Quick viewing(Text Mode)

Lecture 4: Polyatomic Spectra

Lecture 4: Polyatomic Spectra

Lecture 4: Polyatomic Spectra

Ammonia 1. From diatomic to polyatomic A-axis

2. Classification of polyatomic 3. Rotational spectra of polyatomic N molecules

4. Vibrational bands, vibrational spectra H 1. From diatomic to polyatomic

 Rotation – Diatomics Recall: For diatomic molecules Energy: FJ ,cm1  BJJ 1 DJ 2 J 12   R.R. Centrifugal distortion constant h Rotational constant: B,cm1  8 2 Ic Selection Rule: J ' J"1 J  1

3 position:  J "1J "  2BJ"1 4D J"1

 Notes: 2 1. Dv is small, i.e., D / B  4B / vib  1 2 2  D   B   1.7  6 2. E.g., for NO,    4   4   310  B NO  e  1900  → Even @ J=60, D / B  J 2 ~ 0.01 What about polyatomics (≥3 )? 2 1. From diatomic to polyatomic

 3D-body rotation B

. Convention: A A-axis is the “unique” or “figure” axis, along which lies the molecule’s C defining

. 3 principal axes (orthogonal): A, B, C

. 3 principal moments of inertia: IA, IB, IC . Molecules are classified in terms of the relative values of IA, IB, IC 3 2. Classification of polyatomic molecules

 Types of molecules Linear Symmetric Asymmetric Type Spherical Tops Molecules Tops Rotors Relative IB=IC≠IA magnitudes IB=IC; IA≈0* IA=IB=IC IA≠IB≠IC IA≠0 of IA,B,C NH CO2 3 H2O CH4

C2H2 CH F Examples 3 Acetylene NO2 OCS BCl3 Carbon Boron oxysulfide trichloride

Relatively simple No moment Largest category Not microwave active Most complex

*Actually finite, but quantized momentum means it is in lowest state of rotation 4 2. Classification of polyatomic molecules

 Linear molecules E.g., Carbon oxy-sulfide (OCS) A B C 16 12 32

O C S B A rCO rCS rC rS Center of mass

IB=IC; IA≈0 C rCO = 1.165Å h B,cm1  r = 1.558Å 2 CS 8 I Bc 5 2. Classification of polyatomic molecules

 Symmetric tops Prolate A IAB=C I =I ≠I ; I ≠0 B C A A E.g., CH3F

1 h A,cm  2 8 I Ac B C h B,cm1  2 H B 8 I Bc 1 12 19 h H C,cm1  C F 8 2 I c C A H C.M. C Tripod-like (tetrahedral bonding)

6 2. Classification of polyatomic molecules

 No elec.  Symmetric tops dipole mom. Oblate → no QM selection rule A IA>IB=IC, A

 Spherical tops  Asymmetric rotors

IA=IB=IC IA≠IB≠IC

E.g., CH (methane) 4 E.g., H2O H A  Symmetric, but C H C No dipole moment O H H H o B H No rotational 104.45 spectrum C.M. w/ C at center C.M. and H at  Complex and not corners addressed here 8 3. Rotational spectra of polyatomic molecules

 Linear molecules (IB=IC; IA≈0)  Examples

OCS HCN CO2 C2H2 HC2Cl

Symmetric, no dipole moment

Must be asymmetric to have electric dipole moment (isotopic substitution doesn’t change this as bond remain fixed)

 Energies and line positions Can treat like diatomic (1 value of I) → same spectrum FJ  BJJ 1 DJ 2 J 12 _    3  Note: Larger I, smaller B  J  2B J 1  4D J 1 (& line spacing) than diatomics Rotational Centrifugal const. distortion const. (“ is suppressed, i.e. J=J”) 9 3. Rotational spectra of polyatomic molecules

 Linear molecules (IB=IC; IA≈0)  Bond lengths N atoms N-1 bond lengths to be found

. Abs./Emis. spectra B 1 value of IB

. Use N-1 isotopes N-1 values of IB

Example: OCS (carbon oxy-sulfide)

16 12 32 Use 2 isotopes for 2 : O 1.165Å C 1.558Å S

I 16 12 32 masses,r ,r  O C S  F CO CS O C S  I 18O12C 32S  F masses,rCO ,rCS

rCO rCS rC rS Solve for rCO, rCS Center of mass 10 3. Rotational spectra of polyatomic molecules

 Symmetric tops (IB=IC≠IA; IA≠0)  2 main directions of rotation → 2 quantum numbers . J (total ): 0, 1, 2, … . K (angular momentum about A): J, J-1, …, 1, 0, -1, … -J . + & - allowed, w/o change in energy 2J+1 possibilities of K for each J

 Quantized angular momentum J K 2 2 2 2 2 2 2 As before: I A A  I B B  IC C  J J 1  2 2 2 2 Plus new: I AA  K  

 Energy levels

1 2 2 EJ ,K   Iii FJ, K  BJJ 1 A  BK 2 i  Note degeneracy, i.e., independent of sign of K

11 3. Rotational spectra of polyatomic molecules

 Symmetric tops (IB=IC≠IA; IA≠0)

 Q.M. Selection rules

. ∆J = +1 Remember that J = J’ – J” . ∆K = 0 No dipole moment for rotation about A-axis No change in K will occur with abs./emis.

 Line positions

1  J .K  FJ 1, K  FJ, K  2BJ J 1 cm 

 Note: Independent of K for a Same as rigid diatomic! K-dependence introduced for non-rigid rotation

12 3. Rotational spectra of polyatomic molecules

E.g., CH3F, Methyl Fluoride  Symmetric tops (IB=IC≠IA; IA≠0) H  Non-rigid rotation H Effect of extending bond lengths B  0.851cm1 C F (w/ changes in K) 6 1 DJ  210 cm A 5 1 H C.M. DJK 1.4710 cm Change energies of rotation If J≈20, J2≈400, 2DJ2≈1.6x10-3, 2DJ2/B≈.2% J 1 2 3 Centrifugal distortion const. D , D , D J K JK 2B ~1.7cm-1 FJ, K  BJ J  1  A  B K 2  D J 2 J 12 J ν,cm-1 3 4 5 6 7  2 4  DJK J J 1 K  DK K 2 2 1 K 2 1 0  J .K  2J 1 B  2DJ J 1  DJK K cm 2 2DJK(J+1)K 3 lines for J=2 ~10-4cm-1  Note: Each J has 2J+1 components, but K=2,1,0 only J+1 frequencies 2 2DJK(J+1)K ~4x10-4cm-1 13 3. Rotational spectra of polyatomic molecules

 Symmetric tops (IB=IC≠IA; IA≠0)  gets complex fast! Prolate Oblate

IAB=C IA>IB=IC, A

Example energy levels

14 3. Rotational spectra of polyatomic molecules

 Rotational partition function

Linear Symmetric top Spherical top Asymmetric rotor

B=C; IA≈0 B=C≠A; IA≠0 A=B=C A≠B≠C kT 1  kT 3 1  kT 3 1  kT 3 Q        rot Qrot   2   Qrot   3   Qrot     hcB AB  hc  B  hc  ABC  hc 

σ – molecule-dependent symmetry factor 1 h A,cm  2 8 I Ac Molecule σ Molecule Type

1 h CO 2Linear B,cm  2 8 2 I c B NH3 3 Symmetric Top h CH 12 Spherical Top C,cm1  4 8 2 I c C H2O 2 Asymmetric Rotor

15 3. Rotational spectra of polyatomic molecules: Summary

 Linear (diatomic & polyatomic) and symmetric top molecules give similar (equal spacing) spectra at rigid rotor level

 High resolution needed to detect corrections / splittings

 Spectra → microscopic parameters (re, )

 Isotopes useful for spectral studies

16 4. Vibrational Bands, Rovibrational Spectra

1. Number of vibrational modes Spectrum of bending mode of HCN 2. Types of bands . and perpendicular . Fundamental, overtones, combination and difference bands 3. Relative strengths 4. Rovibrational spectra of polyatomic molecules . Linear molecules . Symmetric tops

17 4.1. Number of vibrational modes

 N- molecule 3N dynamical coordinates needed to specify instantaneous location and orientation Total: 3N

Center of Mass: 3 coordinates (3 translational modes)

Rotation: Linear molecules Nonlinear molecules 2 angular coordinates 3 angular coordinates (rot. modes) (rot. modes)

Vibration: Linear molecules Nonlinear molecules 3N-5 vibrational coordinates 3N-6 angular coordinates (vib. modes) (vib. modes)

18 4.2. Types of bands

 Numbering (identification) convention of vibrational modes

 Symmetry

 Decreasing energy [cm-1]

ν1 Highest-frequency symmetric vibrational mode Symmetric nd Declining ν2 2 highest symmetric mode frequency … … νi Lowest-frequency symmetric mode

Asymmetric νi+1 Highest-frequency asymmetric vibrational mode nd Declining νi+2 2 highest symmetric mode frequency … …

 Exception: the perpendicular vibration for linear XY2 and XYZ molecules is always called ν2 19 4.2. Types of bands

 Parallel and perpendicular modes Parallel (||) Perpendicular () Examples: Dipole changes are || Dipole changes are to the main axis of symmetry to the main axis of symmetry

H2O (3x3-6=3 vib. modes) Symmetric stretch Symmetric bending Asymmetric stretch -1 -1 -1 ν1=3652cm ν2=1595cm ν3=3756cm

CO2 (3x3-5=4 No dipole moment vib. modes) Not IR-active! Symmetric stretch Asymmetric stretch Symmetric bending (2 degenerate) -1 -1 -1 ν1=1330cm ν3=2349cm ν2=667cm 20 4.2. Types of bands

 Parallel and perpendicular modes Symmetric molecules: vibrational modes are either IR-active or Raman-active (Chapter 6)

Vibrational modes of CO2 Frequency Mode Type Description IR Raman [cm-1]

ν1 1388 -- Symmetric stretch Not active Active Symmetric bend ν 667 Strong Not active 2 (Degenerate)

ν3 2349 || Asymmetric stretch Very strong Not active

Vibrational modes of HCN Frequency Mode Type Description IR Raman [cm-1]

ν1 3310 || Symmetric stretch Strong Weak Symmetric bend ν 715 Very strong Weak 2 (Degenerate)

ν3 2097 || Asymmetric stretch Weak Strong 21 4.2. Types of bands

 Terminology for different types of vibrational bands

th th Fundamental Bands: νi, the i vibrational mode; ∆v=v'-v"=1 for the i mode

st th 1 Overtone: 2νi; ∆v=v'-v"=2 for the i mode

nd th 2 Overtone: 3νi; ∆v=v'-v"=3 for the i mode

Combination bands: Changes in multiple quantum numbers, e.g., ν1+ν2; ∆v1=∆v2=1, i.e., v1 and v2 both increase by 1 for absorption or decrease by 1 for emission

2ν1+ν2; ∆v1=2 and ∆v2=1

Difference bands: changes with mixed sign

ν1-ν2; v1,final-v1,initial= ±1 and v2,final-v2,initial= ∓1, i.e., a unit increase in v1 is accompanied by a unit decrease in v2, and vice-versa.

22 4.2. Types of bands

 Vibrational partition function  g modes i   hce,i  Qvib   1 exp   i   kT 

 E.g., NH3: 3N-6 = 6 vib. modes Degenerate

1 1 2 2   hc e,1    hc e,2    hc e,3    hce,4  Qvib  1 exp  1 exp  1 exp  1 exp    kT    kT    kT    kT 

Vibration Frequency [cm-1] Type Description

ν1 3337 || Symmetric stretch

ν2 950 || Symmetric bend

ν3 3444 Asymmetric stretch (Degenerate)

ν4 1627 Asymmetric bend (Degenerate)

23 4.3. Relative strength

 In general

 Fundamental bands are much stronger than combination, difference, and overtone bands

 Fairly harmonic molecules

 E.g., CO 2  Relative strength between fundamental and overtones ~ 10

 Closely SHO, overtone bands are nearly forbidden (low transition probabilities)

 Highly anharmonic molecules

 E.g., NH3  Relative strength between fundamental and overtones ≤ 10

 Overtone bands are less forbidden

 Exception – Fermi resonance: Accidental degeneracies (i.e., near resonances) can strengthen weak processes. Two vib. Modes strongly coupled by radiative and collisional exchanges. -1 E.g., 2ν2 CO2 (@ 1334cm ) ≈ ν1, CO2 24 4.4. Rovibrational spectra of polyatomic molecules

 Linear polyatomic molecules (limit consideration to fundamental transitions)

Energy: Tvi , J  Gvi  FJ 

 Case I: Parallel bands (symmetric and asymmetric stretch) J'=J"+1

Selection Rule: vi 1 v'=1 J'= J" J  1 J'= J"-1 (R and P branches) P R v  0, j  i J"+1 j v"=0 J" Absorption Spectrum: P & R branches only Null Gap R(2) P branch R branch Example: HCN(ν1, ν3) R(0)  o P(1)  Note: No ν parallel band for CO 2B

1 2 Transition Probabilities -8 -6 -4 -2 0 246 25 4.4. Rovibrational spectra of polyatomic molecules

 Linear polyatomic molecules

 Case I: Parallel band

= 1 Anti-symmetric Stretching Vibration Energy

= 0 Transmission Per cent

_ _ 1 _ Example-2: A parallel band of the linear molecule CO 2 26 4.4. Rovibrational spectra of polyatomic molecules

 Linear polyatomic molecules (limit consideration to fundamental transitions)

Energy: Tvi , J  Gvi  FJ 

 Case II: Perpendicular bands J'=J"+1 Selection Rule: vi 1 v'=1 J'= J" J  1,0 J'= J"-1 R, P and Q branches ︵ ︶ P Q R v  0, j  i j J"+1 v"=0 1. If B'=B", all Q branch lines occur at J" the same frequency  0  Q branch 2. If B'≠B", QJ"  0  B' B" J" J" 1 P branch R branch Q branch “degrades” to lower frequencies (i.e., to the “red” in  o wavelength) 2B Transition Probabilities -6 -4 -2 0 246 27 4.4. Rovibrational spectra of polyatomic molecules

 Linear polyatomic molecules

 Case II: Perpendicular bands

Example: Spectrum of the bending mode of HCN, showing the PQR structure

← impurity

620 660 700 740 780 _ _ 1 28 4.4. Rovibrational spectra of polyatomic molecules

 Symmetric top molecules (e.g., CH3F, BCl3) Recall: K – quantum number for angular momentum around axis A

Energy: Tvi , J, K  Gvi  FJ, K   i i i 2 2  vi 1/ 2 e e xe vi 1/ 2  BJ J 1  A  B K

 Case I: Parallel bands Tripod-like Selection Rule: vi 1 J  1,0 (P,Q, R branches) K  0 1. 2J+1 values of K (K=J, J-1, …, 0, …, -J)

2. Intensity of Q branch is a function of (IA/IB) 3. As (IA/IB) → 0 B symmetric top → linear molecule strength of Q branch → 0 C

Planar 29 4.4. Rovibrational spectra of polyatomic molecules

 Symmetric top molecules (e.g., CH3F, BCl3)  Case I: Parallel bands

 Note: 1. Splitting in P and R branch due to a difference in (A-B) in upper and lower vib. levels 2. Splitting in Q branch due to difference in B in upper and lower vib. levels 3. For K=0, spectrum reduces to that of linear molecules, no Q branch 4. K cannot exceed J

Resolved components of a parallel band showing contributions from each of the K levels of the v=0 state 30 4.4. Rovibrational spectra of polyatomic molecules

 Symmetric top molecules

 Case I: Parallel bands

R-branch P-branch

Per cent Transmission Per cent Q-branch

1340 1330 1320 1310 1300 _ 1290 1280 1270 1260 1

Example-1: A parallel of the symmetric top molecule CH3Br. The P branch is partly resolved, while only the contours of the R and Q branches is obtained 31 4.4. Rovibrational spectra of polyatomic molecules

 Symmetric top molecules

 Case I: Parallel bands Absorbance

1200 1225 1250 1275 1300 _ 1

Example-2: The parallel stretching vibration, centered at 1251 cm-1, of the

symmetric top molecule CH3I, showing the typical PQR contour. 32 4.4. Rovibrational spectra of polyatomic molecules

 Symmetric top molecules (e.g., CH3F, BCl3)  Case II: Perpendicular bands

Selection Rule: vi 1 J  1,0 (P,Q, R branches) K  1

R Branch: J  1,K  1

 R  o  2BJ 1  A  B 1 2K

P Branch: J  1,K  1

 P  o  2BJ  A  B 1 2K

Q Branch: J  0,K  1

 Q  o  A  B 1 2K

 Note: Two sets of R, P and Q branches for each lower state value of K 33 4.4. Rovibrational spectra of polyatomic molecules

 Symmetric top molecules (e.g., CH3F, BCl3)  Case II: Perpendicular bands

◄ Energy levels of a symmetric top molecule showing transitions that are allowed for a perpendicular band

▼ Resulting spectrum, components of a perpendicular band showing the contributions from each K levels of the v=0 state

 0 34 4.4. Rovibrational spectra of polyatomic molecules

 Symmetric top molecules

 Case II: Perpendicular bands

 Note: Spacing of the Q branch lines in a perpendicular band can be identified with 2(A-B), and hence are observable if A-B is large enough Per cent Transmission Per cent

_ 1 Example: The Q-branch of a perpendicular band, for the symmetric top molecule CH Cl 3 35 Next: Quantitative Emission/Absorption

 Spectral Absorptivity

 Eqn. of Radiative Transfer

 Einstein Coefficients/Theory

 Radiative Lifetime, Line Strength