Bsc Chemistry

Total Page:16

File Type:pdf, Size:1020Kb

Bsc Chemistry Subject Chemistry Paper No and Title Paper 7: Inorganic Chemistry-II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal Complexes) Module No and Title 12, Electronic spectra of coordination complexes IV Module Tag CHE_P7_M12 CHEMISTRY Paper 7: Inorganic Chemistry-II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal Complexes) Module 12, Electronic spectra of coordination complexes IV TABLE OF CONTENTS 1. Learning outcomes 2. Introduction 3. Emission spectrum 4. Absorption spectrum 5. Electronic spectra of transition metal complexes 6. Selection rules and their breakdown 6.1 Selection rules 6.2 Breakdown of the selection rules 7. Summary CHEMISTRY Paper 7: Inorganic Chemistry-II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal Complexes) Module 12, Electronic spectra of coordination complexes IV 1. Learning Outcomes After studying this module, you shall be able to Know various selection rules for the transitions Learn about various factors involved in the breakdown of the selection rules Identify various aspects of the absorption and emission spectrum Analyze the transition probability of the complexes 2. Introduction Spectrum in general for various species (compounds, complexes and elements) can be correlated in the following two ways: (a) Absorption spectrum: This type of spectrum is obtained when absorption of a radiation occurs by the molecule, atom or any absorbing species, which leads to transition of the electron(s) from the lower to the higher level. Figure 1. Absorption and emission phenomenon taking place CHEMISTRY Paper 7: Inorganic Chemistry-II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal Complexes) Module 12, Electronic spectra of coordination complexes IV (b) Emission spectrum: This is just reverse of the absorption spectrum in which transition from the higher to the lower level occurs due to the emission of radiation by electrons to the radiation field. In case no radiation is observed then the transition from higher to lower level is termed as non-radiate decay. 3. Emission spectrum Emission spectra are of three types namely, (1) Continuous spectrum (2) Band spectrum (3) Line spectrum Continuous spectra: The continuous spectrum for a substance is obtained when the molecules of the substance are thermally excited by providing large amount of heat. For example, when solids such as iron, aluminum, carbon is heated upto the extent that they start blazing. It is the spectrum of electromagnetic waves that involves a wide range (continuous range) of wavelengths. In the visible portion of electromagnetic spectrum, a continuous spectrum would look like a rainbow. Figure 2. The spectrum of a common (incandescent) light bulb spans all visible wavelengths, without interruption Band spectrum: When the thermal excitation given to the molecules of a substance is not enough to lead to a continuous spectrum, we get a band type of spectrum. In this case, we get spectrum in the form of huge number of bands, different in color. Basically the spectrum consists of a large number of closely spaced lines which appear to give a look of different colored bands. The spectrum is sharp at one end which fades away at the other end. This sharp end is called the head whereas the faded region is the tail (Figure 3). CHEMISTRY Paper 7: Inorganic Chemistry-II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal Complexes) Module 12, Electronic spectra of coordination complexes IV Figure 3. Band emission spectrum of the nitrogen gas Line spectrum: Line spectrum is given by the elements in their vapor form. It consists of lines at different intervals of the spectrum against dark background. The intensity of lines is mostly different from each other. The molecular and electronic arrangement of the elements leads to this type of line spectrum. Hence, two elements can not have same type of line spectrum (Figure 4). Figure 4. Thin or low-density cloud of gas emits light only at specific wavelengths that depend on its composition and temperature, producing a spectrum with bright emission lines CHEMISTRY Paper 7: Inorganic Chemistry-II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal Complexes) Module 12, Electronic spectra of coordination complexes IV 4. Absorption spectrum In order to have the absorption spectrum, sample is placed between a light source and the spectrum recorder which measures the amount, intensity and frequency of the light absorbed by the sample (Figure 5). The part of the spectrum absorbed by the sample hence correlates to the absorption spectrum of the sample. Electronic absorption spectrum for the transition metal complexes are of two types namely d-d transition and charge transfer transition spectrum. As the name suggest, in case of d-d spectrum the transitions occur within the d orbitals and in case of charge transfer spectrum, the transitions take place from ligand to the metal or vice-versa . Figure 5. Basic absorption spectrometer 5. Electronic spectra of transition metal complexes There are various principles governing the transitions occurring between various electronic levels in transition metal complexes. Some of these principles have been discussed below. (a) Frank-Codon principle: The time taken by the electronic transition is quite small that is in the order of 10-15 sec and thus the molecule or the atom undergoing transition does not have enough time to appreciably change its position or else configuration. Because of this it can be said that the vibrational kinetic energy of the species undergoing transition will be same in the excited state and ground state. Also, an alternate statement can be said that since the movement of the nuclei during the course of transition is negligible, the internuclear distances do not alter and the most probable transitions are those which occur vertically. CHEMISTRY Paper 7: Inorganic Chemistry-II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal Complexes) Module 12, Electronic spectra of coordination complexes IV Figure 6. Frank-Codon principle (b) Electronic transitions between transition states: Quite often, transitions arise from the ground vibrational level of the ground electronic state to several other vibrational levels of potential excited electronic states. These transitions give rise to vibrational fine structure in the foremost peak of the electronic transition. Since all the molecules are present in the ground vibrational level, nearly all transitions that give rise to a peak in the absorption spectrum will arise from the ground electronic state. If the different excited vibrational levels are represented as υ1, υ2, etc., and the ground state as υ0, the fine structure in the main peak of the spectrum is assigned to υ0 → υ0 , υ0 → υ1, υ0 → υ2 etc., vibrational states. The υ0 → υ0 transition is the lowest energy (longest wave length) transition. Figure 7. Basic absorption spectrum which gets vibrational fine structure when resolved CHEMISTRY Paper 7: Inorganic Chemistry-II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal Complexes) Module 12, Electronic spectra of coordination complexes IV (c) Transition probability: For absorption spectrum to appear light must be absorbed by the molecule. Light will be absorbed if it can interact with the molecule by its oscillating electric and magnetic fields. For this to take place the dipole moment of the molecule must change during the time of transition. If the change in dipole moment is quite large, number of photons will be absorbed which further lead to intense bands of large area. Otherwise, small change in the dipole moment will lead to less absorption of photons and hence lesser area and weak absorption bands with low intensity. Figure 8. The vibrations that lead to change in dipole moment, taken from CHEMISTRY Paper 7: Inorganic Chemistry-II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal Complexes) Module 12, Electronic spectra of coordination complexes IV 6. Selection rules and their breakdown 6.1 Selection rules There are various selection rules that govern the feasibility of a transition for transition metal complexes. Some of the most important selection rules have been listed below. (1) Laporte selection rule: This rule states that for a molecule having centre of symmetry, transitions within the same sub-shell are forbidden. As per this rule the p-p or d-d transitions are forbidden. Mathematically, the rule can be stated in the form of an equation. For any transition to take place, change in the value of total orbital angular momentum between the final and initial stage should be ΔL = ±1 (ΔL = Lf – Li) Where ΔL is equal to Lf (total angular momentum of the final state) subtracted by Li (total angular momentum of the initial state) . The transitions occurring between the states of same parity are disallowed which means the d orbitals which are gerade in terms of parity or symmetric with respect to the centre of inversion cannot have transitions from one d orbital to the other. However, p orbitals are ungerade that are asymmetric with respect to the centre of inversion and thus, transition can take place between d and p orbitals. In very simple words d-d transitions as well as p-p transitions are not allowed, whereas d to p and p to d are allowed. (2) In case of states with same spin multiplicity the transitions cannot occur. The spin multiplicity 1 1 is given by the value (2S+1). Thus transitions between T1 and A1 are allowed in terms of spin 3 4 multiplicity whereas between T1 and A2 are not. The transitions which are feasible are called spin allowed whereas those are not allowed, are termed as spin forbidden. i.e. S = 0 In case these rules are completely followed by the transition metal complexes, many of the transition must have not been observed. But, actually these transitions occur which suggest that we can have cases where these rules are broken down to actually display the forbidden transitions.
Recommended publications
  • CHAPTER 13 Molecular Spectroscopy 2: Electronic Transitions
    CHAPTER 13 Molecular Spectroscopy 2: Electronic Transitions I. General Features of Electronic spectroscopy. A. Visible and ultraviolet photons excite electronic state transitions. εphoton = 120 to 1200 kJ/mol. Table 13A.1 Colour, frequency, and energy of light B. Electronic transitions are accompanied by vibrational and rotational transitions of any Δν, ΔJ (complex and rich spectra in gas phase). In liquids and solids, this fine structure merges together due to collisional broadening and is washed out. Chlorophyll in solution, vibrational fine structure in gaseous SO2 UV visible spectrum. CHAPTER 13 1 C. Molecules need not have permanent dipole to undergo electronic transitions. All that is required is a redistribution of electronic and nuclear charge between the initial and final electronic state. Transition intensity ~ |µ|2 where µ is the magnitude of the transition dipole moment given by: ˆ d µ = ∫ ψfinalµψ initial τ where µˆ = −e ∑ri + e ∑Ziri € electrons nuclei r vector position of the particle i = D. Franck-Condon principle: Because nuclei are so much more massive and € sluggish than electrons, electronic transitions can happen much faster than the nuclei can respond. Electronic transitions occur vertically on energy diagram at right. (Hence the name vertical transition) Transition probability depends on vibrational wave function overlap (Franck-Condon factor). In this example: ν = 0 ν’ = 0 have small overlap ν = 0 ν’ = 2 have greatest overlap Now because the total molecular wavefunction can be approximately factored into 2 terms, electronic wavefunction and the nuclear position wavefunction (using Born-Oppenheimer approx.) the transition dipole can also be factored into 2 terms also: S µ = µelectronic i,f S d Franck Condon factor i,j i,f = ∫ ψf,vibr ψi,vibr τ = − CHAPTER 13 2 See derivation “Justification 14.2” II.
    [Show full text]
  • Lecture B4 Vibrational Spectroscopy, Part 2 Quantum Mechanical SHO
    Lecture B4 Vibrational Spectroscopy, Part 2 Quantum Mechanical SHO. WHEN we solve the Schrödinger equation, we always obtain two things: 1. a set of eigenstates, |ψn>. 2. a set of eigenstate energies, En QM predicts the existence of discrete, evenly spaced, vibrational energy levels for the SHO. n = 0,1,2,3... For the ground state (n=0), E = ½hν. Notes: This is called the zero point energy. Optical selection rule -- SHO can absorb or emit light with a ∆n = ±1 The IR absorption spectrum for a diatomic molecule, such as HCl: diatomic Optical selection rule 1 -- SHO can absorb or emit light with a ∆n = ±1 Optical selection rule 2 -- a change in molecular dipole moment (∆μ/∆x) must occur with the vibrational motion. (Note: μ here means dipole moment). If a more realistic Morse potential is used in the Schrödinger Equation, these energy levels get scrunched together... ΔE=hν ΔE<hν The vibrational spectroscopy of polyatomic molecules gets more interesting... For diatomic or linear molecules: 3N-5 modes For nonlinear molecules: 3N-6 modes N = number of atoms in molecule The vibrational spectroscopy of polyatomic molecules gets more interesting... Optical selection rule 1 -- SHO can absorb or emit light with a ∆n = ±1 Optical selection rule 2 -- a change in molecular dipole moment (∆μ/∆x) must occur with the vibrational motion of a mode. Consider H2O (a nonlinear molecule): 3N-6 = 3(3)-6 = 3 Optical selection rule 2 -- a change in molecular dipole moment (∆μ/∆x) must occur with the vibrational motion of a mode. Consider H2O (a nonlinear molecule): 3N-6 = 3(3)-6 = 3 All bands are observed in the IR spectrum.
    [Show full text]
  • Lecture 17 Highlights
    Lecture 23 Highlights The phenomenon of Rabi oscillations is very different from our everyday experience of how macroscopic objects (i.e. those made up of many atoms) absorb electromagnetic radiation. When illuminated with light (like French fries at McDonalds) objects tend to steadily absorb the light and heat up to a steady state temperature, showing no signs of oscillation with time. We did a calculation of the transition probability of an atom illuminated with a broad spectrum of light and found that the probability increased linearly with time, leading to a constant transition rate. This difference comes about because the many absorption processes at different frequencies produce a ‘smeared-out’ response that destroys the coherent Rabi oscillations and results in a classical incoherent absorption. Selection Rules All of the transition probabilities are proportional to “dipole matrix elements,” such as x jn above. These are similar to dipole moment calculations for a charge distribution in classical physics, except that they involve the charge distribution in two different states, connected by the dipole operator for the transition. In many cases these integrals are zero because of symmetries of the associated wavefunctions. This gives rise to selection rules for possible transitions under the dipole approximation (atom size much smaller than the electromagnetic wave wavelength). For example, consider the matrix element z between states of the n,l , m ; n ', l ', m ' Hydrogen atom labeled by the quantum numbers n,,l m and n',','l m : z = ψ()()r z ψ r d3 r n,l , m ; n ', l ', m ' ∫∫∫ n,,l m n',l ', m ' To make progress, first consider just the φ integral.
    [Show full text]
  • Introduction to Differential Equations
    Quantum Dynamics – Quick View Concepts of primary interest: The Time-Dependent Schrödinger Equation Probability Density and Mixed States Selection Rules Transition Rates: The Golden Rule Sample Problem Discussions: Tools of the Trade Appendix: Classical E-M Radiation POSSIBLE ADDITIONS: After qualitative section, do the two state system, and then first and second order transitions (follow Fitzpatrick). Chain together the dipole rules to get l = 2,0,-2 and m = -2, -2, … , 2. ??Where do we get magnetic rules? Look at the canonical momentum and the Asquared term. Schrödinger, Erwin (1887-1961) Austrian physicist who invented wave mechanics in 1926. Wave mechanics was a formulation of quantum mechanics independent of Heisenberg's matrix mechanics. Like matrix mechanics, wave mechanics mathematically described the behavior of electrons and atoms. The central equation of wave mechanics is now known as the Schrödinger equation. Solutions to the equation provide probability densities and energy levels of systems. The time-dependent form of the equation describes the dynamics of quantum systems. http://scienceworld.wolfram.com/biography/Schroedinger.html © 1996-2006 Eric W. Weisstein www-history.mcs.st-andrews.ac.uk/Biographies/Schrodinger.html Quantum Dynamics: A Qualitative Introduction Introductory quantum mechanics focuses on time-independent problems leaving Contact: [email protected] dynamics to be discussed in the second term. Energy eigenstates are characterized by probability density distributions that are time-independent (static). There are examples of time-dependent behavior that are by demonstrated by rather simple introductory problems. In the case of a particle in an infinite well with the range [ 0 < x < a], the mixed state below exhibits time-dependence.
    [Show full text]
  • HJ Lipkin the Weizmann Institute of Science Rehovot, Israel
    WHO UNDERSTANDS THE ZWEIG-IIZUKA RULE? H.J. Lipkin The Weizmann Institute of Science Rehovot, Israel Abstract: The theoretical basis of the Zweig-Iizuka Ru le is discussed with the emphasis on puzzles and paradoxes which remain open problems . Detailed analysis of ZI-violating transitions arising from successive ZI-allowed transitions shows that ideal mixing and additional degeneracies in the particle spectrum are required to enable cancellation of these higher order violations. A quantitative estimate of the observed ZI-violating f' + 2rr decay be second order transitions via the intermediate KK state agrees with experiment when only on-shell contributions are included . This suggests that ZI-violations for old particles are determined completely by on-shell contributions and cannot be used as input to estimate ZI-violation for new particle decays where no on-shell intermediate states exist . 327 INTRODUCTION - SOME BASIC QUESTIONS 1 The Zweig-Iizuka rule has entered the folklore of particle physics without any clear theoretical understanding or justification. At the present time nobody really understands it, and anyone who claims to should not be believed. Investigating the ZI rule for the old particles raises many interesting questions which may lead to a better understanding of strong interactions as well as giving additional insight into the experimentally observed suppression of new particle decays attributed to the ZI rule. This talk follows an iconoclastic approach emphasizing embarrassing questions with no simple answers which might lead to fruitful lines of investigation. Both theoretical and experimental questions were presented in the talk. However, the experimental side is covered in a recent paper2 and is not duplicated here.
    [Show full text]
  • UV-Vis. Molecular Absorption Spectroscopy
    UV-Vis. Molecular Absorption Spectroscopy Prof. Tarek A. Fayed UV-Vis. Electronic Spectroscopy The interaction of molecules with ultraviolet and visible light may results in absorption of photons. This results in electronic transition, involving valance electrons, from ground state to higher electronic states (called excited states). The promoted electrons are electrons of the highest molecular orbitals HOMO. Absorption of ultraviolet and visible radiation in organic molecules is restricted to certain functional groups (known as chromophores) that contain valence electrons of low excitation energy. A chromophore is a chemical entity embedded within a molecule that absorbs radiation at the same wavelength in different molecules. Examples of Chromophores are dienes, aromatics, polyenes and conjugated ketones, etc. Types of electronic transitions Electronic transitions that can take place are of three types which can be considered as; Transitions involving p-, s-, and n-electrons. Transitions involving charge-transfer electrons. Transitions involving d- and f-electrons in metal complexes. Most absorption spectroscopy of organic molecules is based on transitions of n- or -electrons to the *-excited state. These transitions fall in an experimentally convenient region of the spectrum (200 - 700 nm), and need an unsaturated group in the molecule to provide the -electrons. In vacuum UV or far UV (λ<190 nm ) In UV/VIS For formaldehyde molecule; Selection Rules of electronic transitions Electronic transitions may be allowed or forbidden transitions, as reflected by appearance of an intense or weak band according to the magnitude of εmax, and is governed by the following selection rules : 1. Spin selection rule (△S = 0 for the transition to be allowed): there should be no change in spin orientation i.
    [Show full text]
  • Rotational Spectroscopy: the Rotation of Molecules
    Rotational spectroscopy: The rotation of molecules z (IC) symmetric: ≠ ≠ IA=IB IC 0 x (IA) linear: IA=0; IB=IC asymmetric: ≠ ≠ ≠ IA IB IC 0 y (IB) Rotor in 3-D Nils Walter: Chem 260 ≠ spherical: IA=IB=IC 0 The moment of inertia for a diatomic (linear) rigid rotor r definition: r = r1 + r2 m1 m2 C(enter of mass) r1 r2 Moment of inertia: Balancing equation: m1r1 = m2r2 2 2 I = m1r1 + m2r2 m m ⇒ I = 1 2 r 2 = µr 2 µ = reduced mass + m1 m2 Nils Walter: Chem 260 Solution of the Schrödinger equation for the rigid diatomic rotor h2 (No potential, − V 2Ψ = EΨ µ only kinetic 2 energy) ⇒ EJ = hBJ(J+1); rot. quantum number J = 0,1,2,... h B = [Hz] 4πI ⇒ EJ+1 -EJ = 2hB(J+1) Nils Walter: Chem 260 Selection rules for the diatomic rotor: 1. Gross selection rule Light is a transversal electromagnetic wave a polar rotor appears to have an oscillating ⇒ a molecule must be polar to electric dipole Nils Walter: Chem 260 be able to interact with light Selection rules for the diatomic rotor: 2. Specific selection rule rotational quantum number J = 0,1,2,… describes the angular momentum of a molecule (just like electronic orbital quantum number l=0,1,2,...) and light behaves as a particle: photons have a spin of 1, i.e., an angular momentum of one unit and the total angular momentum upon absorption or emission of a photon has to be preserved ⇒⇒∆∆J = ± 1 Nils Walter: Chem 260 Okay, I know you are dying for it: Schrödinger also can explain the ∆J = ± 1 selection rule Transition dipole µ = Ψ µΨ dτ moment fi ∫ f i initial state final state ⇒ only if this integral
    [Show full text]
  • Shaping Polaritons to Reshape Selection Rules
    Shaping Polaritons to Reshape Selection Rules 1,2 2 3 2 2,4 Francisco Machado∗ , Nicholas Rivera∗ , Hrvoje Buljan , Marin Soljaˇci´c , Ido Kaminer 1Department of Physics, University of California, Berkeley, CA 97420, USA 2Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 3Department of Physics, University of Zagreb, Zagreb 10000, Croatia. 4Department of Electrical Engineering, Technion, Israel Institute of Technology, Haifa 32000, Israel. The discovery of orbital angular momentum (OAM) in light established a new degree of freedom by which to control not only its flow but also its interaction with matter. Here, we show that by shaping extremely sub-wavelength polariton modes, for example by imbuing plasmon and phonon polariton with OAM, we engineer which transitions are allowed or forbidden in electronic systems such as atoms, molecules, and artificial atoms. Crucial to the feasibility of these engineered selection rules is the access to conventionally forbidden transitions afforded by sub-wavelength polaritons. We also find that the position of the absorbing atom provides a surprisingly rich parameter for controlling which absorption processes dominate over others. Additional tunability can be achieved by altering the polaritonic properties of the substrate, for example by tuning the carrier density in graphene, potentially enabling electronic control over selection rules. Our findings are best suited to OAM-carrying polaritonic modes that can be created in graphene, monolayer conductors, thin metallic films, and thin films of polar dielectrics such as boron nitride. By building on these findings we foresee the complete engineering of spectroscopic selection rules through the many degrees of freedom in the shape of optical fields.
    [Show full text]
  • Laporte Selection Rule (Only for Systems with Inversion Symmetry)
    UV/Vis-Spectroscopy = investigation of electronic transitions within a molecule Energy Electronic transition Emission Excited state Ea hn Ground state E Absorption g c Conversion factors ~ –1 –1 E Ea Eg hn h hcn 1 eV = 8066 cm = 96.5 kJ•mol 1 eV = 1.602•10–19 J n+ UV/Vis spectra of the [M(H2O)6] cations general observation: d1, d4, d6, d9 (one band) d2, d3, d7, d8 (three bands) d5 (several sharp, relatively weak bands) (only high-spin compounds) d0, d10: no absorption bands Intensities of absorption bands –1 –1 emax (extinction coefficient), dimension M cm SiO2 cuvette Lambert-Beer law: emax = E / (c·l) 5 –1 –1 range: emax = 0 to > 10 M cm l = diameter e of cuvette emax 1 n n~ c 400 nm = 25000 cm-1 200 nm = 50000 cm-1 max Selection rules* spin multiplicity MS = 2S+1 S = Ss = n/2 (total spin quantum 1. Spin selection rule S = 0 or MS = 0 number) (Transition between same spin states allowed: singlet -> singlet, triplet -> triplet, others are forbidden: singlet -> triplet, doublet -> singlet, etc.) 2+ [Mn(H2O)6] Pauli-Principle not obeyed hn S = 5/2 S = 5/2 S = 3/2 S = 1, forbidden e < 1 M‒1cm‒1 .. only one electron is involved in any transition max * were developed for metal atoms and ions (where they are rigorously obeyed), not complexes Spin selection rule 2+ [Co(H2O)6] 3+ Pauli Prinziple [Cr(NH3)6] obeyed hn S = 3/2 S = 3/2 S = 0, allowed ‒1 ‒1 emax = 1-10 M cm In the case of spin orbit coupling (as is the case for trans.-metal complexes), the spin-selection rule is partially lifted (=> weak, so-called inter-combination bands arise with e = 0.01 – 1.0 M‒1cm‒1) 4 2 III III II (example: A2g→ Eg- transition, in the case of Cr , l.s.-Co , or Mn ) an e ~ 0.01 M‒1cm‒1 is hardly detectable Orbital selection rule L = 1 2.
    [Show full text]
  • CHAPTER 12 Molecular Spectroscopy 1: Rotational and Vibrational Spectra
    CHAPTER 12 Molecular Spectroscopy 1: Rotational and Vibrational Spectra I. General Features of Spectroscopy. A. Overview. 1. Bohr frequency rule: hc Ephoton = hν = = hcν˜ = Eupper −Elower λ 1 Also remember ν˜ = (usually in cm-1) λ € 2. Types of spectroscopy (three broad types): -emission € -absorption -scattering Rayleigh Stokes Anti-Stokes CHAPTER 12 1 3. The electromagnetic spectrum: Region λ Processes gamma <10 pm nuclear state changes x-ray 10 pm – 10 nm inner shell e- transition UV 10 nm – 400 nm electronic trans in valence shell VIS 400 – 750 nm electronic trans in valence shell IR 750 nm – 1 mm Vibrational state changes microwave 1 mm – 10 cm Rotational state changes radio 10 cm – 10 km NMR - spin state changes 4. Classical picture of light absorption – since light is oscillating electric and magnetic field, interaction with matter depends on interaction with fluctuating dipole moments, either permanent or temporary. Discuss vibrational, rotational, electronic 5. Quantum picture: Einstein identified three contributions to transitions between states: a. stimulated absorption b. stimulated emission c. spontaneous emission Stimulated absorption transition probability w is proportional to the energy density ρ of radiation through a proportionality constant B w=B ρ The total rate of absorption W depends on how many molecules N in the light path, so: W = w N = N B ρ CHAPTER 12 2 Now what is B? Consider plane-polarized light (along z-axis), can cause transition if the Q.M. transition dipole moment is non-zero. µ = ψ *µˆ ψdτ ij ∫ j z i Where µˆ z = z-component of electric dipole operator of atom or molecule Example: H-atom € € - e r + µˆ z = −er Coefficient of absorption B (intrinsic ability to absorb light) 2 µij B = 6ε 2€ Einstein B-coefficient of stimulated absorption o if 0, transition i j is allowed µ ij ≠ → µ = 0 forbidden € ij € 6.
    [Show full text]
  • Wls-76/42-Ph
    WlS-76/42-Ph A KlfO UNDERSTANDS THE IhCIG-IIZUKA RULE? H.J. Lipkin The Kctzsann Institute of Science Rchovot, Israel Abstract: The theoretical basis of the Zweig-Iizuka Rule is discussed *ith the emphasis on puzzles and . paradoxes which remain open problems. Detailed analysis of Zl-violating transitions arising from successive Zl-allowcd transitions shows that ideal mixing and additional degeneracies in the particle spectrum are required to enable cancellation of these higher order violations. A quantitative estimate of the observed Zl-violating f •* 2ff decay be second order transitions via the intermediate KK state agrees with experiment when only on-shell contributions are included. This suggests that Zl-violations for old particles are determined completely by on-shell contributions and cannot be used as input to estimate Zl-violation for new particle decays where no on-shell intermediate states exist. t INTRODUCTION - SOMli BASIC QULSHONS The Zwcig-Iituka rule has entered the folklore of particle physics without any clear theoretical understanding or justification. At the present time nobody really understands it, and anyone who clliis to should not be believed. Investigating the ZI rule for the old particles raises many interesting questions which say lead to a better understanding of strong interactions as well as giving additional insight into the experiocntally observed suppression of new particle decays attributed to the ZI rule. This talk follows an iconoclastic approach emphasizing embarrassing questions with no simple answers which Bight lead to fruitful lines of investigation. Both theoretical and experimental questions were presented in the talk. However, 2 the experimental side is covered in a recent paper and is not duplicated here.
    [Show full text]
  • Diatomic Vibrational Spectra
    Diatomic vibrational spectra Molecular vibrations Typical potential energy curve of a diatomic molecule: Parabolic approximation close to Re: 1 V kx2 x R R 2 e k = force constant of the bond. The steeper the walls of the potential, the stiffer the bond, the greater the force constant. Connection between the shape of molecular potential energy curve and k: we expand V(x) around R = Re by a Taylor series: 2 2 dV 1 d V 2 1 d V 2 Vx V0 x x ... x dx 2 2 2 2 0 dx 0 dx 0 V(0) = constant set arbitrarily to zero. first derivative of V is 0 at the minimum. for small displacements we ignore all high terms. Hence, the first approximation to a molecular potential energy curve is a parabolic potential with: d2V k 2 dx 0 if V(x) is sharply curved, k is large. if V(x) is wide and shallow, k is small. Schrödinger equation for the relative motion of two atoms of masses m1 and m2 with a parabolic potential energy: 2 d2 1 kx2 E 2 2meff dx 2 m1m2 where meff = effective (or reduced) mass: meff m1 m2 Use of meff to consider the problem from the perspective of the motion of molecule as a whole. Example: homonuclear diatomic m1 = m2 = m: meff m / 2. XH, where mX >> mH: meff mH. Same Schrödinger equation as for the particle of mass m undergoing harmonic motion. Therefore, the permitted vibrational energy levels are: 1 k En n with: and: n = 0, 1, 2, … 2 meff The vibrational wavefunctions are the same as those discussed for the harmonic oscillator.
    [Show full text]