Statistics on Medicines Consumption 2009

Total Page:16

File Type:pdf, Size:1020Kb

Statistics on Medicines Consumption 2009 STATE AGENCY OF MEDICINES STATISTICS ON MEDICINES CONSUMPTION 2009 Riga, 2010 Author: State Agency of Medicines Prepared by: E. Gailite, A. Zake, A. Seilis Publisher – State Agency of Medicines © 2010 When using or quoting the data included in this issue, please indicate the source CONTENTS Introduction 4 Calculations 6 Results 7 Medicines consumption share according to consumer groups (% of total turnover - LVL) 9 TION 2009 Medicines consumption share according to consumer groups (% of number of packagings sold) 10 Market share according to sales to pharmacies (% of sales – LVL) 11 MP Market share according to sales to hospitals (% of sales – LVL) 12 U Market share according to sales to other medical establishments (% of sales – LVL) 13 S Market share according to sales to other wholesalers (% of sales – LVL) 14 Medicines consumption share according to dispensing status – prescription or ON C non-prescription medicines (% of total turnover – LVL) 15 Medicines consumption share according to dispensing status – prescription or non-prescription medicines (% of total turnover – LVL) through years 16 ES Medicines consumption share according to dispensing status – prescription or non-prescription medicines (% of number of packagings sold) 17 Medicines consumption share according to dispensing status – prescription or non-prescription medicines (DDD/1000 Latvian inhabitants/day) through years 18 DICIN Medicines consumption (DDD/1000 inhabitants/ day) 19 E Most marketable medicines (total consumption DDD/ 1000 inhabitants/ day) 42 The composition of the sales amount for medicines in 2009 according to the number of packagings sold by general type pharmacies 43 Manufacturers’ sale volumes according to medicines sold to pharmacies, hospitals, veterinary medicine ON M establishments and other health care centres (% of sale (LVL)) in 2009 48 S Medicines consumption by manufacturers (% of sale (LVL)) through years 49 Medicines consumption by manufacturers (turnover in LVL) through years 50 TIC Medicines consumption according to Marketing Authorisation Holders (turnover in LVL) in 2009 51 S Most marketed prescription medicines by DDD/1000 inhabitants/ day 52 TI Most marketed prescription medicines by turnover in LVL (international trade name) 53 A Most marketed prescription medicines by turnover in LVL (original trade name) 54 Most marketed non-prescription medicines by DDD/1000 inhabitants/ day 55 ST Most marketed non-prescription medicines by turnover in LVL (international trade name) 56 Most marketed non-prescription medicines by turnover in LVL (original trade name) 57 Medicines consumption by ATC groups (DDD/1000 inhabitants/ day in %) in 2009 58 Medicines consumption by ATC groups (DDD/1000 inhabitants/ day) through years 59 Medicines consumption by ATC groups (consumption (LVL)) in 2009* 60 Medicines consumption by ATC groups (consumption in LVL) through years * 61 Most marketed medicines of ATC 2nd level(DDD/1000 inhabitants/ day) 62 Most marketed medicines of ATC 3rd level (DDD/1000 inhabitants/ day) 63 2009 sales figures for the market of veterinary medicines 64 The most demanded veterinary medicines in 2009 after ATCvet level 5 (according to the number of packagings sold) 65 The most demanded antiinfectives for systemic use (according to the number of packagings sold) 66 Composition of the sales amount of ATCvet group QJ51RV01 (antibiotics and corticosteroids) veterinary medicines 67 Quarterly division of the sales amount of the most demanded antiinfectives for systemic use in 2009 (according to the number of packagings sold) 68 The most demanded veterinary medicines in 2009 according to the number of packagings sold (by original brand name) 69 STATE AGENCY OF MEDICINES 3 INTRODU C T I ON Statistics on medicines consumption is an integral part of the pharmacy industry compiling information on the medicines utilisation. Data on consumption are investigated by dividing medicines into groups according to their application basing of the ATC/DDD classification system. TION 2009 Anatomical Therapeutic Chemical (ATC) and Defined Daily Dose (DDD) system is an international MP standard for drug utilization studies recommended by the World Health Organisation (WHO). The purpose of the U ATC/DDD system is to serve as a tool for medicines utilization research in order to compare medicines consumption S between countries, regions as well as to see tendencies in medicines utilisation in different times and levels. ON Interest in medicines consumption since 1960-ies (time when they started to investigate C medicines consumption by dividing medicines into groups of their application) has increased significantly. The main objective of the ATC/DDD system it to use this as a tool for compiling ES statistical data with an aim to enhance a rational use of medicines. This systems has been used since 1970 when it was recognised as an appropriate tool for comparing data at national and international levels. Within the ATC classification system, the medicines are divided into different groups according to the organ or system on which they act and their chemical, DICIN pharmacological and therapeutic properties. Medicines are classified in groups at five different E levels. The classification of a substance in the ATC/DDD system is not a recommendation for use, nor does it imply any judgements about efficacy or relative efficacy of drugs and groups of ON M drugs. S (Reference: „Guidelines for ATC and DDD classification assignment” WHO Collaboratoring TIC Centre for Drug Statistics Methodology, Oslo 2006) S TI A ST STATE AGENCY OF MEDICINES 4 METHOD Medicines consumption statistics of the Republic of Latvia compiles data on human medicines used in 2005 to 2009. Data have been collected by compiling and analysing sales figures submitted by the wholesalers (in 2009 - 40 wholesalers) to the State Agency of Medicines TION 2009 (SAM). MP For a research and comparison purposes of a specific medicinal product the SAM uses U DDD figure allocated by the World Health Organisation Collaborating Centre for Drug Statistics S Methodology (hereinafter - WHO-Centre). The DDD is an assumed average maintenance dose per day for a drug used for its main indication in adults. It should be emphasised that the ON C defined daily dose is a unit of measurement and does not necessarily reflect the recommended or prescribed daily dose. ES The SAM uses „ATC Index with DDDs”, published by the WHO – Centre as a reference. WHO-Centre publishes changes within the ATC/DDD system once a year. The SAM uses the most recent version and on separate occasions it causes discrepancies for some medicinal products when comparing statistical data over years (for example, the DDD value for Simvastatin DICIN (C10AA01) was changed in 2009 from 15 mg (oral dose form) to 30 mg (oral dose form)) or E discrepancies in the data of an ATC subgroup (e.g., in 2009 the ATC code for Bupropion was changed from N07BA02 to N06AX12). ON M S TIC S TI A ST STATE AGENCY OF MEDICINES 5 CAL C ULAT I ONS The medicines consumptions statistics is measured using Defined Daily Dose (DDD). TION 2009 DDD is an average adult dose used for the main indication. For the statistical calculations at country level the SAM uses ATC codes allocated by the WHO-Centre and assigned DDDs, but MP for comparisons with statistical data of other countries the SAM uses a figure recommended by U the WHO-Centre – number of DDD units used in one day per 1000 inhabitants, as follows: S ON C Number of DDDs x 1000 365 x Number of inhabitants in Latvia ES For example, Gliclazidum consumption in 2009 is as follows: DDD Gliclazidum: 0,16 g DICIN E Total consumption: 245 733,24 g per year Number of inhabitants: 2 261 300 1. Total Gliclazidum consumption is expressed in DDDs applying the following formula: ON M S 245 733,24 g/ 0,16 g = 1 535 832,75 DDD 2. In order to calculate DDDs used in one day per 1000 inhabitants we place numbers in TIC the above formula: S TI A 1 535 832,75 x 1000 inhabitants/day = 1,86 DDD /1000 ST 365 x 2 261 300 The figure 1,86 DDD /1000 inhabitants/day shows that 2 inhabitants out of each 1000 Latvian inhabitants uses 1 therapeutical dose of Gliclazidum every day. However is should be noticed that DDD is a technical tool and it does not reflect a real daily dose. It is hard to assign DDD for medicines as the doses depend on indications, individuals and therapeutical practices. We should also take into consideration a fact that sales figures provided by the wholesalers do not reflect the real numbers of medicines used as medicines may be still in pharmacies or at homes. DDD is calculated per total number of inhabitants although medicines are used by patients of a specific age or sex. However even taking into consideration the above facts the DDD system is still a very appropriate tool for statistical researches. STATE AGENCY OF MEDICINES 6 RESULTS 2009 sales figures of medicines for human use* Thanks to wholesalers’ responsiveness the SAM and wholesalers have a successful cooperation resulting in providing data on medicines sales figures in Latvia. Data have been TION 2009 collected and compiled since 2001 on regular basis. Since 2005 information relating to sales MP figures has been compiled quarterly. U In order to evaluate the amount of medicines reaching a consumer all data analysis are S based on medicines consumption data reflecting the real situation – medicines reaching the next ON level within the sales chain. Medicines consumption data do not take into account information C if one wholesaler sells medicines to an another wholesaler, as in this case medicines are not provided to a consumer but stays where they are – within the wholesaler. ES Also information on consumer groups is analysed – we collect data from hospitals, clinics, pharmacies, rehabilitation establishments, specialised centres, emergency medicines centres, outpatient clinics and departments, doctor’s practices and different diagnostic laboratories and DICIN veterinary health care establishments (veterinary clinics).
Recommended publications
  • Antiseptics and Disinfectants for the Treatment Of
    Verstraelen et al. BMC Infectious Diseases 2012, 12:148 http://www.biomedcentral.com/1471-2334/12/148 RESEARCH ARTICLE Open Access Antiseptics and disinfectants for the treatment of bacterial vaginosis: A systematic review Hans Verstraelen1*, Rita Verhelst2, Kristien Roelens1 and Marleen Temmerman1,2 Abstract Background: The study objective was to assess the available data on efficacy and tolerability of antiseptics and disinfectants in treating bacterial vaginosis (BV). Methods: A systematic search was conducted by consulting PubMed (1966-2010), CINAHL (1982-2010), IPA (1970- 2010), and the Cochrane CENTRAL databases. Clinical trials were searched for by the generic names of all antiseptics and disinfectants listed in the Anatomical Therapeutic Chemical (ATC) Classification System under the code D08A. Clinical trials were considered eligible if the efficacy of antiseptics and disinfectants in the treatment of BV was assessed in comparison to placebo or standard antibiotic treatment with metronidazole or clindamycin and if diagnosis of BV relied on standard criteria such as Amsel’s and Nugent’s criteria. Results: A total of 262 articles were found, of which 15 reports on clinical trials were assessed. Of these, four randomised controlled trials (RCTs) were withheld from analysis. Reasons for exclusion were primarily the lack of standard criteria to diagnose BV or to assess cure, and control treatment not involving placebo or standard antibiotic treatment. Risk of bias for the included studies was assessed with the Cochrane Collaboration’s tool for assessing risk of bias. Three studies showed non-inferiority of chlorhexidine and polyhexamethylene biguanide compared to metronidazole or clindamycin. One RCT found that a single vaginal douche with hydrogen peroxide was slightly, though significantly less effective than a single oral dose of metronidazole.
    [Show full text]
  • The Protean Neurologic Manifestations of Varicella-Zoster Virus Infection
    REVIEW MARIA A. NAGEL, MD DONALD H. GILDEN, MD Department of Neurology, University of Departments of Neurology and Microbiology, Colorado Health Sciences Center, Denver University of Colorado Health Sciences Center, Denver The protean neurologic manifestations of varicella-zoster virus infection ■ ABSTRACT ARICELLA-ZOSTER VIRUS (VZV) is an V exclusively human, highly neurotropic Multiple neurologic complications may follow the alphaherpesvirus. Primary infection causes reactivation of varicella-zoster virus (VZV), including chickenpox, after which the virus becomes herpes zoster (also known as zoster or shingles), latent in cranial nerve ganglia, dorsal root postherpetic neuralgia, vasculopathy, myelitis, necrotizing ganglia, and autonomic ganglia along the retinitis, and zoster sine herpete (pain without rash). entire neuraxis. Decades later, VZV can reac- These conditions can be difficult to recognize, especially tivate to cause a number of neurologic condi- as several can occur without rash. tions. This article discusses the protean manifes- ■ KEY POINTS tations of VZV reactivation and their diagno- sis and treatment. The most common sequela of herpes zoster is postherpetic neuralgia, which can persist for months and ■ VZV REACTIVATION sometimes years after the rash resolves. HAS MANY MANIFESTATIONS VZV vasculopathy can present as transient ischemic VZV reactivation can produce a number of neurologic complications: attacks, ischemic or hemorrhagic stroke, or aneurysm. •Herpes zoster (shingles), manifesting as pain and rash in up to three dermatomes Vasculopathy and neurologic complications of VZV are • Postherpetic neuralgia, the most common best diagnosed by detecting VZV DNA in bodily fluids or sequela of zoster, is pain that persists for tissues or anti-VZV immunoglobulin G in the months and sometimes years after the rash cerebrospinal fluid.
    [Show full text]
  • Nonpharmacological Treatment of Rhinoconjunctivitis and Rhinosinusitis
    Journal of Allergy Nonpharmacological Treatment of Rhinoconjunctivitis and Rhinosinusitis Guest Editors: Ralph Mösges, Carlos E. Baena-Cagnani, and Desiderio Passali Nonpharmacological Treatment of Rhinoconjunctivitis and Rhinosinusitis Journal of Allergy Nonpharmacological Treatment of Rhinoconjunctivitis and Rhinosinusitis Guest Editors: Ralph Mosges,¨ Carlos E. Baena-Cagnani, and Desiderio Passali Copyright © 2014 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “Journal of Allergy.” All articles are open access articles distributed under the Creative Commons At- tribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board William E. Berger, USA Alan P. Knutsen, USA Fabienne Ranc, France Kurt Blaser, Switzerland Marek L. Kowalski, Poland Anuradha Ray, USA Eugene R. Bleecker, USA Ting Fan Leung, Hong Kong Harald Renz, Germany JandeMonchy,TheNetherlands Clare M Lloyd, UK Nima Rezaei, Iran Frank Hoebers, The Netherlands Redwan Moqbel, Canada Robert P. Schleimer, USA StephenT.Holgate,UK Desiderio Passali, Italy Massimo Triggiani, Italy Sebastian L. Johnston, UK Stephen P. Peters, USA Hugo Van Bever, Singapore Young J. Juhn, USA David G. Proud, Canada Garry Walsh, United Kingdom Contents Nonpharmacological Treatment of Rhinoconjunctivitis and Rhinosinusitis,RalphMosges,¨ Carlos E. Baena-Cagnani, and Desiderio Passali Volume 2014, Article ID 416236, 2 pages Clinical Efficacy of a Spray Containing Hyaluronic Acid and Dexpanthenol after Surgery in the Nasal Cavity (Septoplasty, Simple Ethmoid Sinus Surgery, and Turbinate Surgery), Ina Gouteva, Kija Shah-Hosseini, and Peter Meiser Volume 2014, Article ID 635490, 10 pages The Effectiveness of Acupuncture Compared to Loratadine in Patients Allergic to House Dust ,Mites Bettina Hauswald, Christina Dill, Jurgen¨ Boxberger, Eberhard Kuhlisch, Thomas Zahnert, and Yury M.
    [Show full text]
  • Topical Budesonide for Treating Giant Rectal Pseudopolyposis
    ANTICANCER RESEARCH 25: 2961-2964 (2005) Topical Budesonide for Treating Giant Rectal Pseudopolyposis CHARALAMPOS PILICHOS1, ATHENA PREZA1, MARIA DEMONAKOU2, DIMITRIOS KAPATSORIS1 and CONSTANTINOS BOURAS1 1First Department of Internal Medicine and 2Department of Pathology, Sismanogleion Hospital, Athens, Greece Abstract. Pseudopolyps are a frequent finding in the course of Case Report inflammatory bowel disease. They are non-neoplastic lesions resulting from a regenerative and healing process that leaves A 45-year-old male patient was admitted to our service in July inflamed colonic mucosa in polypoid configuration. Data about 2002 for acute rectal bleeding. All laboratory tests were their management is lacking. "Giant" pseudopolyps can be normal, except an increase of aminotransferases level (>10 N) mistaken for adenocarcinomas and, as they rarely regress with and a serological profile consistent with acute hepatitis B or a medical management alone, a surgical resection is often required. flare of chronic hepatitis B (HbsAg +, HbsAb –, HbeAg –, A case of giant pseudopolyposis treated non-surgically, in a patient HbeAb +, HbcAb-IgM +). The patient underwent lower with concomitant ulcerative colitis and chronic hepatitis B, is gastro-intestinal endoscopy and multiple biopsies were taken reported, representing a co-morbidity complicating an eventual from a bulky rectal mass lesion (Figure 1). Histological study conservative treatment. The clinical implementation of topical revealed alterations compatible with inflammatory bowel budesonide was originally tested, resulting in clinical, endoscopic disease (IBD) with no dysplasia (Figure 2). Because of the and histological remission. Budesonide seems a promising therapy atypical macroscopic features and the high suspicion of rectal for IBD, particularly when a comorbidity with viral hepatitis exist.
    [Show full text]
  • Practice Parameters for the Surgical Treatment of Ulcerative Colitis Howard Ross, M.D
    PRACTICE PARAMETERS Practice Parameters for the Surgical Treatment of Ulcerative Colitis Howard Ross, M.D. • Scott R. Steele, M.D. • Mika Varma, M.D. • Sharon Dykes, M.D. Robert Cima, M.D. • W. Donald Buie, M.D. • Janice Rafferty, M.D. Prepared by the Standards Practice Task Force of the American Society of Colon and Rectal Surgeons he American Society of Colon and Rectal Surgeons the most common surgical indication for UC. Whether is dedicated to assuring high-quality patient care it is secondary to an inability to control symptoms, poor Tby advancing the science, prevention, and manage- quality of life, risks/side effects of chronic medical therapy ment of disorders and diseases of the colon, rectum, and (especially long-term corticosteroids), noncompliance, or anus. The Standards Committee is composed of Society growth failure, patients may opt for surgery in the elective members who are chosen because they have demonstrat- or semielective setting.3 Complete removal of all the poten- ed expertise in the specialty of colon and rectal surgery. tial disease-bearing tissue is theoretically curative in UC. This Committee was created to lead international efforts Operative options include an abdominal colectomy or total in defining quality care for conditions related to the co- proctocolectomy with either a permanent end ileostomy or lon, rectum, and anus. This is accompanied by develop- surgical construction of a “new” rectum through an IPAA ing Clinical Practice Guidelines based on the best available that restores GI continuity.4,5 All these procedures may evidence. These guidelines are inclusive, and not prescrip- be performed by using open or minimally invasive tech- tive.
    [Show full text]
  • (CD-P-PH/PHO) Report Classification/Justifica
    COMMITTEE OF EXPERTS ON THE CLASSIFICATION OF MEDICINES AS REGARDS THEIR SUPPLY (CD-P-PH/PHO) Report classification/justification of medicines belonging to the ATC group R01 (Nasal preparations) Table of Contents Page INTRODUCTION 5 DISCLAIMER 7 GLOSSARY OF TERMS USED IN THIS DOCUMENT 8 ACTIVE SUBSTANCES Cyclopentamine (ATC: R01AA02) 10 Ephedrine (ATC: R01AA03) 11 Phenylephrine (ATC: R01AA04) 14 Oxymetazoline (ATC: R01AA05) 16 Tetryzoline (ATC: R01AA06) 19 Xylometazoline (ATC: R01AA07) 20 Naphazoline (ATC: R01AA08) 23 Tramazoline (ATC: R01AA09) 26 Metizoline (ATC: R01AA10) 29 Tuaminoheptane (ATC: R01AA11) 30 Fenoxazoline (ATC: R01AA12) 31 Tymazoline (ATC: R01AA13) 32 Epinephrine (ATC: R01AA14) 33 Indanazoline (ATC: R01AA15) 34 Phenylephrine (ATC: R01AB01) 35 Naphazoline (ATC: R01AB02) 37 Tetryzoline (ATC: R01AB03) 39 Ephedrine (ATC: R01AB05) 40 Xylometazoline (ATC: R01AB06) 41 Oxymetazoline (ATC: R01AB07) 45 Tuaminoheptane (ATC: R01AB08) 46 Cromoglicic Acid (ATC: R01AC01) 49 2 Levocabastine (ATC: R01AC02) 51 Azelastine (ATC: R01AC03) 53 Antazoline (ATC: R01AC04) 56 Spaglumic Acid (ATC: R01AC05) 57 Thonzylamine (ATC: R01AC06) 58 Nedocromil (ATC: R01AC07) 59 Olopatadine (ATC: R01AC08) 60 Cromoglicic Acid, Combinations (ATC: R01AC51) 61 Beclometasone (ATC: R01AD01) 62 Prednisolone (ATC: R01AD02) 66 Dexamethasone (ATC: R01AD03) 67 Flunisolide (ATC: R01AD04) 68 Budesonide (ATC: R01AD05) 69 Betamethasone (ATC: R01AD06) 72 Tixocortol (ATC: R01AD07) 73 Fluticasone (ATC: R01AD08) 74 Mometasone (ATC: R01AD09) 78 Triamcinolone (ATC: R01AD11) 82
    [Show full text]
  • Intravenous Enzyme Replacement Therapy (ERT) for Gaucher Disease
    UnitedHealthcare® Commercial Medical Benefit Drug Policy Intravenous Enzyme Replacement Therapy (ERT) for Gaucher Disease Policy Number: 2021D0048K Effective Date: April 1, 2021 Instructions for Use Table of Contents Page Related Commercial Policy Coverage Rationale ....................................................................... 1 • Provider Administered Drugs – Site of Care Applicable Codes .......................................................................... 3 Background.................................................................................... 3 Community Plan Policy Benefit Considerations .................................................................. 3 • Intravenous Enzyme Replacement Therapy (ERT) Clinical Evidence ........................................................................... 4 for Gaucher Disease U.S. Food and Drug Administration ............................................. 6 Centers for Medicare and Medicaid Services ............................. 6 References ..................................................................................... 7 Policy History/Revision Information ............................................. 8 Instructions for Use ....................................................................... 8 Coverage Rationale See Benefit Considerations This policy refers to the following drug products, all of which are intravenous enzyme replacement therapies used in the treatment of Gaucher disease: Cerezyme® (imiglucerase) Elelyso® (taliglucerase) VPRIV® (velaglucerase)
    [Show full text]
  • Kengrexal, INN-Cangrelor Tetrasodium
    ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS 1 1. NAME OF THE MEDICINAL PRODUCT Kengrexal 50 mg powder for concentrate for solution for injection/infusion 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Each vial contains cangrelor tetrasodium corresponding to 50 mg cangrelor. After reconstitution 1 mL of concentrate contains 10 mg cangrelor. After dilution 1 mL of solution contains 200 micrograms cangrelor. Excipient with known effect Each vial contains 52.2 mg sorbitol. For the full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Powder for concentrate for solution for injection/infusion. White to off-white lyophilised powder. 4. CLINICAL PARTICULARS 4.1 Therapeutic indications Kengrexal, co-administered with acetylsalicylic acid (ASA), is indicated for the reduction of thrombotic cardiovascular events in adult patients with coronary artery disease undergoing percutaneous coronary intervention (PCI) who have not received an oral P2Y12 inhibitor prior to the PCI procedure and in whom oral therapy with P2Y12 inhibitors is not feasible or desirable. 4.2 Posology and method of administration Kengrexal should be administered by a physician experienced in either acute coronary care or in coronary intervention procedures and is intended for specialised use in an acute and hospital setting. Posology The recommended dose of Kengrexal for patients undergoing PCI is a 30 micrograms/kg intravenous bolus followed immediately by 4 micrograms/kg/min intravenous infusion. The bolus and infusion should be initiated prior to the procedure and continued for at least two hours or for the duration of the procedure, whichever is longer. At the discretion of the physician, the infusion may be continued for a total duration of four hours, see section 5.1.
    [Show full text]
  • 1 Brief Report: the Virucidal Efficacy of Oral Rinse Components Against SARS-Cov-2 in Vitro Evelina Statkute1†, Anzelika Rubin
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.13.381079; this version posted November 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Brief Report: The Virucidal Efficacy of Oral Rinse Components Against SARS-CoV-2 In Vitro Evelina Statkute1†, Anzelika Rubina1†, Valerie B O’Donnell1, David W. Thomas2† Richard J. Stanton1† 1Systems Immunity University Research Institute, Division of Infection & Immunity, School of Medicine, Heath Park, Cardiff, CF14 4XN 2Advanced Therapies Group, School of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, UK †These authors contributed equally * Correspondence: [email protected], [email protected] Running title: Virucidal Activity of Mouthwashes Keywords: SARS-CoV2, mouthwash, lipid, envelope Disclosure: Venture Life Group plc provided information on mouthwash formulations employed in the study, but had no role in funding, planning, execution, analysis or writing of this study. A separate study funded to Cardiff University by Venture Life Group is assessing in vivo efficacy of CPC in patients with COVID19. The investigators declare no direct conflicts exist. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.11.13.381079; this version posted November 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license.
    [Show full text]
  • Candida Auris
    microorganisms Review Candida auris: Epidemiology, Diagnosis, Pathogenesis, Antifungal Susceptibility, and Infection Control Measures to Combat the Spread of Infections in Healthcare Facilities Suhail Ahmad * and Wadha Alfouzan Department of Microbiology, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait; [email protected] * Correspondence: [email protected]; Tel.: +965-2463-6503 Abstract: Candida auris, a recently recognized, often multidrug-resistant yeast, has become a sig- nificant fungal pathogen due to its ability to cause invasive infections and outbreaks in healthcare facilities which have been difficult to control and treat. The extraordinary abilities of C. auris to easily contaminate the environment around colonized patients and persist for long periods have recently re- sulted in major outbreaks in many countries. C. auris resists elimination by robust cleaning and other decontamination procedures, likely due to the formation of ‘dry’ biofilms. Susceptible hospitalized patients, particularly those with multiple comorbidities in intensive care settings, acquire C. auris rather easily from close contact with C. auris-infected patients, their environment, or the equipment used on colonized patients, often with fatal consequences. This review highlights the lessons learned from recent studies on the epidemiology, diagnosis, pathogenesis, susceptibility, and molecular basis of resistance to antifungal drugs and infection control measures to combat the spread of C. auris Citation: Ahmad, S.; Alfouzan, W. Candida auris: Epidemiology, infections in healthcare facilities. Particular emphasis is given to interventions aiming to prevent new Diagnosis, Pathogenesis, Antifungal infections in healthcare facilities, including the screening of susceptible patients for colonization; the Susceptibility, and Infection Control cleaning and decontamination of the environment, equipment, and colonized patients; and successful Measures to Combat the Spread of approaches to identify and treat infected patients, particularly during outbreaks.
    [Show full text]
  • CDK4/6 Inhibitors in Breast Cancer Treatment: Potential Interactions with Drug, Gene and Pathophysiological Conditions
    Review CDK4/6 Inhibitors in Breast Cancer Treatment: Potential Interactions with Drug, Gene and Pathophysiological Conditions Rossana Roncato 1,*,†, Jacopo Angelini 2,†, Arianna Pani 2,3,†, Erika Cecchin 1, Andrea Sartore-Bianchi 2,4, Salvatore Siena 2,4, Elena De Mattia 1, Francesco Scaglione 2,3,‡ and Giuseppe Toffoli 1,‡ 1 1 Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, 33081 Aviano, Italy; [email protected] (E.C.); [email protected] (E.D.M.); [email protected] (G.T.) 2 Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20122 Milan, Italy; [email protected] (J.A.); [email protected] (A.P.); [email protected] (A.S-B.); [email protected] (S.S.); [email protected] (F.S.) 3 Clinical Pharmacology Unit, ASST Grande Ospedale Metropolitano Niguarda, Piazza dell'Ospedale Maggiore 3, 20162 Milan, Italy 4 Department of Hematology and Oncology, Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy * Correspondence: [email protected]; Tel.:+390434659130 † These authors contributed equally. ‡ These authors share senior authorship. Int. J. Mol. Sci. 2020, 21, x; doi: www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2020, 21, x 2 of 8 Table S1. Co-administered agents categorized according to their potential risk for Drug-Drug interaction (DDI) in combination with CDK4/6 inhibitors (CDKis). Colors suggest the risk of DDI with CDKis: green, low risk DDI; orange, moderate risk DDI; red, high risk DDI. ADME, absorption, distribution, metabolism, and excretion; GI, Gastrointestinal; TdP, Torsades de Pointes; NTI, narrow therapeutic index. * Cardiological toxicity should be considered especially for ribociclib due to the QT prolongation.
    [Show full text]
  • Code ATC B01 : Antithrombotiques
    Département fédéral de l'économie, de la formation et de la recherche DEFR Office fédéral pour l'approvisionnement économique du pays OFAE domaine produits thérapeutiques 18 décembre 2020 Code ATC B01 : antithrombotiques Rapport sur les risques de de sous-approvisionne- ment en antithrombotiques (code ATC B01) : première évaluation 2019 Rapport sur les risques de sous-approvisionnement en antithrombotiques Table des matières 1. Résumé ........................................................................................................................................... 4 2. Objectif ............................................................................................................................................. 5 3. Analyse ............................................................................................................................................ 5 3.1. Procédure ................................................................................................................................ 5 3.2. Bases moléculaires de l’hémostase ........................................................................................ 6 3.3. Thrombose ............................................................................................................................... 6 4. Prophylaxie et traitement des thromboses et des thromboembolies (antagonistes de la vitamine K et anticoagulants oraux directs, code ATC B01AA) ................................................................................ 7 4.1 Utilisation et
    [Show full text]