CDK4/6 Inhibitors in Breast Cancer Treatment: Potential Interactions with Drug, Gene and Pathophysiological Conditions

Total Page:16

File Type:pdf, Size:1020Kb

CDK4/6 Inhibitors in Breast Cancer Treatment: Potential Interactions with Drug, Gene and Pathophysiological Conditions Review CDK4/6 Inhibitors in Breast Cancer Treatment: Potential Interactions with Drug, Gene and Pathophysiological Conditions Rossana Roncato 1,*,†, Jacopo Angelini 2,†, Arianna Pani 2,3,†, Erika Cecchin 1, Andrea Sartore-Bianchi 2,4, Salvatore Siena 2,4, Elena De Mattia 1, Francesco Scaglione 2,3,‡ and Giuseppe Toffoli 1,‡ 1 1 Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, 33081 Aviano, Italy; [email protected] (E.C.); [email protected] (E.D.M.); [email protected] (G.T.) 2 Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20122 Milan, Italy; [email protected] (J.A.); [email protected] (A.P.); [email protected] (A.S-B.); [email protected] (S.S.); [email protected] (F.S.) 3 Clinical Pharmacology Unit, ASST Grande Ospedale Metropolitano Niguarda, Piazza dell'Ospedale Maggiore 3, 20162 Milan, Italy 4 Department of Hematology and Oncology, Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy * Correspondence: [email protected]; Tel.:+390434659130 † These authors contributed equally. ‡ These authors share senior authorship. Int. J. Mol. Sci. 2020, 21, x; doi: www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2020, 21, x 2 of 8 Table S1. Co-administered agents categorized according to their potential risk for Drug-Drug interaction (DDI) in combination with CDK4/6 inhibitors (CDKis). Colors suggest the risk of DDI with CDKis: green, low risk DDI; orange, moderate risk DDI; red, high risk DDI. ADME, absorption, distribution, metabolism, and excretion; GI, Gastrointestinal; TdP, Torsades de Pointes; NTI, narrow therapeutic index. * Cardiological toxicity should be considered especially for ribociclib due to the QT prolongation. Modified table from Bellet et al. 2019 [50]. Non ADME DDI (TdP) ADME DDI with Effect of CDKis on Co-administered agent Co-administered agents (Caution Should Be Palbociclib, Ribociclib and Co-Administered (Class) (Name) Exercised in Combination Abemaciclib Agents with Ribociclib *) Beta-lactams; Tetracyclines; Fosfomycin; Linezolid; Clindamycin; Glycopeptides; Low risk DDI Low risk DDI - Aminoglucosides, Daptomycin. Trimethoprim major Trimethoprim major CYP3A4 substrate; CYP3A4 substrate; Ribociclib can Trimetoprim/sulfamethoxazole; Azithromycin, levofloxacin Azithromycin, levofloxacin increase Macrolides (azithromycin); and moxifloxacin known and moxifloxacin known concentration of Fluoroquinolones (levofloxacin, Antibiotics TdP risk; Norfloxacin and TdP risk; Norfloxacin and trimethoprim, with moxifloxacin, norfloxacin, ofloxacin); ofloxacin possible TdP risk; ofloxacin possible TdP risk; bone marrow Metronidazole Metronidazole conditional Metronidazole conditional toxicity TdP risk TdP risk Moderate to strong CYP3A4 Moderate to strong CYP3A4 Macrolides (erythromycin, inhibitors/inducers (quasi- inhibitors/inducers (quasi- High risk DDI (major claritrhromycin); Rifampicin; irreversible inhibition for irreversible inhibition for CYP3A4 substrate) Anti-infective Fluoroquinolones (ciprofloxacin) macrolides) macrolides) Acyclovir, famciclovir, valacyclovir, Antiherpetic Low risk DDI Low risk DDI - brivudine, ganciclovir, valganciclovir Flu Oseltamivir Low risk DDI Low risk DDI - Nucleoside analog reverse transcriptase inhibitors (lamivudine, abacavir, Low risk DDI Low risk DDI - tenofivir) Integrase inhibitors (dolutegravir, raltegravir) Non-nucleoside reverse transcriptase Major substrate and weak Major substrate and weak Major CYP3A4 HIV, hepatitis inhibitors: nevirapine CYP3A4 inducer CYP3A4 inducer substrate Protease inhibitors for HIV and HCV High risk DDI (atazanavir, darunavir, lopinavir, Moderate to strong CYP3A4 Moderate to strong CYP3A4 (Major CYP3A4 indinavir, ritonavir (usually inhibitors/inducers inhibitors/inducers substrate) administered in combination with Int. J. Mol. Sci. 2020, 21, x 3 of 8 ritonavir); Non-nucleoside reverse transcriptase inhibitors: efavirenz Amphotericin B with conditional TdP risk, Amphotericin B Low risk DDI caution should be exercised Low risk DDI in combination with ribociclib. Antifungal Echinocandins (caspofungin, Low risk DDI Low risk DDI - anidulafungin, micafungin) Fluconazole, itraconazole, isavuconazole, High risk DDI Moderate to strong CYP3A4 Moderate to strong CYP3A4 posaconazole, voriconazole, (Major CYP3A4 inhibitors inhibitors ketoconazole substrate) Metoclopramide, olanzapine, Conditional to possible TdP Low risk DDI Low risk DDI palonosetron, granisetron risk Weak CYP3A4 Weak CYP3A4 Rolapitant, fosaprepitant, Antiemetics inducer/inhibitor of inducer/inhibitor of Major substrates dexamethasone CYP3A4 CYP3A4 Aprepitant, netupitant, ondansetron, Moderate CYP3A4 Moderate CYP3A4 inhibitor Major substrates domperidone inhibitor. Ranitidine, famotidine, alluminium hydroxide, bismuth subsalicylate, zinc Low risk DDI Low risk DDI - Antacids and acexamate, sucralfate gastric mucosal Esomeprazole, omeprazole, pantoprazole Low risk DDI Conditional TdP risk Low risk DDI protective High risk DDI (major GI treatment Lansoprazole, rabeprazole - Conditional TdP risk CYP3A4 substrate) Low risk DDI with Antidiarrheals Racecadotril, loperamide Low risk DDI racecadotril. loperamide Low risk DDI has conditional TdP risk Lactulose, macrogol, magnesium Low risk DDI Low risk DDI - Prokinetics and hydroxide, scopolamine-butylbromide laxative High risk DDI (major Cinitapride, naloxegol - - CYP3A4 substrate) Dexchlorpheniramine, cetirizine, Low risk DDI Low risk DDI - loratadine, desloratadine, fexofenadine Antihistamines Conditional to possible TdP Diphenhydramine, promethazine Low risk DDI Low risk DDI risk Int. J. Mol. Sci. 2020, 21, x 4 of 8 High risk DDI (major Ebastine, rupatadine - - CYP3A4 substrate) All Low risk DDI Low risk DDI High risk DDI (major Sartans Losartan - - CYP3A4 substrate). Losartan: NTI Enalapril, captopril, fosinopril, ramipril, ACE inhibitors Low risk DDI Low risk DDI - quinapril All Low risk DDI Low risk DDI - High risk DDI (major Beta blockers Bisoprolol - - CYP3A4 substrate). Bisoprolol: NTI Clevidipine Low risk DDI Low risk DDI - High risk DDI (major CYP3A4 substrate). Hypertension and Nifedipine and congestive heart All dihydropyridines - - nicardipine failure treatment Calcium channel moderate CYP3A4 blockers inhibitors. High risk DDI (major Non dihydropyridines (verapamil, CYP3A4 substrate). - - diltiazem) Verapamil moderate CYP3A4 inhibitor Loop diuretics (furosemide, torsemide, Low risk DDI Conditional TdP risk Low risk DDI hydrochlorothiazide, indapamide) Potassium sparing diuretics (amiloride, Low risk DDI Low risk DDI - Diuretics triamterene, spironolactone) High risk DDI Potassium sparing diuretics (eplerenone) - - (major/sensitive CYP3A4 substrate) Glicazide, glibenclamide, glisentide, Sulfonylureas Low risk DDI Low risk DDI - glipizide, gliquidone Alpha Glucose-lowering glycosidase Acarbose, miglitol Low risk DDI Low risk DDI - treatment inhibitors Albiglutide, dulaglutide, exenatide, GLP-1 Low risk DDI Low risk DDI - liraglutide, lixisenatide Int. J. Mol. Sci. 2020, 21, x 5 of 8 Vildagliptin, alogliptin, sitagliptin Low risk DDI Low risk DDI - DPP-4 inhibitors High risk DDI (major Saxagliptin, linagliptin - - CYP3A4 substrate) SGLT2 Canagliflozin, dapagliflozin Low risk DDI Low risk DDI - inhibitors Risk of competition Biguanides Metformin - - for the membrane transporters High risk DDI (major Metglinides Repaglinide - - CYP3A4 substrate) Pitavastatin Low risk DDI Low risk DDI - Unknown risk of QT Fluvastatin, pravastatin, rosuvastatin - - prolongation High risk DDI (major Lipid-lowering Statins CYP3A4 substrate). treatment Both simvastatin and Simvastatin, atorvastatin - - atorvastatin are sensitive and moderate-sensitive Fibrates All Low risk DDI Low risk DDI - COX-1 ASA, triflusal Low risk DDI Low risk DDI - inhibitors Dipyridamole Low risk DDI Low risk DDI - PDE-3 inhibitors Weak CYP3A4 inhibitor of High risk DDI (major Clilostazol - CYP3A4 CYP3A4 substrate) High risk DDI (major Ticagrelor is a weak CYP3A4 substrate). Ticlopidine, ticagrelor, prasugrel - P2Y antagonists inhibitor of CYP3A4 Ticagrelor: Antiplatelet sensitive/NTI Clopidogrel Low risk DDI Low risk DDI - GP IIb/IIIa Abciximab, eptifibatide, tirofiban Low risk DDI Low risk DDI - antagonists Selective IP Prostacyclin P-gp, BCRP substrate. Selexipag - - Receptor Minor CYP3A4 substrate Agonist PGI2 analogue Iloprost, epoprostenol sodium Low risk DDI Low risk DDI - Int. J. Mol. Sci. 2020, 21, x 6 of 8 Coumarin Warfarin, acenocoumarol Low risk DDI Low risk DDI - Heparin Heparin and LMWH Low risk DDI Low risk DDI - Bivalirudina Low risk DDI Low risk DDI - DOACs FIIa Unknown risk of QT inhibitors Dabigatran - prolongation (under P-gp substrate review) P-gp substrate. Minor Edoxaban - - Anticoagulant CYP3A4 substrate High risk DDI (major CYP3A4 substrate). DOACs Fxa P-gp and BCRP inhibitors Apixaban, rivaroxaban - - substrates. Rivaroxaban: moderate-sensitive substrate All Low risk DDI Low risk DDI - Major CYP3A4 Parecoxib - - substrate. Non-opioid High risk DDI (major Ergotamine and dihydro-ergotamine - - CYP3A4 substrate). Ergotamine: NTI Morphine, hydromorphone, tapentadol, Low risk DDI Low risk DDI - Analgesics Codeine Possible for tramadol and Major CYP3A4 Tramadol, buprenorphine, oxycodon - buprenorphine substrate Opioid High risk DDI (major CYP3A4 substrate). Known TdP risk for methadone, fentanyl - Fentanyl: NTI. methadone Consider dose adjustment Pregabalin, gabapentin, levetiracetam, lamotrigine, topiramate, baclofen,
Recommended publications
  • VTE) Cindy Ward, DNP, RN-BC, CMSRN, ACNS-BC
    Chronic Complications of Venous Thromboembolism (VTE) Cindy Ward, DNP, RN-BC, CMSRN, ACNS-BC Roanoke, VA Disclosure • The speaker has no conflicts of interest to disclose. Carilion Roanoke Memorial Hospital • 3 time Magnet® designated • Flagship of Carilion Clinic, a 7 hospital system • Region’s only Level 1 Trauma Center • 703-bed academic medical center • System-wide, serves nearly 1 million patients across Virginia, West Virginia and North Carolina Objectives At the conclusion of this education activity, the learner will be able to: • recall VTE risk factors and prevention • describe post-thrombotic syndrome and chronic thromboembolic pulmonary hypertension (CTEPH) • identify nursing implications of caring for patients with post-thrombotic syndrome and CTEPH What is VTE? Pulmonary Embolus Deep Vein (PE) Thrombosis (DVT) Signs/Symptoms of DVT • Swelling • Erythema • Pain • Warmth1 Signs/Symptoms of PE 1 • Sudden onset of dyspnea • Tachycardia • Irregular heartbeat • Chest pain, worse with deep breath • Hemoptysis • Low blood pressure, light-headedness or syncope • 350,000 – 900,000 people per year are affected by VTE1, 2 • VTE is the leading cause of preventable hospital death in the US2 • VTE can occur without symptoms (silent)3 Quick Facts • Patients with DVT who are untreated have a 37% incidence of PE that is fatal4 • Combined mortality from PE (initial and recurrence) is 73%4 Quick Facts • 1 in 20 hospitalized patients will suffer a fatal PE if they have not received adequate VTE prophylaxis5 • For 25% of patients with PE, the first
    [Show full text]
  • The Protean Neurologic Manifestations of Varicella-Zoster Virus Infection
    REVIEW MARIA A. NAGEL, MD DONALD H. GILDEN, MD Department of Neurology, University of Departments of Neurology and Microbiology, Colorado Health Sciences Center, Denver University of Colorado Health Sciences Center, Denver The protean neurologic manifestations of varicella-zoster virus infection ■ ABSTRACT ARICELLA-ZOSTER VIRUS (VZV) is an V exclusively human, highly neurotropic Multiple neurologic complications may follow the alphaherpesvirus. Primary infection causes reactivation of varicella-zoster virus (VZV), including chickenpox, after which the virus becomes herpes zoster (also known as zoster or shingles), latent in cranial nerve ganglia, dorsal root postherpetic neuralgia, vasculopathy, myelitis, necrotizing ganglia, and autonomic ganglia along the retinitis, and zoster sine herpete (pain without rash). entire neuraxis. Decades later, VZV can reac- These conditions can be difficult to recognize, especially tivate to cause a number of neurologic condi- as several can occur without rash. tions. This article discusses the protean manifes- ■ KEY POINTS tations of VZV reactivation and their diagno- sis and treatment. The most common sequela of herpes zoster is postherpetic neuralgia, which can persist for months and ■ VZV REACTIVATION sometimes years after the rash resolves. HAS MANY MANIFESTATIONS VZV vasculopathy can present as transient ischemic VZV reactivation can produce a number of neurologic complications: attacks, ischemic or hemorrhagic stroke, or aneurysm. •Herpes zoster (shingles), manifesting as pain and rash in up to three dermatomes Vasculopathy and neurologic complications of VZV are • Postherpetic neuralgia, the most common best diagnosed by detecting VZV DNA in bodily fluids or sequela of zoster, is pain that persists for tissues or anti-VZV immunoglobulin G in the months and sometimes years after the rash cerebrospinal fluid.
    [Show full text]
  • Stroke Prevention in Chronic Kidney Disease Disclosures
    5/18/2020 Controversies: Stroke Prevention in Chronic Kidney Disease Wei Ling Lau, MD FASN FAHA FACP Assistant Professor, Nephrology University of California, Irvine Visiting Fellow at OptumLabsCOPY Disclosures • Prior or current research funding from NIH, AHA, Sanofi, ZS Pharma, and Hub Therapeutics. • Associate Medical Director for home peritoneal dialysis at Fresenius University Dialysis Center of Orange. • Has beenNOT on Fresenius medical advisory board for Velphoro. • No conflicts of interest relevant to the current talk. Controversies: Stroke prevention in CKD Wei Ling Lau, MD DO 1 5/18/2020 Stroke Prevention in CKD • Blood pressure targets • Antiplatelet agents • Statins • Anticoagulation Controversies: Stroke prevention in CKD Wei Ling Lau, MD COPY BP TARGETS Data is limited, as patients with CKD were historically excluded from clinical trials NOT Whelton 2017 ACC/AHA hypertension guidelines [Hypertension 2018] Controversies: Stroke prevention in CKD Wei Ling Lau, MD DO 2 5/18/2020 Systolic Blood Pressure Intervention Trial SPRINT: BP lowering to <120 vs <140 mmHg significantly lowered rate of CVD composite primary outcome; no clear effect on stroke Controversies: Stroke prevention in CKD The SPRINT Research Group. N Engl J Med 2015 p2103 Wei Ling Lau, MD COPY SPRINT subgroup analysis: CKD • Patients with CKD stage 3‐4 (eGFR of 20 to <60) comprised 28% of the SPRINT study population • Intensive BP management seemed to provide the same benefits for reduction in the CVD composite primary outcomeNOT – but did not impact stroke Controversies: Stroke prevention in CKD Cheung 2017 J Am Soc Nephrol p2812 Wei Ling Lau, MD DO 3 5/18/2020 The hazard of incident stroke associated with systolic BP (SBP) and chronic kidney disease (CKD)BP using and an unadjusted stroke model risk: that contained J‐shaped dummy variables association for CKD and BP groups (A) and a fully adjusted model that contained dummy variables for CKD and BP grou..
    [Show full text]
  • Toward an in Vitro Bioequivalence Test
    TOWARD AN IN VITRO BIOEQUIVALENCE TEST by Jie Sheng A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Pharmaceutical Sciences) In The University of Michigan 2007 Doctoral Committee: Professor Gordon L. Amidon, Chair Professor Henry Y. Wang Associate Professor Nair Rodriguez-Hornedo Associate Professor Steven P. Schwendeman Jie Sheng © 2007 All Rights Reserved To Kurt Q. Zhu, my husband and my very best friend, and to Diana S. Zhu and Brandon D. Zhu, my lovely children. ii Acknowledgements Most of all, I thank Prof. Gordon L. Amidon, for his support, guidance, and inspiration during my graduate studies at the University of Michigan. Being his student is the best step happened in my career. I am always amazed by his vision, energy, patience and dedication to the research and his students. He trained me to grow as a scientist and as a person. I also wish to thank all of my committee members, Professors David Fleisher, Nair Rodriguez-Hornedo, Steven Schwendeman and Henry Wang, for their very insightful and constructive suggestions to my research. It took all their efforts to raise me as a professional scientist in pharmaceutical field. They all contributed significantly to development and improvement of my graduate work. Especially, Prof. Wang has also guided me in thinking of career development as if 20-year later. I felt to be his student in many ways. I thank mentors, colleagues and friends, Prof. John Yu from Ohio State University, Paul Sirois from Eli Lilly, Kurt Seefeldt, Chet Provoda, Jonathan Miller, John Chung, Chris Landoswki, Haili Ping and Yasuhiro Tsume from College of Pharmacy, for many interesting discussions throughout the graduate program.
    [Show full text]
  • GTH 2021 State of the Art—Cardiac Surgery: the Perioperative Management of Heparin-Induced Thrombocytopenia in Cardiac Surgery
    Review Article 59 GTH 2021 State of the Art—Cardiac Surgery: The Perioperative Management of Heparin-Induced Thrombocytopenia in Cardiac Surgery Laura Ranta1 Emmanuelle Scala1 1 Department of Anesthesiology, Cardiothoracic and Vascular Address for correspondence Emmanuelle Scala, MD, Centre Anesthesia, Lausanne University Hospital (CHUV), Lausanne, Hospitalier Universitaire Vaudois, Rue du Bugnon 46, BH 05/300, 1011 Switzerland Lausanne, Suisse, Switzerland (e-mail: [email protected]). Hämostaseologie 2021;41:59–62. Abstract Heparin-induced thrombocytopenia (HIT) is a severe, immune-mediated, adverse drug Keywords reaction that paradoxically induces a prothrombotic state. Particularly in the setting of ► Heparin-induced cardiac surgery, where full anticoagulation is required during cardiopulmonary bypass, thrombocytopenia the management of HIT can be highly challenging, and requires a multidisciplinary ► cardiac surgery approach. In this short review, the different perioperative strategies to run cardiopul- ► state of the art monary bypass will be summarized. Introduction genicity of the antibodies and is diagnostic for HIT. The administration of heparin to a patient with circulating Heparin-induced thrombocytopenia (HIT) is a severe, im- pathogenic HITabs puts the patient at immediate risk of mune-mediated, adverse drug reaction that paradoxically severe thrombotic complications. induces a prothrombotic state.1,2 Particularly in the setting The time course of HIT can be divided into four distinct of cardiac surgery, where full anticoagulation is required phases.6 Acute HIT is characterized by thrombocytopenia during cardiopulmonary bypass (CPB), the management of and/or thrombosis, the presence of HITabs, and confirma- HIT can be highly challenging, and requires a multidisciplin- tion of their platelet activating capacity by a functional ary approach.
    [Show full text]
  • Salts of Menantine and Cox-Inhibitors and Their Crystal Form in The
    (19) & (11) EP 2 098 500 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 09.09.2009 Bulletin 2009/37 C07C 57/40 (2006.01) C07C 63/70 (2006.01) C07C 65/01 (2006.01) C07C 211/38 (2006.01) (2006.01) (2006.01) (21) Application number: 08384002.5 A61K 31/13 A61K 31/192 A61P 25/02 (2006.01) A61P 29/00 (2006.01) (2006.01) (22) Date of filing: 07.03.2008 A61P 25/28 (84) Designated Contracting States: • Tesson, Nicolas AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 08028 Barcelona (ES) HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT • Farran, Joan RO SE SI SK TR 08028 Barcelona (ES) Designated Extension States: • Rafecas, Llorenc AL BA MK RS 08028 Barcelona (ES) (71) Applicant: Laboratorios Del. Dr. Esteve, S.A. (74) Representative: Peters, Hajo et al 08041 Barcelona (ES) Graf von Stosch Patentanwaltsgesellschaft mbH (72) Inventors: Prinzregentenstrasse 22 • Buschmann, Helmut, Heinrich, Dr. 80538 München (DE) 52076 Aachen (Walheim) (DE) (54) Salts of menantine and cox-inhibitors and their crystal form in the treatment of pain (57) The present invention relates to salts of Memantine and COX-INHIBITORs, their crystal form, the processes for preparation of the same and their uses as medicaments, more particularly for the treatment of pain. EP 2 098 500 A1 Printed by Jouve, 75001 PARIS (FR) EP 2 098 500 A1 Description [0001] The present invention relates to salts of Memantine and COX-INHIBITORs, their crystal from, and their specific polymorphs, the processes for preparation of the same and their uses as medicaments, more particularly for the treatment 5 of pain.
    [Show full text]
  • Prediction of Premature Termination Codon Suppressing Compounds for Treatment of Duchenne Muscular Dystrophy Using Machine Learning
    Prediction of Premature Termination Codon Suppressing Compounds for Treatment of Duchenne Muscular Dystrophy using Machine Learning Kate Wang et al. Supplemental Table S1. Drugs selected by Pharmacophore-based, ML-based and DL- based search in the FDA-approved drugs database Pharmacophore WEKA TF 1-Palmitoyl-2-oleoyl-sn-glycero-3- 5-O-phosphono-alpha-D- (phospho-rac-(1-glycerol)) ribofuranosyl diphosphate Acarbose Amikacin Acetylcarnitine Acetarsol Arbutamine Acetylcholine Adenosine Aldehydo-N-Acetyl-D- Benserazide Acyclovir Glucosamine Bisoprolol Adefovir dipivoxil Alendronic acid Brivudine Alfentanil Alginic acid Cefamandole Alitretinoin alpha-Arbutin Cefdinir Azithromycin Amikacin Cefixime Balsalazide Amiloride Cefonicid Bethanechol Arbutin Ceforanide Bicalutamide Ascorbic acid calcium salt Cefotetan Calcium glubionate Auranofin Ceftibuten Cangrelor Azacitidine Ceftolozane Capecitabine Benserazide Cerivastatin Carbamoylcholine Besifloxacin Chlortetracycline Carisoprodol beta-L-fructofuranose Cilastatin Chlorobutanol Bictegravir Citicoline Cidofovir Bismuth subgallate Cladribine Clodronic acid Bleomycin Clarithromycin Colistimethate Bortezomib Clindamycin Cyclandelate Bromotheophylline Clofarabine Dexpanthenol Calcium threonate Cromoglicic acid Edoxudine Capecitabine Demeclocycline Elbasvir Capreomycin Diaminopropanol tetraacetic acid Erdosteine Carbidopa Diazolidinylurea Ethchlorvynol Carbocisteine Dibekacin Ethinamate Carboplatin Dinoprostone Famotidine Cefotetan Dipyridamole Fidaxomicin Chlormerodrin Doripenem Flavin adenine dinucleotide
    [Show full text]
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • Antithrombotic Treatment After Stroke Due to Intracerebral Haemorrhage (Review)
    Cochrane Database of Systematic Reviews Antithrombotic treatment after stroke due to intracerebral haemorrhage (Review) Perry LA, Berge E, Bowditch J, Forfang E, Rønning OM, Hankey GJ, Villanueva E, Al-Shahi Salman R Perry LA, Berge E, Bowditch J, Forfang E, Rønning OM, Hankey GJ, Villanueva E, Al-Shahi Salman R. Antithrombotic treatment after stroke due to intracerebral haemorrhage. Cochrane Database of Systematic Reviews 2017, Issue 5. Art. No.: CD012144. DOI: 10.1002/14651858.CD012144.pub2. www.cochranelibrary.com Antithrombotic treatment after stroke due to intracerebral haemorrhage (Review) Copyright © 2017 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. TABLE OF CONTENTS HEADER....................................... 1 ABSTRACT ...................................... 1 PLAINLANGUAGESUMMARY . 2 SUMMARY OF FINDINGS FOR THE MAIN COMPARISON . ..... 3 BACKGROUND .................................... 5 OBJECTIVES ..................................... 5 METHODS ...................................... 6 RESULTS....................................... 8 Figure1. ..................................... 9 Figure2. ..................................... 11 Figure3. ..................................... 12 DISCUSSION ..................................... 14 AUTHORS’CONCLUSIONS . 15 ACKNOWLEDGEMENTS . 15 REFERENCES ..................................... 15 CHARACTERISTICSOFSTUDIES . 18 DATAANDANALYSES. 31 Analysis 1.2. Comparison 1 Short-term antithrombotic treatment, Outcome 2 Death. 31 Analysis 1.6. Comparison 1 Short-term antithrombotic
    [Show full text]
  • New Zealand Data Sheet – Tradename (Active Ingredient)
    NEW ZEALAND DATA SHEET NEW ZEALAND DATA SHEET FLUOROURACIL EBEWE (FLUOROURACIL) 1. PRODUCT NAME Fluorouracil Ebewe 50 mg/mL solution for injection 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Fluorouracil Ebewe 250 mg/5 mL contains 250 mg fluorouracil*. Fluorouracil Ebewe 500 mg/10 mL contains 100 mg fluorouracil*. Fluorouracil Ebewe 1000 mg/20 mL contains 1000 mg fluorouracil. Fluorouracil Ebewe 2500 mg/50 mL contains 2500 mg fluorouracil. Fluorouracil Ebewe 5000 mg/100 mL contains 5000 mg fluorouracil. For the full list of excipients, see Section 6.1 List of excipients. *Not supplied in New Zealand 3. PHARMACEUTICAL FORM Fluorouracil Ebewe is a sterile solution of fluorouracil for use as an intravenous infusion or injection. The pH of the fluorouracil injection solution is approximately 8.9. 4. CLINICAL PARTICULARS 4.1. THERAPEUTIC INDICATIONS Alone or in combination, for the palliative treatment of malignant tumours, particularly of the breast, colon or rectum; and in the treatment of gastric, primary hepatic, pancreatic, uterine (cervical particularly), ovarian and bladder carcinomas. Fluorouracil should only be used when other proven measures have failed or are considered impractical. 4.2. DOSE AND METHOD OF ADMINISTRATION General Directions Fluorouracil Ebewe contains no antimicrobial agent. The product is for single use in one patient only. Discard any residue. To reduce microbiological hazard, use as soon as practicable after reconstitution/preparation. If storage is necessary, hold at 2°C to 8°C for not more than 24 hours after preparation. Administration should be completed within 24 hours of preparation of the infusion and any residue discarded according to the guidelines for the disposal of cytotoxic drugs (see Section 6.6 Special precautions for disposal).
    [Show full text]
  • PRODUCT INFORMATION Brivudine Item No
    PRODUCT INFORMATION Brivudine Item No. 29448 CAS Registry No.: 69304-47-8 Formal Name: 5-[(1E)-2-bromoethenyl]-2′-deoxy-uridine OH Synonym: BVDU OH MF: C11H13BrN2O5 H Br FW: 333.1 N O Purity: ≥98% UV/Vis.: λ: 251, 294 nm max OO Supplied as: A crystalline solid N Storage: -20°C H Stability: ≥2 years Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis. Laboratory Procedures Brivudine is supplied as a crystalline solid. A stock solution may be made by dissolving the brivudine in the solvent of choice, which should be purged with an inert gas. Brivudine is soluble in organic solvents such as ethanol, DMSO, and dimethyl formamide (DMF). The solubility of brivudine in ethanol is approximately 10 mg/ml and approximately 30 mg/ml in DMSO and DMF. Further dilutions of the stock solution into aqueous buffers or isotonic saline should be made prior to performing biological experiments. Ensure that the residual amount of organic solvent is insignificant, since organic solvents may have physiological effects at low concentrations. Organic solvent-free aqueous solutions of brivudine can be prepared by directly dissolving the crystalline solid in aqueous buffers. The solubility of brivudine in PBS, pH 7.2, is approximately 0.5 mg/ml. We do not recommend storing the aqueous solution for more than one day. Description Brivudine is a thymidine analog and inhibitor of herpes simplex virus 1 (HSV-1) and varicella-zoster virus (VZV) viral replication.1,2 Following conversion to a 5’-triphosphate form by viral kinases, brivudine is incorporated into viral DNA, inhibiting viral DNA polymerases and inducing strand breakage.2 Brivudine (0.02-0.04 μg/ml) inhibits VZV replication in primary human fibroblasts and inhibits cytopathogenic 1,3 effects of the KOS HSV-1 strain in a panel of cell lines (MIC50s = 0.007-0.4 μg/ml).
    [Show full text]
  • Antiplatelet Regimens in the Long-Term Secondary Prevention of Transient Ischaemic Attack and Ischaemic Stroke: an Updated Network Meta-Analysis
    Open Access Research BMJ Open: first published as 10.1136/bmjopen-2015-009013 on 17 March 2016. Downloaded from Antiplatelet regimens in the long-term secondary prevention of transient ischaemic attack and ischaemic stroke: an updated network meta-analysis Peng-Peng Niu, Zhen-Ni Guo, Hang Jin, Ying-Qi Xing, Yi Yang To cite: Niu P-P, Guo Z-N, ABSTRACT et al Strengths and limitations of this study Jin H, . Antiplatelet Objective: To examine the comparative efficacy and regimens in the long-term safety of different antiplatelet regimens in patients with ▪ secondary prevention of Since the dose of aspirin ranged from 30 to prior non-cardioembolic ischaemic stroke or transient transient ischaemic attack 1500 mg daily, treatment with aspirin was and ischaemic stroke: an ischaemic attack. divided into four different regimens and treat- updated network meta- Design: Systematic review and network meta-analysis. ment with aspirin plus dipyridamole was divided analysis. BMJ Open 2016;6: Data sources: As on 31 March 2015, all randomised into two different regimens. e009013. doi:10.1136/ controlled trials that investigated the effects of ▪ Duration of follow-up was included in the model bmjopen-2015-009013 antiplatelet agents in the long-term (≥3 months) to perform the network meta-analysis. secondary prevention of non-cardioembolic transient ▪ Estimates from sensitivity analyses were compat- ▸ Prepublication history and ischaemic attack or ischaemic stroke were searched ible with the main analysis, except that cilostazol additional material is and identified. was not significantly more effective than clopido- available. To view please visit Outcome measures: The primary outcome measure grel and triflusal in preventing serious vascular the journal (http://dx.doi.org/ of efficacy was serious vascular events (non-fatal events when setting the prior on the variance 10.1136/bmjopen-2015- stroke, non-fatal myocardial infarction and vascular equal to a uniform (0, 1000).
    [Show full text]