Updated: 10 December 2019 Table 7: Species changing IUCN Red List Status (2018-2019) Published listings of a species' status may change for a variety of reasons (genuine improvement or deterioration in status; new information being available that was not known at the time of the previous assessment; taxonomic changes; corrections to mistakes made in previous assessments, etc. To help Red List users interpret the changes between the Red List updates, a summary of species that have changed category between 2018 (IUCN Red List version 2018-2) and 2019 (IUCN Red List version 2019-3) and the reasons for these changes is provided in the table below. IUCN Red List Categories: EX - Extinct, EW - Extinct in the Wild, CR - Critically Endangered [CR(PE) - Critically Endangered (Possibly Extinct), CR(PEW) - Critically Endangered (Possibly Extinct in the Wild)], EN - Endangered, VU - Vulnerable, LR/cd - Lower Risk/conservation dependent, NT - Near Threatened (includes LR/nt - Lower Risk/near threatened), DD - Data Deficient, LC - Least Concern (includes LR/lc - Lower Risk, least concern). Reasons for change: G - Genuine status change (genuine improvement or deterioration in the species' status); N - Non-genuine status change (i.e., status changes due to new information, improved knowledge of the criteria, incorrect data used previously, taxonomic revision, etc.); E - Previous listing was an Error. IUCN Red List IUCN Red Reason for Red List Scientific name Common name (2018) List (2019) change version Category -
Dental Adaptation in Murine Rodents (Muridae): Assessing Mechanical Predictions Stephanie A
Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2010 Dental Adaptation in Murine Rodents (Muridae): Assessing Mechanical Predictions Stephanie A. Martin Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES DENTAL ADAPTATION IN MURINE RODENTS (MURIDAE): ASSESSING MECHANICAL PREDICTIONS By STEPHANIE A. MARTIN A Thesis in press to the Department of Biological Science in partial fulfillment of the requirements for the degree of Master of Science Degree Awarded: Spring Semester, 2010 Copyright©2010 Stephanie A. Martin All Rights Reserved The members of the committee approve the thesis of Stephanie A. Martin defended on March 22, 2010. ______________________ Scott J. Steppan Professor Directing Thesis _____________________ Gregory Erickson Committee Member _____________________ William Parker Committee Member Approved: __________________________________________________________________ P. Bryant Chase, Chair, Department of Biological Science The Graduate School has verified and approved the above-named committee members. ii TABLE OF CONTENTS List of Tables......................................................................................................................iv List of Figures......................................................................................................................v Abstract...............................................................................................................................vi -
Thallomys Shortridgei – Shortridge's
Thallomys shortridgei – Shortridge’s Rat Assessment Rationale Thallomys shortridgei is listed as Data Deficient due to the lack of information detailing its taxonomic status, population trends, habitat requirements and current threats. This species may qualify for Vulnerable under the Photograph B criterion as its extent of occurrence is estimated to be < 20,000 km2. Despite recent field surveys, there are no wanted current occurrence data, which may be a cause for concern. It is recommended that further field surveys are conducted to verify the continued existence, geographical extent and validity of the species. Distribution Shortridge’s Rat has only been recorded in South Africa Regional Red List status (2016) Data Deficient (Nel 2013), where it has been collected from the south National Red List status (2004) Not Evaluated bank of the Orange (Gariep) River in the Northern Cape. Its current recognised range extends from Upington Reasons for change Non-genuine change: westwards to Goodhouse (Skinner & Chimimba 2005; Nel Taxonomic revision 2013), but it has only been identified from a few dispersed Global Red List status (2008) Data Deficient localities (Monadjem et al. 2015). Although a degree of uncertainty remains, T. shortridgei and T. nigricauda are TOPS listing (NEMBA) (2007) None considered by some to be allopatric, with distributions CITES listing None divided by the Orange River (Monadjem et al. 2015). The estimated extent of occurrence using a minimum convex Endemic Yes polygon based on existing records is 2,872 km2. Despite intensive trapping effort in and around its identified localities, this Population taxonomically-unresolved species remains The population abundance of this species is unknown elusive and has not been recently trapped (N. -
Micromammal Paleoecology
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CU Scholar Institutional Repository University of Colorado, Boulder CU Scholar Anthropology Graduate Theses & Dissertations Anthropology Spring 1-1-2011 Micromammal Paleoecology: Theory, Methods, and Application to Modern and Fossil Assemblages in The rC adle of Humankind World Heritage Site, South Africa Jennifer Nicole Leichliter University of Colorado at Boulder, [email protected] Follow this and additional works at: http://scholar.colorado.edu/anth_gradetds Part of the Biological and Physical Anthropology Commons Recommended Citation Leichliter, Jennifer Nicole, "Micromammal Paleoecology: Theory, Methods, and Application to Modern and Fossil Assemblages in The Cradle of Humankind World Heritage Site, South Africa" (2011). Anthropology Graduate Theses & Dissertations. Paper 7. This Thesis is brought to you for free and open access by Anthropology at CU Scholar. It has been accepted for inclusion in Anthropology Graduate Theses & Dissertations by an authorized administrator of CU Scholar. For more information, please contact [email protected]. Micromammal Paleoecology: Theory, Methods, and Application to Modern and Fossil Assemblages in The Cradle of Humankind World Heritage Site, South Africa by Jennifer Leichliter B.A., Colorado College, 2008 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Master’s of Anthropology Department of Anthropology 2011 This thesis entitled: Micromammal Paleoecology: Theory, Methods, and Application to Modern and Fossil Assemblages in The Cradle of Humankind World Heritage Site, South Africa written by Jennifer Nicole Leichliter has been approved for the Department Anthropology ________________________________________________ Dr. -
An Annotated Checklist of Mammals of Kenya
ZOOLOGICAL RESEARCH An annotated checklist of mammals of Kenya Simon Musila1,*, Ara Monadjem2,3, Paul W. Webala4, Bruce D. Patterson5, Rainer Hutterer6, Yvonne A. De Jong7, Thomas M. Butynski7, Geoffrey Mwangi8, Zhong-Zheng Chen9,10, Xue-Long Jiang9,10 1 Mammalogy Section, Department of Zoology, National Museums of Kenya, Nairobi 40658-00100, Kenya 2 Department of Biological Sciences, University of Swaziland, Kwaluseni, Swaziland 3 Mammal Research Institute, Department of Zoology & Entomology, University of Pretoria, Pretoria, South Africa 4 Department of Forestry and Wildlife Management, Maasai Mara University, Narok, Kenya 5 Integrative Research Center, Field Museum of Natural History, Chicago, USA 6 Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere, Bonn 53113, Germany 7 Eastern Africa Primate Diversity and Conservation Program, Nanyuki, Kenya 8 School of Natural Resources and Environmental Studies, Karatina University, Karatina 1957–10101, Kenya 9 Sino-African Joint Research Center, Chinese Academy of Sciences, Nairobi, Kenya 10 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China ABSTRACT in altitude and distance to the coast and Lake Victoria. The Kenya has a rich mammalian fauna. We reviewed Kenyan coast (0–100 m a.s.l.) is warm and humid, receiving recently published books and papers including the six about 1 000 mm of rainfall per year; the central highlands (1 000–2 500 m a.s.l.) are cool and humid, receiving the volumes of Mammals of Africa to develop an up-to-date highest rainfall (over 2 000 mm per year) in Kenya; the hot and annotated checklist of all mammals recorded from dry regions of northern and eastern Kenya (200 700 m a.s.l.) Kenya. -
List of Taxa for Which MIL Has Images
LIST OF 27 ORDERS, 163 FAMILIES, 887 GENERA, AND 2064 SPECIES IN MAMMAL IMAGES LIBRARY 31 JULY 2021 AFROSORICIDA (9 genera, 12 species) CHRYSOCHLORIDAE - golden moles 1. Amblysomus hottentotus - Hottentot Golden Mole 2. Chrysospalax villosus - Rough-haired Golden Mole 3. Eremitalpa granti - Grant’s Golden Mole TENRECIDAE - tenrecs 1. Echinops telfairi - Lesser Hedgehog Tenrec 2. Hemicentetes semispinosus - Lowland Streaked Tenrec 3. Microgale cf. longicaudata - Lesser Long-tailed Shrew Tenrec 4. Microgale cowani - Cowan’s Shrew Tenrec 5. Microgale mergulus - Web-footed Tenrec 6. Nesogale cf. talazaci - Talazac’s Shrew Tenrec 7. Nesogale dobsoni - Dobson’s Shrew Tenrec 8. Setifer setosus - Greater Hedgehog Tenrec 9. Tenrec ecaudatus - Tailless Tenrec ARTIODACTYLA (127 genera, 308 species) ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BALAENIDAE - bowheads and right whales 1. Balaena mysticetus – Bowhead Whale 2. Eubalaena australis - Southern Right Whale 3. Eubalaena glacialis – North Atlantic Right Whale 4. Eubalaena japonica - North Pacific Right Whale BALAENOPTERIDAE -rorqual whales 1. Balaenoptera acutorostrata – Common Minke Whale 2. Balaenoptera borealis - Sei Whale 3. Balaenoptera brydei – Bryde’s Whale 4. Balaenoptera musculus - Blue Whale 5. Balaenoptera physalus - Fin Whale 6. Balaenoptera ricei - Rice’s Whale 7. Eschrichtius robustus - Gray Whale 8. Megaptera novaeangliae - Humpback Whale BOVIDAE (54 genera) - cattle, sheep, goats, and antelopes 1. Addax nasomaculatus - Addax 2. Aepyceros melampus - Common Impala 3. Aepyceros petersi - Black-faced Impala 4. Alcelaphus caama - Red Hartebeest 5. Alcelaphus cokii - Kongoni (Coke’s Hartebeest) 6. Alcelaphus lelwel - Lelwel Hartebeest 7. Alcelaphus swaynei - Swayne’s Hartebeest 8. Ammelaphus australis - Southern Lesser Kudu 9. Ammelaphus imberbis - Northern Lesser Kudu 10. Ammodorcas clarkei - Dibatag 11. Ammotragus lervia - Aoudad (Barbary Sheep) 12. -
Thiel, C. 2011. Ecology and Population Status of the Serval Leptailurus Serval in Zambia
Thiel, C. 2011. Ecology and population status of the serval Leptailurus serval in Zambia. Thesis: 1-294. Rheinischen Friedrich-Wilhelms-Universität Bonn. 2011. Keywords: 1ET/1KE/1TZ/1UG/1ZA/1ZM/diet/disease/distribution/ecology/habitat/habitat preference/Leptailurus serval/parasites/population status/prey/prey availability/serval/status Abstract: Little is known about the Serval's ecology, its needs and population status. This thesis is providing a new and detailed groundwork on this elusive felid species. The study was conducted between 2006 and 2008 in Zambia, with the focus area being Luambe National Park (LNP) in the Luangwa Valley. Using transect line walking, signs of Serval presence (faeces, spoor and sightings) were recorded. Analyses of these records revealed new information on the diet, habitat preferences, the distribution within LNP, and parasite composition in faecal samples. The most studied fact on Servals found in literature is their diet, through scats analyses, observations and stomach analyses. Faeces analyses of this thesis supported the previous studies' findings that the Leptailurus serval is a rodent hunter. But besides that, they also prey extensively on birds, on reptiles, and on arthropods. A diet breadth of 0.5 also indicates a more opportunistic lifestyle. People associate Servals with grasslands and wetlands, but this study proved the Servals to use also thickets and riverine woodland. This felid needs water resources nearby and a certain degree of cover, whether it is grass or thickets/bushes. Closed forests with little ground cover are less preferred or even avoided habitats. parasites of Servals were never analysed up to now. This analysis revealed Rhipicephalus sanguineus and Haemaphysalis leachi, both so-called 'Dog Ticks', to be the most common tick of Leptailurus serval. -
The Effect of Habitat Type on Rodent, Shrew and Sengi Species
THE EFFECT OF HABITAT TYPE ON RODENT, SHREW AND SENGI SPECIES ABUNDANCE, RICHNESS, DIVERSITY AND COMPOSITION AT FARM KARACHAS, OUTJO, NAMIBIA A RESEARCH THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE (BIODIVERSITY MANAGEMENT AND RESEARCH) OF THE UNIVERSITY OF NAMIBIA BY SALMI KAPALA 201201786 APRIL 2021 SUPERVISOR: Prof. John K. Mfune (University of Namibia) ABSTRACT Natural habitats have been fragmented by many human activities including farming, hence affecting vegetation structure. Despite being very dry, Namibia has many farms in which game, livestock and crop farming are practiced. Yet such activities affect populations of many other organisms including small mammals such as rodents, shrews and sengis. The present study investigated the effect of habitat type on rodent, shrew and sengi species abundance, richness, diversity and composition in selected open grassland habitat and woody habitats at Karachas Farm, Outjo, Namibia. Sampling at each habitat type was replicated twice. Woody plant species abundance, composition, height and percentage grass cover were determined and compared between the open grassland and woody habitats. A capture-mark-recapture (CMR) technique was employed to obtain data on rodents, shrews and sengis. Each habitat type was sampled over five consecutive nights using Sherman live traps. The result of t-, chi-square and Mann-Whitney tests, respectively, showed a statistically significant difference in the mean abundance of woody plants, plant height, and plant species richness between the open grassland and woody habitats. A Mann-Whitney test showed no statistically significant difference in the percentage grass cover between the open grassland and woody habitats. -
Výroční Zpráva 2013
VÝROčNÍ ZPRÁVA 2013 Zoologická a botanická zahrada města Plzně Zoological and Botanical Garden Pilsen Annual Report 2013 2013 A V VÝROčNÍ ZPRÁ Zoologická a botanická města zahrada Plzně / ZOOLOGICKÁ A BOTANICKÁ ZAHRADA MĚSTA PLZNĚ MĚSTA ZAHRADA ZOOLOGICKÁ A BOTANICKÁ Provozovatel ZOOLOGICKÁ A BOTANICKÁ ZAHRADA MĚSTA PLZNĚ, příspěvková organizace POD VINICEMI 9, 301 16 PLZEŇ CZECH REPUBLIC tel.: 00420/378 038 325, fax: 00420/378 038 302 e-mail: [email protected], www.zooplzen.cz Vedení zoo Management Ředitel Ing. Jiří Trávníček Director Ekonom Jiřina Zábranská Economist Provozní náměstek Ján Sýkora Assistent director Vedoucí zoo. oddělení Jan Konáš Head zoologist Zootechnik Svatopluk Jeřáb Zootechnicist Zoolog Ing. Lenka Václavová Curator of monkeys, carnivores Bc. Tomáš Jirásek Curator of reptiles Botanický náměstek, zoolog Ing. Tomáš Peš Head botanist, curator of birds, small mammals Botanik Jarmila Kaňáková Botanist Mgr. Václava Pešková Propagace, PR Mgr. Martin Vobruba Education and PR Sekretariát Alena Voráčková Secretary Privátní veterinář MVDr. Zdeněk Rampich Veterinary MVDr. Jan Pokorný Celkový počet zaměstnanců Total Employees (k 31. 12. 2013) 135 Zřizovatel Plzeň, statutární město náměstí Republiky 1, Plzeň IČO: 075 370 tel.: 00420/378 031 111 Fotografie: Jaroslav Vogeltanz, Jiří Trávníček, Tomáš Peš, Miroslav Volf, Martin Vobruba, Jan Konáš, Jiřina Pešová, archiv ZOO a BZ, DinoPark a autoři příspěvků Redakce výroční zprávy: Jiří Trávníček, Martin Vobruba, Tomáš Peš, Alena Voráčková, Jaroslav Vogeltanz, David Nováček a autoři příspěvků -
A Revised Systematic Checklist of the Extant Mammals in the SA
DURBAN MUS. NOVIT. 28 SYSTEMATIC CHECKLIST OF SOUTHERN AFRICAN MAMMALS 56 A revised systematic checklist of the extant mammals of the southern African subregion BRONNER, G.N.12, HOFFMANN, M. , TAYLOR, P.J.34, CHIMIMBA, C.T. , BEST, P.B.45, MATTHEE, C.A. & ROBINSON, T.J.5 1Small Mammal Research Unit, Department of Zoology, University of Cape Town, P/Bag Rondebosch 7701, South Africa E-mail: [email protected] 2Centre for Applied Biodiversity Science, Conservation International, 1919 M St NW, Suite 600, Washington DC 20036, USA 3Durban Natural Science Museum, P.O. Box 4085, Durban 4000, South Africa 4Mammal Research Institute, Department of Zoology & Entomology, University of Pretoria, Pretoria 0002, South Africa 5Department of Zoology, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa Article available at: www.durban.gov.za/naturalscience/ Summary Bronner, G.N., Hoffmann, M., Taylor, P.J., Chimimba, C.T., Best, P.B., Matthee, C.A. & Robinson, T.J. 2003. A revised systematic checklist of the extant mammals of the southern African subregion. Durban Museum Novitates 28: 56-106. The current paper presents a revised, annotated, systematic checklist of 351 extant mammal species, in 190 genera, currently known to occur in southern Africa (south of the Zambezi and Cunene Rivers) and its coastal waters. The checklist includes each species' scientific and English common name, details concerning original description, occurrence or possible occurrence in each of the seven countries falling within the Subregion, and, where relevant, the IUCN global Category of Threat. Taxonomic notes, together with the relevant literature, are provided to justify the proposed classification adopted at each hierarchical level. -
1 Murinae (Old World Rats and Mice)
Retrieved from "http://en.wikipedia.org/wiki/Murinae" 1 Murinae (Old World rats and mice) 1.1 Fossils 1.2 Scientific classification 1.3 Taxonomy and list of Genera 1.4 References The Old World rats and mice, part of the subfamily Murinae in the family Muridae, comprise at least 519 species. This subfamily is larger than all mammal families except the Cricetidae, and is larger than all mammal orders except the bats and the remainder of the rodents. The Murinae are native to Africa, Europe, Asia, and Australia. They are the only terrestrial placental mammals native to Australia. They have also been introduced to all continents except Antarctica, and are serious pest animals. This is particularly true in island communities where they have contributed to the endangerment and extinction of many native animals. Two prominent murine human commensals have become vital laboratory animals. The Brown Rat and House Mouse are both used as medical subjects and are among a handful of animals where the full genome has been sequenced. The murines have a distinctive molar pattern that involves three rows of cusps instead of two, the primitive pattern seen most frequently in muroid rodents. 1.1 FOSSILS Fossils ranges Middle Miocene – Recent. The first known appearance of the Murinae in the fossil record is about 14 million years ago with the fossil genus Antemus. Antemus is thought to derive directly from Potwarmus, which has a more primitive tooth pattern. Likewise, two genera, Progonomys and Karnimata are thought to derive directly from Antemus. Progonomys is thought to be the ancestor of Mus and relatives, while Karnimata is thought to lead to Rattus and relatives.