Host Response to Black Leaf Streak and Agronomic Performance of Banana Genotypes in Puerto Rico

Total Page:16

File Type:pdf, Size:1020Kb

Host Response to Black Leaf Streak and Agronomic Performance of Banana Genotypes in Puerto Rico HORTSCIENCE 54(10):1808–1817. 2019. https://doi.org/10.21273/HORTSCI13876-19 farming, culture, and daily diets. In the last Census on Agriculture for Puerto Rico, plan- tains ranked second in area planted (8930 Host Response to Black Leaf Streak and ha) after coffee as an agricultural crop/in- dustry (USDA-NASS, 2012). In 2015, Puerto Agronomic Performance of Banana Rican plantains were estimated to account for $72.4 M in sales, with all other banana types Genotypes in Puerto Rico accounting for another $29.0 M in value (Instituto de Estadísticas de Puerto Rico, Brian M. Irish and Ricardo Goenaga 2016). USDA-ARS Tropical Agriculture Research Station, 2200 Pedro Albizu Major constraints to banana production Campos Avenue, Mayaguez, PR 00680 worldwide include devastating fungal, bac- terial, and viral diseases, in addition to Sirena Montalvo-Katz several species of plant pathogenic nema- Bioversity International, 2200 Pedro Albizu Campos Avenue, Mayaguez, PR todes and insect vectors/pests. In Puerto Rico, Sigatoka leaf spot, commonly known 00680 as yellow Sigatoka, caused by Pseudocerco- Bernardo Chaves-Cordoba spora musae (Zimm.) Deighton, traditionally has been a problem in plantain production WSU IAREC 241006 North Bunn Road, Prosser, WA 99350 areas, especially in the mountains (Gonzalez, Inge Van den Bergh 2009). However, the more recent incursion of Pseudocercospora fijiensis, which causes Bioversity International, Belgium Office, West De Croylaan 42, 3001 black leaf streak (BLS), commonly known Heverlee, Belgium as black Sigatoka, throughout the island has Additional index words. disease resistance, FLHORBAN, GCTCV, International Musa caused concern among producers. This has steadily led to higher production costs asso- Testing Program, Musa, Pseudocercospora fijiensis, Sigatoka ciated with added labor for cultural practices Abstract. Bananas are one of the most important fruits, serving as a cash crop and staple and increased use of fungicides, making it the food in many regions of the world. In Puerto Rico, bananas are an important agricultural most important disease in banana production industry, supplying all the fruit needed for local demand. Diseases significantly limit on the island (Cortes et al., 2009; Irish et al., production, and the evaluation and adoption of improved genetic resistance in bananas 2006). Recent fusarium wilt (FW) studies, might provide an avenue for long-term sustainable production. To this end, nine commonly known as Panama disease, caused enhanced genotypes from international selection and breeding programs were intro- by Fusarium oxysporum f. sp. cubense [(E.F. duced and evaluated for their response to black leaf streak (BLS) (Pseudocercospora Sm.) W.C. Snyder & H.N. Hansen], showed fijiensis Morelet) and for their agronomic performance. Bananas were evaluated as part limited genetic diversity in the pathogen of a collaborative effort between the U.S. Department of Agriculture Agricultural population on the island, with only race 1 Research Service (USDA-ARS) Tropical Agriculture Research Station (TARS) and and race 2 being reported. Furthermore, the Bioversity International’s International Musa Testing Program (IMTP). Improved Cavendish-affecting tropical race 4 (TR4) genotypes were compared with disease-resistant and disease-susceptible reference was not described for the pathogen popula- genotypes across two cropping cycles. Field plants were grown following commercial tions surveyed (Garcia et al., 2018), although production practices with no BLS management. Significant differences in disease global spread of this aggressive strain con- reactions were observed during both cropping cycles for test and reference genotypes. tinues (Ordonez et al., 2015). Other important Under high disease pressure, ‘FHIA-21’, ‘FHLORBAN 916’, and ‘FHLORBAN 920’ test pests on the island include nematodes [Rado- genotypes showed higher numbers of functional leaves and lower disease severity at pholus similis (Cobb) Thorne and Pratylen- harvest in both cycles. Short cycling times were also observed for the two FHLORBAN chus coffeae (Goodey)] and the banana genotypes. Larger bunches with a high number of fruits were produced by the ‘IBP 12’, weevil [Cosmopolites sordidus (Germar)] ‘IBP 5-B’, and ‘IBP 5-61’ selections. Several of the GCTCV test genotypes were (Puerto Rico Agricultural Experiment Sta- extremely susceptible to BLS, did not perform as expected, and appeared to be off- tion, 1995). A Puerto Rican Department of types. Several of the test genotypes performed well, although currently none possessed all Agriculture–imposed embargo on imported needed traits for a commercial banana substitute. Regardless, several test genotypes have fruit coming to the island helps to prevent agronomic potential because they have been selected for disease resistance to other the introduction of other significant plant important pathogens (e.g., fusarium wilt) and therefore have become part of the pathogens [e.g., Moko disease, Ralstonia permanent TARS collection. Future efforts will continue to focus on the IMTP solanacearum (Smith)] and shields the local collaboration and introduction of promising banana genotypes for evaluations. markets. Ironically, fruit shortages after hur- ricane Maria in 2017 left no other option but to allow fresh fruit imports from Colombia, Bananas (Musa spp.), consumed mostly World banana fruit production in 2016 Costa Rica, and the Dominican Republic, for their fruit, are an important agricultural accounted for more than 148 M metric tons, increasing the odds of new pest ingress crop grown around tropical and subtropical with India, China, and Indonesia being the (Irizarry-Alvarez, 2017). regions of the world. They are produced as a top three producing countries (FAOSTAT, Increased competition, natural disasters cash crop for local and export markets and as 2016). Although the Cavendish group of (e.g., hurricane Maria), and invasive insect a staple food in many developing countries. cultivars dominates global production, ba- pests and diseases make cost-effective and nanas are extremely diverse, with most orig- sustainable banana production on the island inating from regions of domestication and difficult. Following the identification of P. genetic diversity in Southeast Asia (Perrier fijiensis on the island in 2004, BLS has been Received for publication 8 Feb. 2019. Accepted for et al., 2011). the most important disease in banana/plan- publication 29 July 2019. Current address (B.M.I.): Plant Germplasm Intro- Banana production in Puerto Rico has tain production systems, thus requiring cul- duction Testing and Research Unit, USDA-ARS, been an important agricultural industry that tural and chemical means to effectively Prosser, WA historically has supported local consumer manage crop production. Long-term sustain- B.M.I. is the corresponding author. E-mail: brian. demand. Plantains, a type of cooking banana, able practices for managing BLS are needed, [email protected]. are especially important to Puerto Rican and minimizing reliance on fungicides is an 1808 HORTSCIENCE VOL. 54(10) OCTOBER 2019 important goal. This is especially true be- promising banana hybrids and cultivar ge- Field site and experimental design. In cause fungicides can have negative effects on notypes for their host reaction to BLS and to Aug. 2014, 15 test and reference genotypes the environment, pose risks to the public, and assess their agronomic traits and production (Tables 1 and 2) were established at TARS add to the production costs of farmers (Aktar potential. research farm (lat. 18°28#18.38$ N, long. et al., 2009). In addition, over time, several 67°3#4.25$ W; elevation, 118 m) located in extensively used fungicides have lost some of Materials and Methods Isabela, PR. The experiment was established their efficacy due to resistance in P. fijiensis on a well-drained Oxisol soil type (clayey, populations (Arango Isaza et al., 2016). The Plant material. Nine test genotypes orig- kaolinitic isohyperthermic Typic Hapludox) importation and evaluation of improved inating from four international banana breed- with a mean pH of 6.2. The mean annual disease-resistant Musa spp. germplasm, fol- ing/selection programs and six reference precipitation during the 4 years preceding lowed by its public acceptance and commer- genotypes were included in the trial. The experimental establishment (calendar years cial production, can address the many specific test genotypes (Table 1) were se- 2010–13) was 1596 mm, with peaks in pre- challenges that banana farmers face in Puerto lected for evaluation in Puerto Rico, either cipitation during the months of May and Rico. for their reported resistance to BLS or for August (U.S. Department of Agriculture, 2018). Most cultivated bananas in the world are their lower susceptibility to one or more races A randomized complete block design naturally occurring diploid and triploid se- of fusarium wilt, in addition to their good (RCBD) was used with four blocks and four lections of either Musa acuminata Colla. or agronomic performance. The test genotypes replicate plants per block for each genotype. M. acuminata Colla. · Musa balbisiana L. included the following: For two genotypes, not enough plants were hybrids; however, some synthetic tetraploid obtained by the time the experiment was hybrids are gaining acceptance (e.g., FHIA two triploid (AAA) dessert-type hybrid ge- established; therefore, only three and two clones in Cuba) and are being grown on notypes with BLS resistance from the Center replicate plants
Recommended publications
  • (A Species).Cdr
    BIOTROPIA Vol. 19 No. 1, 2012: 19 - 29 A SPECIES-SPECIFIC PCR ASSAY BASED ON THE INTERNAL TRANSCRIBED SPACER (ITS) REGIONS FOR IDENTIFICATION OF Mycosphaerella eumusae, M. fijiensis AND M. musicola ON BANANA IMAN HIDAYAT Microbiology Division, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong 16911, West Java, Indonesia Recipient of BIOTROP Research Grant 2010/Accepted 28 June 2012 ABSTRACT A study on development of a rapid PCR-based detection method based on ITS region of M. eumusae, M. fijiensis , and M. musicola on banana was carried out. The main objecive of this study was to develop a fast and species-specific PCR-based detection method for the presence ofMycosphaerella species on banana. The methods include collection of specimens, morphological identification supported by molecular phylogenetic analysis, RFLP analysis, species-specific primers development, and validation. Two species ofMycosphaerella , namely, M. fijiensisand M. musicola , and one unidentified Pseudocercospora species were found in Java Island. Three restriction enzymes used in the RFLP analysis, viz, AluI, HaeIII, and TaqI were capable to discriminateM. eumusae , M. fijiensis , and M. musicola . Two species-specific primer pairs, viz, MfijF/MfijR and MmusF/MmusR have been successfully developed to detect the presence ofM. fijiensis and M. musicola , respectively. Key words: banana, detection, fungi,Mycosphaerella leaf spot, phytopathology INTRODUCTION Indonesia is one of banana production zones in Southeast Asia. However, crop losses from global climate change and fungal pathogens pose a serious threat not only to Indonesia, but also to global food security. Therefore, these threats should not be underestimated. Among the banana pathogens, three morphologically similar species, viz,Mycosphaerella fijiensis (black leaf streak disease/black Sigatoka), M.
    [Show full text]
  • Sigatoka Diseases Control
    1 /4 SIGATOKA DISEASES CONTROL Yellow and Black Sigatoka are banana leaf diseases caused by fungi. They cause significant drying of the leaf surface. The fungi spread in two ways: - by water which carries the conidia (asexual form CONTROL of reproduction) from the upper to the lower leaves S E and suckers, S Conidia - yellow and black Sigatoka - by wind which carries the ascospores (sexual form EA of reproduction) in all directions. S The control of Sigatoka(s) enables the plant to conserve a sufficient number of healthy leaves up to harvest to ensure the normal growth of the fruit. The disease reduces the leaf surface and causes disturbances in the functioning of the plant, leading to a reduction in yield and quality DI SIGATOKA (particularly a higher risk of fast ripening). 1. YELLOW SIGATOKA OR LEAF STREAK DISEASE 2. BLACK SIGATOKA OR BLACK LEAF STREAK DISEASE (Mycosphaerella musicola) (Mycosphaerella fijiensis): A MORE VIRULENT FUNGUS The development of the fungus occurs in five stages: Black Sigatoka is present in almost all tropical banana producing FOR YELLOW SIGATOKA zones but its arrival in the Lesser Antilles is very recent (2009- Stage 1: A tiny yellow spot or light green streak on the upper surface of 2010). leaves. > Hardly observable. YELLOW SIGATOKA BLACK SIGATOKA Upper surface Lower surface 2.1-Description of symptoms and differentiation with Yellow Stage 2: The spots stretch out Sigatoka into yellow streaks of 3-4mm; this is the optimal stage for treatment. The symptoms of Black Sigatoka are sometimes not distinguishable from those of Yellow Sigatoka, especially in > Streaks 1 to 5 mm.
    [Show full text]
  • Diagnosis of Mycosphaerella Spp., Responsible for Mycosphaerella Leaf Spot Diseases of Bananas and Plantains, Through Morphotaxonomic Observations
    Banana protocol Diagnosis of Mycosphaerella spp., responsible for Mycosphaerella leaf spot diseases of bananas and plantains, through morphotaxonomic observations Marie-Françoise ZAPATER1, Catherine ABADIE2*, Luc PIGNOLET1, Jean CARLIER1, Xavier MOURICHON1 1 CIRAD-Bios, UMR BGPI, Diagnosis of Mycosphaerella spp., responsible for Mycosphaerella leaf spot TA A 54 / K, diseases of bananas and plantains, through morphotaxonomic observations. 34398, Montpellier Cedex 5, Abstract –– Introduction. This protocol aims to diagnose under laboratory conditions the France main Mycosphaerella spp. pathogens of bananas and plantains. The three pathogens Mycos- [email protected] phaerella fijiensis (anamorph Paracercospora fijiensis), M. musicola (anamorph Pseudocer- cospora musae) and M. eumusae (anamorph Pseudocercospora eumusae) are, respectively, 2 CIRAD-Bios, UPR Mult. Vég., Stn. Neufchâteau, 97130, the causal agents of Black Leaf Streak disease, Sigatoka disease and Eumusae Leaf Spot Capesterre Belle-Eau, disease. The principle, key advantages, starting plant material and time required for the Guadeloupe, France method are presented. Materials and methods. The laboratory materials required and details of the thirteen steps of the protocols (tissue clearing and in situ microscopic observa- [email protected] tions, isolation on artificial medium and cloning of single-spore isolate, in vitro sporulation and microscopic observations of conidia, and long-term storage of isolates) are described. Results. Diagnosis is based on the observations of anamorphs (conidiophores and conidia) which can be observed directly from banana leaves or after sporulation of cultivated isolates if sporulating lesions are not present on banana samples. France / Musa sp. / Mycosphaerella fijiensis / Mycosphaerella musicola / Mycosphaerella eumusae / foliar diagnosis / microscopy Identification des espèces de Mycosphaerella responsables des cercosprio- ses des bananiers et plantains, par des observations morphotaxonomiques.
    [Show full text]
  • Lecture 03 - Diseases of Banana (2 Lectures)
    Lecture 03 - Diseases of Banana (2 Lectures) Panama disease :Fusarium oxysporum f. spcubense Economic Importance The first major disease which attacked banana was called Panama disease from the area where it first became serious. Banana wilt is a soil-borne fungal disease and gets entry in the plant body through roots and wounds caused by nematodes. It is most serious in poorly drained soil. Disease spreads through infected suckers. Symptoms Yellowing of the lower most leaves starting from margin to midrib of the leaves. Yellowing extends upwards and finally heart leaf alone remains green for some time and it is also affected. The leaves break near the base and hang down around pseudostem. Longitudinal splitting of pseudostem. Discolouration of vascular vessels as red or brown streaks. The fungus spreads through use of infected rhizomes Continuous cultivation results in build up of inoculum. Pathogen Mycelium is septate, hyaline and branched. Fungus produces micro, macro conidia and also chlamydospores. Micro conidia - Single celled or rarely one septate hyaline elliptical or oval. Macro conidia - Sickle shaped hyaline, 3-5 septate and tapering at both ends. Chalamydospores - Thick walled, spherical to oval, hyaline to slightly yellowish in colour. Mode of spread and survival The pathogen is soil borne. It survives in soil as chlamydospores for longer periods. The primary spread of the disease is through infected rhizomes and secondary spread is through irrigation water. Continuous cultivation results in build up of inoculum. Management Avoid growing of susceptible cultivars viz., Rasthali, Monthan, Red banana and Virupakshi. Grow resistant cultivar Poovan. Since nematode predispose the disease pairing and prolinage wit Carbofuran granules.
    [Show full text]
  • Boiled Plantain
    State Of Knowledge Report Template For SoK Of WP2: Boiled Plantain Douala, December 2018 Gérard NGOH NEWILAH, CARBAP, Douala, Cameroon Cédric KENDINE VEPOWO, CARBAP, Douala, Cameroon Agnès ROLLAND-SABATÉ, INRA, Avignon, France 0 This report has been written in the framework of RTBfoods project. To be cited as: Gérard NGOH NEWILAH, Cédric KENDINE VEPOWO, Agnès ROLLAND-SABATÉ. 2018. Template For SoK Of WP2: Boiled Plantain. Douala (Cameroon). RTBfoods Project Report, 14p. Image cover page © Dufour D. for RTBfoods. 1 CONTENTS Table of Contents 1 Composition and structure of raw material ........................................................................ 4 1.1 Composition ................................................................................................................ 4 1.2 Structure ..................................................................................................................... 8 2 Processing condition ......................................................................................................... 8 3 Sensory analysis and consumer preference ..................................................................... 8 4 Product characterization and relationship with sensory evaluation ................................... 9 4.1 Evolution of composition and structure with processing ............................................. 9 4.2 Instrumental Texture assessment and relationship with sensory evaluation............... 9 4.3 Relationship between composition and sensory evaluation .....................................
    [Show full text]
  • Energy and Carbon Footprints of Ethanol Production Using Banana
    1 Energy and carbon footprints of ethanol production using banana and 2 cooking banana discard: a case study from Costa Rica and Ecuador 3 4 Authors: 5 Sophie Graefea,*, Dominique Dufoura,b, Andrés Giraldoa, Luis Armando Muñoza, Paola 6 Moraa, Hortensia Solísc, Hernán Garcésd, Alonso Gonzaleza 7 8 aInternational Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira, Cali, 9 Colombia 10 bCentre de Coopération Internationale en Recherche Agronomique pour le Développement 11 (CIRAD), UMR Qualisud, 73 Rue Jean-François Breton, 34398 Montpellier, France 12 cCooperativa de Caficultores de Dota (Coopedota), Santa María de Dota, Costa Rica 13 dEscuela Superior Politécnica del Litoral (ESPOL), Km 30.5 Via Perimetral, Guayaquil, 14 Ecuador 15 16 *Corresponding author. Tel.: +57 2 4450000 ext. 3308; Fax: +57 2 4450073. 17 E-mail address: [email protected] 18 19 20 Abstract 21 Banana and cooking banana (Musa spp.) production systems accumulate a considerable 22 quantity of discard due to high quality demands of markets. Ripe fruits have high sugar 23 contents, which can be easily processed to ethanol. The present study aimed to quantitatively 24 assess the production potential of ethanol from Musa spp. discard and to analyze the energy 25 and carbon (C) footprints of this production system using a life cycle approach. The study 26 compared three case studies differing in management practices, which were (I) a coffee 27 producer's cooperative in Costa Rica using Musa spp. as shade trees, (II) organic banana 28 producers from Ecuador, and (III) conventional banana producers from Ecuador. It was found 29 that banana and cooking banana discard accumulated at a rate of 1.4-3.4 t ha-1, of which 30 around 118-266 l ethanol could be produced on a yearly basis.
    [Show full text]
  • Mycosphaerella Spp Causing Leafspot Disease on Bananas Advanced Methods Supplement
    MYCOSPHAERELLA SPP CAUSING LEAFSPOT DISEASE ON BANANAS ADVANCED METHODS SUPPLEMENT MYCOSPHAERELLA SPP. CAUSING LEAFSPOT DISEASE ON BANANAS ADVANCED METHODS SUPPLEMENT Edited by J. Henderson (UQ/DPI&F Tree Pathology Centre ) K. Grice (Centre for Tropical Agriculture, DPI&F) Oc to ber 2008 1 MYCOSPHAERELLA SPP CAUSING LEAFSPOT DISEASE ON BANANAS ADVANCED METHODS SUPPLEMENT MYCOSPHAERELLA SPP. CAUSING LEAFSPOT DISEASE ON BANANAS ADVANCED METHODS SUPPLEMENT OCTOBER 2008 Contributors Juliane Henderson (UQ/DPI&F) Kathy Grice (DPI&F) Marie‐Françoise Zapater (CIRAD) Françoise Careel (CIRAD) The PCR primers and reaction conditions described in Protocol 4 of this document are pending publication and thus must be held in confidence until such time they appear in the public domain. Please also ensure these parameters do not appear in material including conference oral presentations, poster and funding body reports. No part of this document, including images, may be reproduced without permission of the authors. 2 MYCOSPHAERELLA SPP CAUSING LEAFSPOT DISEASE ON BANANAS ADVANCED METHODS SUPPLEMENT INTRODUCTION .................................................................................................................... 5 1.0 IDENTIFICATION OF MYCOSPHAERELLA SPP. PATHOGENS ON BANANA (IN SITU) USING LIGHT MICROSCOPY..................................................................................... 8 1.1 AIM................................................................................................................................ 8 1.2 METHODOLOGY.........................................................................................................
    [Show full text]
  • Phylogenetic Analysis of Cercospora and Mycosphaerella Based on the Internal Transcribed Spacer Region of Ribosomal DNA
    Ecology and Population Biology Phylogenetic Analysis of Cercospora and Mycosphaerella Based on the Internal Transcribed Spacer Region of Ribosomal DNA Stephen B. Goodwin, Larry D. Dunkle, and Victoria L. Zismann Crop Production and Pest Control Research, U.S. Department of Agriculture-Agricultural Research Service, Department of Botany and Plant Pathology, 1155 Lilly Hall, Purdue University, West Lafayette, IN 47907. Current address of V. L. Zismann: The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850. Accepted for publication 26 March 2001. ABSTRACT Goodwin, S. B., Dunkle, L. D., and Zismann, V. L. 2001. Phylogenetic main Cercospora cluster. Only species within the Cercospora cluster analysis of Cercospora and Mycosphaerella based on the internal produced the toxin cercosporin, suggesting that the ability to produce this transcribed spacer region of ribosomal DNA. Phytopathology 91:648- compound had a single evolutionary origin. Intraspecific variation for 658. 25 taxa in the Mycosphaerella clade averaged 1.7 nucleotides (nts) in the ITS region. Thus, isolates with ITS sequences that differ by two or more Most of the 3,000 named species in the genus Cercospora have no nucleotides may be distinct species. ITS sequences of groups I and II of known sexual stage, although a Mycosphaerella teleomorph has been the gray leaf spot pathogen Cercospora zeae-maydis differed by 7 nts and identified for a few. Mycosphaerella is an extremely large and important clearly represent different species. There were 6.5 nt differences on genus of plant pathogens, with more than 1,800 named species and at average between the ITS sequences of the sorghum pathogen Cercospora least 43 associated anamorph genera.
    [Show full text]
  • EFECTO DE LAS CONDICIONES DE INCUBACIÓN Y DE COMPUESTOS INORGÁNICOS Y ORGÁNICOS SOBRE LA ESPORULACIÓN DE LESIONES DE SIGATOKA NEGRA (Mycosphaerella Fijiensis)
    EFECTO DE LAS CONDICIONES DE INCUBACIÓN Y DE COMPUESTOS INORGÁNICOS Y ORGÁNICOS SOBRE LA ESPORULACIÓN DE LESIONES DE SIGATOKA NEGRA (Mycosphaerella fijiensis) MAUREN LISETH GÓMEZ RUIZ Trabajo Final de Graduación presentado a la Escuela de Agronomía como requisito parcial para optar al grado de Licenciatura en Ingeniería en Agronomía INSTITUTO TECNOLÓGICO DE COSTA RICA SEDE REGIONAL SAN CARLOS 2013 EFECTO DE LAS CONDICIONES DE INCUBACIÓN Y DE COMPUESTOS INORGÁNICOS Y ORGÁNICOS SOBRE LA ESPORULACIÓN DE LESIONES DE SIGATOKA NEGRA (Mycosphaerella fijiensis) MAUREN LISETH GÓMEZ RUIZ Trabajo Final de Graduación presentado a la Escuela de Agronomía para obtener el grado Licenciatura en Ingeniería en Agronomía INSTITUTO TECNOLÓGICO DE COSTA RICA SEDE REGIONAL SAN CARLOS 2013 ii EFECTO DE LAS CONDICIONES DE INCUBACIÓN Y DE COMPUESTOS INORGÁNICOS Y ORGÁNICOS SOBRE LA ESPORULACIÓN DE LESIONES DE SIGATOKA NEGRA (Mycosphaerella fijiensis) MAUREN LISETH GÓMEZ RUIZ Aprobado por los miembros del Tribunal Evaluador: ___________________ Ing. Agr. Mauricio Guzmán, M. Sc. Asesor Externo ___________________ Ing. Agr. Carlos Muñoz Ruiz, Ph.D. Asesor Interno ___________________ Ing. Agr. Joaquín Durán Mora, M. Sc. Jurado ___________________ Ing. Agr. Fernando Gómez Sánchez, MAE. Coordinador Trabajos Finales de Graduación ___________________ Ing. Agr. Luis Alberto Camero Rey. M. Sc. Director Escuela Agronomía 2013 iii DEDICATORIA A mis padres, José Ángel Gómez Artavia y Odalia Ruiz Hernández. A mis hermanos, Antony Ortiz Jarquín, Gabriel Gómez Ruiz y Darío Gómez Ruiz. Porque por ellos busco mejorar día a día, porque mis logros son sus logros. A toda aquella persona con la capacidad de enseñar, que lo hace con gusto, que son maestros en espíritu y en corazón.
    [Show full text]
  • Black Leaf Streak Disease Is Challenging the Banana Industry
    Original article Black Leaf Streak Disease is challenging the banana industry Luc de Lapeyre DE BELLAIRE1*, Eric FOURÉ1, Catherine ABADIE2,3, Jean CARLIER2 1 CIRAD-Persyst, UPR Black Leaf Streak Disease is challenging the banana industry. Systèmes bananes et ananas, Abstract — Introduction. Black Leaf Streak Disease (BLSD) is regarded as the most economically TA B-26 / PS4, Blvd. de la important threat that the banana industry has to face. Effectively, this foliar disease affects leaf pho- Lironde, 34398 Montpellier tosynthesis but, above all, reduces the greenlife of fruits, that cannot be exported in cases of severe Cedex 5, France, infestation. Main characteristics of Black Leaf Streak Disease. More than 20 Mycosphaerella spe- cies have been described on bananas. Leaf spot diseases of bananas are caused by some species of luc.de_lapeyre_de_bellaire@ this complex, of which M. fijiensis (BLSD) and M. musicola (Sigatoka disease) are the most important. cirad.fr M. fijiensis is an invasive species that has totally replaced M. musicola in most banana-exporting coun- tries, which was conducive to increasing difficulties in banana leaf spot control. BLSD causes increas- 2 CIRAD-Bios, UMR BGPI, ing difficulties for control. Since all banana cultivars grown in the banana industry are highly Campus international de susceptible to BLSD, the control of this disease relies on aerial applications of fungicides according Baillarguet, TA A-54 / K, to either systematic frameworks (mostly contact fungicides) or forecasting strategies (mostly systemic 34398 Montpellier Cedex 5, fungicides). In a banana-exporting country where M. fijiensis has been reported, BLSD control becomes increasingly more difficult. This evolution is essentially due to the rapid emergence of fun- France gicide resistance, and is conducive to a significant increase in the cost of disease control but, above 3 all, to increasing negative environmental effects.
    [Show full text]
  • Download the Full Paper
    Int. J. Biosci. 2018 International Journal of Biosciences | IJB | ISSN: 2220-6655 (Print) 2222-5234 (Online) http://www.innspub.net Vol. 13, No. 4, p. 278-294, 2018 RESEARCH PAPER OPEN ACCESS Potential of cooking bananas in addressing food security in East Africa Joachim Dotto*1,2, Athanasia O. Matemu1, Patrick A. Ndakidemi3 1Department of Food Biotechnology and Nutritional Sciences, The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania 2Centre for Research, Agricultural Advancement, Teaching Excellence and Sustainability in Food and Nutrition Security (CREATES-FNS), Arusha, Tanzania 3Department of Sustainable Agriculture, Biodiversity and Ecosystems Management, The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania Key words: Potassium, Nutritional value, Sensory, Physicochemical, Breeding. http://dx.doi.org/10.12692/ijb/13.4.278-294 Article published on October 30, 2018 Abstract Banana is a very popular fruit in the world market and serves as an ideal and low-cost staple food in East Africa whose residents rely mostly on bananas as a source of food. Banana is practically non-seasonal crop that reliably grown by local farmers primarily for food. It has been categorised as the dessert bananas and the cooking bananas. Cooking banana is one of the most important staple food and cash crops in East Africa. It plays a central role in food security; it serves as a source of carbohydrate, minerals and vitamins all year- round. The banana crop provides a household annual income of about $ 1,500; this is the highest smallholder income-generating crop in the region. Currently, several indigenous and improved cultivars exist in East Africa.
    [Show full text]
  • Mycosphaerella Eutnusae and Its Anamorph Pseudo- Cercospora Eumusae Spp. Nov.: Causal Agent of Eumusae Leaf Spot Disease of Banana
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Sydowia Jahr/Year: 2002 Band/Volume: 54 Autor(en)/Author(s): Crous Pedro W., Mourichon Xavier Artikel/Article: Mycosphaerella eumusae and its anamorph Pseudocercospora eumusae spp. nov.: causal agent of eumusae leaf spot disease of banana. 35-43 ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at Mycosphaerella eutnusae and its anamorph Pseudo- cercospora eumusae spp. nov.: causal agent of eumusae leaf spot disease of banana Pedro W. Crous1 & Xavier Mourichon2 1 Department of Plant Pathology, University of Stellenbosch, P. Bag XI, Matieland 7602, South Africa 2 Centre de Cooperation International en Recherche Agronomique pour le Developement (CIRAD), TA 40/02, avenue Agropolis, 34 398 Montpellier, France P. W. Crous, & X. Mourichon (2002). Mycosphaerella eumusae and its ana- morph Pseudocercospora eumusae spp. nov: causal agent of eumusae leaf spot disease of banana. - Sydowia 54(1): 35-43. The teleomorph name, Mycosphaerella eumusae, and its anamorph, Pseudo- cercospora eumusae, are validated for the banana disease formerly known as Septoria leaf spot. This disease has been found on different Musa culti- vars from tropical countries such as southern India, Sri Lanka, Thailand, Malaysia, Vietnam, Mauritius and Nigeria. It is contrasted with two similar species, namely Mycosphaerella fijiensis (black leaf streak or black Sigatoka disease) and Mycosphaerella musicola (Sigatoka disease). Although the teleo- morphs of these three species are morphologically similar, they are phylogene- tically distinct and can also be distinguished based upon the morphology of their anamorphs. Keywords: Leaf spot, Musa, Mycosphaerella, Pseudocercospora, systematics.
    [Show full text]