(CD-P-PH/PHO) Report Classification/Justifica
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Modulation of Allergic Inflammation in the Nasal Mucosa of Allergic Rhinitis Sufferers with Topical Pharmaceutical Agents
Modulation of Allergic Inflammation in the Nasal Mucosa of Allergic Rhinitis Sufferers With Topical Pharmaceutical Agents Author Watts, Annabelle M, Cripps, Allan W, West, Nicholas P, Cox, Amanda J Published 2019 Journal Title FRONTIERS IN PHARMACOLOGY Version Version of Record (VoR) DOI https://doi.org/10.3389/fphar.2019.00294 Copyright Statement © Frontiers in Pharmacology 2019. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version. Downloaded from http://hdl.handle.net/10072/386246 Griffith Research Online https://research-repository.griffith.edu.au fphar-10-00294 March 27, 2019 Time: 17:52 # 1 REVIEW published: 29 March 2019 doi: 10.3389/fphar.2019.00294 Modulation of Allergic Inflammation in the Nasal Mucosa of Allergic Rhinitis Sufferers With Topical Pharmaceutical Agents Annabelle M. Watts1*, Allan W. Cripps2, Nicholas P. West1 and Amanda J. Cox1 1 Menzies Health Institute Queensland, School of Medical Science, Griffith University, Southport, QLD, Australia, 2 Menzies Health Institute Queensland, School of Medicine, Griffith University, Southport, QLD, Australia Allergic rhinitis (AR) is a chronic upper respiratory disease estimated to affect between 10 and 40% of the worldwide population. The mechanisms underlying AR are highly complex and involve multiple immune cells, mediators, and cytokines. As such, the development of a single drug to treat allergic inflammation and/or symptoms is confounded by the complexity of the disease pathophysiology. Complete avoidance of allergens that trigger AR symptoms is not possible and without a cure, the available therapeutic options are typically focused on achieving symptomatic relief. -
Effect of Sympathomimetic and Allied Amines on Temperature and Oxygen Consumption in Chickens by D
Br. J. Pharmac. Chemother. (1967), 31, 290-312. EFFECT OF SYMPATHOMIMETIC AND ALLIED AMINES ON TEMPERATURE AND OXYGEN CONSUMPTION IN CHICKENS BY D. J. ALLEN AND E. MARLEY From the Institute of Psychiatry, Maudsley Hospital, Denmark Hill, London (Received June 12, 1967) The sympathomimetic and allied amines can be divided into two main groups according to their chemical structure and to their effects in young chickens (Key & Marley, 1962; Dewhurst & Marley, 1965a, b). These groups are similar to those into which the amines are divided for their effects on smooth muscle (Fleckenstein & Burn, 1953; Burn & Rand, 1958; Maxwell, Povalski & Plummer, 1959; Vane, 1960; Marley, 1962; Trendelenburg, 1963) and this division clearly implies a fundamental difference in mode of action. In young chickens, catecholamines evoked sleep, whereas amphetamine-like amines and some tryptamines had the opposite effect and produced arousal (Key & Marley, 1962; Dewhurst & Marley, 1965a, b). The present experiments were made to determine the effects of these amines on temperature and oxygen consumption. Our results, a brief account of which was given to the Physiological Society (Allen & Marley, 1966), agree with those of Feldberg & Myers (1963, 1964a, 1965) who found that adrenaline and noradrenaline injected intraventricularly in cats lowered body temperature, whereas 5-hydroxytryptamine raised it. METHODS Animals Rhode Island Red pullets, 1-23 days old and weighing 30 to 150 g, and adult fowls of 1 to 2 kg were used, all from the same hatchery. For the first week after hatching they were kept in a cage thermostatically maintained at 33 to 340 C and for the subsequent 2 weeks at 29 to 310 C. -
Nonpharmacological Treatment of Rhinoconjunctivitis and Rhinosinusitis
Journal of Allergy Nonpharmacological Treatment of Rhinoconjunctivitis and Rhinosinusitis Guest Editors: Ralph Mösges, Carlos E. Baena-Cagnani, and Desiderio Passali Nonpharmacological Treatment of Rhinoconjunctivitis and Rhinosinusitis Journal of Allergy Nonpharmacological Treatment of Rhinoconjunctivitis and Rhinosinusitis Guest Editors: Ralph Mosges,¨ Carlos E. Baena-Cagnani, and Desiderio Passali Copyright © 2014 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “Journal of Allergy.” All articles are open access articles distributed under the Creative Commons At- tribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board William E. Berger, USA Alan P. Knutsen, USA Fabienne Ranc, France Kurt Blaser, Switzerland Marek L. Kowalski, Poland Anuradha Ray, USA Eugene R. Bleecker, USA Ting Fan Leung, Hong Kong Harald Renz, Germany JandeMonchy,TheNetherlands Clare M Lloyd, UK Nima Rezaei, Iran Frank Hoebers, The Netherlands Redwan Moqbel, Canada Robert P. Schleimer, USA StephenT.Holgate,UK Desiderio Passali, Italy Massimo Triggiani, Italy Sebastian L. Johnston, UK Stephen P. Peters, USA Hugo Van Bever, Singapore Young J. Juhn, USA David G. Proud, Canada Garry Walsh, United Kingdom Contents Nonpharmacological Treatment of Rhinoconjunctivitis and Rhinosinusitis,RalphMosges,¨ Carlos E. Baena-Cagnani, and Desiderio Passali Volume 2014, Article ID 416236, 2 pages Clinical Efficacy of a Spray Containing Hyaluronic Acid and Dexpanthenol after Surgery in the Nasal Cavity (Septoplasty, Simple Ethmoid Sinus Surgery, and Turbinate Surgery), Ina Gouteva, Kija Shah-Hosseini, and Peter Meiser Volume 2014, Article ID 635490, 10 pages The Effectiveness of Acupuncture Compared to Loratadine in Patients Allergic to House Dust ,Mites Bettina Hauswald, Christina Dill, Jurgen¨ Boxberger, Eberhard Kuhlisch, Thomas Zahnert, and Yury M. -
Intranasal Rhinitis Agents
Intranasal Rhinitis Agents Therapeutic Class Review (TCR) February 1, 2020 No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, digital scanning, or via any information storage or retrieval system without the express written consent of Magellan Rx Management. All requests for permission should be mailed to: Magellan Rx Management Attention: Legal Department 6950 Columbia Gateway Drive Columbia, Maryland 21046 The materials contained herein represent the opinions of the collective authors and editors and should not be construed to be the official representation of any professional organization or group, any state Pharmacy and Therapeutics committee, any state Medicaid Agency, or any other clinical committee. This material is not intended to be relied upon as medical advice for specific medical cases and nothing contained herein should be relied upon by any patient, medical professional or layperson seeking information about a specific course of treatment for a specific medical condition. All readers of this material are responsible for independently obtaining medical advice and guidance from their own physician and/or other medical professional in regard to the best course of treatment for their specific medical condition. This publication, inclusive of all forms contained herein, is intended to be educational in nature and is intended to be used for informational purposes only. Send comments and suggestions to [email protected]. -
Early Protective Effects of Tiotropium Bromide in Patients with Airways Hyperres P O N S I V E N E S S
European Review for Medical and Pharmacological Sciences 2004; 8: 259-264 Early protective effects of tiotropium bromide in patients with airways hyperres p o n s i v e n e s s C. TERZANO, A. PETROIANNI, A. RICCI, L. D’ANTONI, L. ALLEGRA* Department of Cardiovascular and Respiratory Sciences, Respiratory Diseases Unit, Fondazione E. Lorillard Spencer Cenci, “La Sapienza” University - Rome (Italy) *Institute of Respiratory Diseases, University of Milan, Ospedale Maggiore IRCCS – Milan (Italy) Abstract. – Tiotropium is an anticholiner- Introduction gic drug for Ch ronic Obstructive Pulmonary Di sease (COPD) patients, with a peak b ron- Ti o t rop ium is a qu atern a ry amm o niu m chodilator effect observed after 1.5 to 2 hours and a long duration of action. The aim of our co ngener of atropine. It has been developed study was to quantify the early protection of a as a lon g-acting an ticho linergic bro n c h o d i l a- single dose of inhaled tiotropium against metha- tor for inhalation by patients with chronic ob- choline-induced bronchoconstriction in asthmat- s t ructive pu lmon ary d isease (COPD). Dru g ic patients with airway hyperresponsiveness. p ro p e rties o f ant icho lin ergic agent s have Ten subjects (7M, 3F), with history of asthma been well-kno wn to man y cultures for many and a baseline FEV (Forced Expiratory Volume 1 1 1 c e n t u r i e s . In the 1920s the d iscovery o f the sec) >80% of pred icted, were enrolled in the s t u d y. -
HMSA Drug Formulary
March 23, 2004 MEMORANDUM TO: Participating Pharmacies FROM: John T. Berthiaume, M.D. Medical Director, Pharmacy Management SUBJECT: Updated HMSA Drug Formulary Enclosed is the comprehensive updated formulary, effective April 1. This copy incorporates the changes listed in the Formulary Update sent to you in February. Please replace the current formulary sections in your pharmacy handbook with the enclosed version. If you have any questions, please call an HMSA Provider Teleservice Representative at 948- 6330 on Oahu or 1 (800) 790-4672 from the Neighbor Islands. PM04-010 HMSA DRUG FORMULARY 4/1/04 - Page 1 Code THERAPEUTIC CATEGORY LISTING 1 I. Anti-infectives A. Antibiotics 1. Penicillins - non-penicillinase resistant 2 I. Anti-infectives A. Antibiotics 2. Penicillins - penicillinase resistant 3 I. Anti-infectives A. Antibiotics 3. Cephalosporins 4 I. Anti-infectives A. Antibiotics 4. Fluoroquinolones 5 I. Anti-infectives A. Antibiotics 5. Tetracyclines 6 I. Anti-infectives A. Antibiotics 6. Macrolides 7 I. Anti-infectives A. Antibiotics 7. Vancomycin 8 I. Anti-infectives A. Antibiotics 8. Lincosamides 9 I. Anti-infectives A. Antibiotics 9. Aminoglycoside 10 I. Anti-infectives A. Antibiotics 10. Sulfonamides 11 I. Anti-Infectives A. Antibiotics 11. Vaginal preparations 12 I. Anti-infectives B. Antifungal agents 1. Oral 13 I. Anti-Infectives B. Antifungal agents 2. Vaginal preparations OTC considerations: clotrimazole (Gyne-Lotrimin 3, Mycelex-7), miconazole (Monistat 7), tioconazole (Vagistat-1), butoconazole (Femstat 3) 14 I. Anti-infectives C. Antimalarial 15 I. Anti-infectives D. Antituberculous 16 I. Anti-infectives E. Amebicides 17 I. Anti-infectives F. Antiviral agents 1. Nucleoside Reverse-transcriptase Inhibitors (NRTI) 18 I. -
Classification of Medicinal Drugs and Driving: Co-Ordination and Synthesis Report
Project No. TREN-05-FP6TR-S07.61320-518404-DRUID DRUID Driving under the Influence of Drugs, Alcohol and Medicines Integrated Project 1.6. Sustainable Development, Global Change and Ecosystem 1.6.2: Sustainable Surface Transport 6th Framework Programme Deliverable 4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Due date of deliverable: 21.07.2011 Actual submission date: 21.07.2011 Revision date: 21.07.2011 Start date of project: 15.10.2006 Duration: 48 months Organisation name of lead contractor for this deliverable: UVA Revision 0.0 Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission x Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) DRUID 6th Framework Programme Deliverable D.4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Page 1 of 243 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Authors Trinidad Gómez-Talegón, Inmaculada Fierro, M. Carmen Del Río, F. Javier Álvarez (UVa, University of Valladolid, Spain) Partners - Silvia Ravera, Susana Monteiro, Han de Gier (RUGPha, University of Groningen, the Netherlands) - Gertrude Van der Linden, Sara-Ann Legrand, Kristof Pil, Alain Verstraete (UGent, Ghent University, Belgium) - Michel Mallaret, Charles Mercier-Guyon, Isabelle Mercier-Guyon (UGren, University of Grenoble, Centre Regional de Pharmacovigilance, France) - Katerina Touliou (CERT-HIT, Centre for Research and Technology Hellas, Greece) - Michael Hei βing (BASt, Bundesanstalt für Straßenwesen, Germany). -
(12) Patent Application Publication (10) Pub. No.: US 2001/0053775 A1 Seidel Et Al
US 2001.0053775A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2001/0053775 A1 Seidel et al. 43) Pub. Date: Dec. 20,9 2001 (54) NASAL SOLUTIONS (30) Foreign Application Priority Data (76) Inventors: Matthias Seidel, Ittigen (CH); Jan. 30, 1998 (EP)........................................ 9881OO69-9 Christopher Buckley, Commugny (CH) Publication Classification Correspondence Address: RVNSporation (51) Int. Cl." ......................... A61K 31156; A61K 31/57; ENNINEMARK DEPT (52) U.S. Cl. ........................"I,...s. SUMMIT, NJ 079011027 (21) Appl. No.: 09/880,678 (57) ABSTRACT (22) Filed: Jun. 13, 2001 Related U.S. Application Data The invention relates to liquid pharmaceutical compositions adapted to nasal administration. The liquid nasal formula (63) Continuation of application No. 09/601,123, filed on tions of the invention are characterized inter alia by having Jul. 27, 2000. excellent and prolonged moisturizing properties. US 2001/0053775 A1 Dec. 20, 2001 NASAL SOLUTIONS embodiment of the invention they may also be present in a 0001. The present invention relates to pharmaceutical Slightly Viscous form, e.g. like a Syrup. However, they all compositions intended for nasal administration. More Spe can be clearly discriminated from nasal formulations in gel cifically, it concerns liquid nasal formulations with form in that they-in contrast to gels-are able to form improved moisturizing properties. drops and can be used as SprayS. 0014) Active substances suitable for nasal administration 0002 The nasal administration of active substances is a (a) are e.g. vasoconstrictors, e.g. Xylometazoline, e.g. widely used method of treatment. Active substances which Xylometazoline hydrochloride; indanazoline, metizoline; come into consideration are, for example, vasoconstrictors, naphazoline, e.g. -
Composition for Rectal Administration Combined with an Oral Alpha-Lipoic
(19) & (11) EP 2 162 125 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61K 31/136 (2006.01) A61K 31/01 (2006.01) 19.10.2011 Bulletin 2011/42 A61P 1/00 (2006.01) A61K 45/06 (2006.01) A61K 31/56 (2006.01) A61K 31/573 (2006.01) (2006.01) (21) Application number: 08768441.1 A61K 31/606 (22) Date of filing: 13.06.2008 (86) International application number: PCT/US2008/007401 (87) International publication number: WO 2008/156671 (24.12.2008 Gazette 2008/52) (54) Composition for rectal administration combined with an oral alpha-lipoic acid composition for the treatment of inflammatory bowel disease Zusammensetzung zur rektalen Verabreichung kombiniert mit einer oralen Zusammentzung enthaltend alpha Liponsäure zur Behandlung von entzündlicher Darmerkrankung Composition pour l’administration rectale en combinaison avec une composition orale de l’ acide alpha- lipoique pour le traitment des maladies intestinales inflammatoires (84) Designated Contracting States: (56) References cited: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR EP-B1- 0 671 168 WO-A2-02/089796 HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT US-A- 4 657 900 US-A- 5 082 651 RO SE SI SK TR US-A- 5 378 470 (30) Priority: 13.06.2007 US 934505 P • MULDER CJ. ET AL.: ’Beclomethasone 06.02.2008 US 63745 P dipropionate (3mg) versus 5- aminosalicylic acid (2g) versus the combination of both (3mg/2g)as (43) Date of publication of application: retention enemas in active ulcerative proctitis’ 17.03.2010 Bulletin 2010/11 EUR.J.GASTROENTEROL HEPATOL vol. -
Prediction of Premature Termination Codon Suppressing Compounds for Treatment of Duchenne Muscular Dystrophy Using Machine Learning
Prediction of Premature Termination Codon Suppressing Compounds for Treatment of Duchenne Muscular Dystrophy using Machine Learning Kate Wang et al. Supplemental Table S1. Drugs selected by Pharmacophore-based, ML-based and DL- based search in the FDA-approved drugs database Pharmacophore WEKA TF 1-Palmitoyl-2-oleoyl-sn-glycero-3- 5-O-phosphono-alpha-D- (phospho-rac-(1-glycerol)) ribofuranosyl diphosphate Acarbose Amikacin Acetylcarnitine Acetarsol Arbutamine Acetylcholine Adenosine Aldehydo-N-Acetyl-D- Benserazide Acyclovir Glucosamine Bisoprolol Adefovir dipivoxil Alendronic acid Brivudine Alfentanil Alginic acid Cefamandole Alitretinoin alpha-Arbutin Cefdinir Azithromycin Amikacin Cefixime Balsalazide Amiloride Cefonicid Bethanechol Arbutin Ceforanide Bicalutamide Ascorbic acid calcium salt Cefotetan Calcium glubionate Auranofin Ceftibuten Cangrelor Azacitidine Ceftolozane Capecitabine Benserazide Cerivastatin Carbamoylcholine Besifloxacin Chlortetracycline Carisoprodol beta-L-fructofuranose Cilastatin Chlorobutanol Bictegravir Citicoline Cidofovir Bismuth subgallate Cladribine Clodronic acid Bleomycin Clarithromycin Colistimethate Bortezomib Clindamycin Cyclandelate Bromotheophylline Clofarabine Dexpanthenol Calcium threonate Cromoglicic acid Edoxudine Capecitabine Demeclocycline Elbasvir Capreomycin Diaminopropanol tetraacetic acid Erdosteine Carbidopa Diazolidinylurea Ethchlorvynol Carbocisteine Dibekacin Ethinamate Carboplatin Dinoprostone Famotidine Cefotetan Dipyridamole Fidaxomicin Chlormerodrin Doripenem Flavin adenine dinucleotide -
(19) United States (12) Patent Application Publication (10) Pub
US 20050181041A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/0181041 A1 Goldman (43) Pub. Date: Aug. 18, 2005 (54) METHOD OF PREPARATION OF MIXED Related US. Application Data PHASE CO-CRYSTALS WITH ACTIVE AGENTS (60) Provisional application No. 60/528,232, ?led on Dec. 9, 2003. Provisional application No. 60/559,862, ?led (75) Inventor: David Goldman, Portland, CT (US) on Apr. 6, 2004. Correspondence Address: Publication Classi?cation LEYDIG VOIT & MAYER, LTD (51) Int. Cl.7 ....................... .. A61K 31/56; A61K 38/00; TWO PRUDENTIAL PLAZA, SUITE 4900 A61K 9/64 180 NORTH STETSON AVENUE (52) US. Cl. ............................ .. 424/456; 514/179; 514/2; CHICAGO, IL 60601-6780 (US) 514/221 (73) Assignee: MedCrystalForms, LLC, Hunt Valley, (57) ABSTRACT MD This invention pertains to a method of preparing mixed phase co-crystals of active agents With one or more materials (21) Appl. No.: 11/008,034 that alloWs the modi?cation of the active agent to a neW physical/crystal form With unique properties useful for the delivery of the active agent, as Well as compositions com (22) Filed: Dec. 9, 2004 prising the mixed phase co-crystals. Patent Application Publication Aug. 18, 2005 Sheet 1 0f 8 US 2005/0181041 A1 FIG. 1a 214.70°C z.m."m.n... 206.98°C n..0ao 142 OJ/g as:20m=3: -0.8 -1.0 40 90 1:10 2110 Temperture (°C) FIG. 1b 0.01 as:22“.Km: 217 095 24221.4 39Jmum/Q -0.8 35 155 255 255 Temperture (°C) Patent Application Publication Aug. -
Inhibition of Histamine-Induced Human Conjunctival Epithelial Cell Responses by Ocular Allergy Drugs
LABORATORY SCIENCES Inhibition of Histamine-Induced Human Conjunctival Epithelial Cell Responses by Ocular Allergy Drugs John M. Yanni, PhD; Lori K. Weimer, BA; Najam A. Sharif, PhD; Shou X. Xu, MS; Daniel A. Gamache, PhD; Joan M. Spellman, MS Objective: To evaluate the effects of topical ocular drugs secretion (50% inhibitory concentration, 1.7-5.5 nmol/L) with histamine H1-antagonist activity on histamine- than predicted from binding data, while antazoline and stimulated phosphatidylinositol turnover and interleu- pheniramine were far less potent (20- to 140-fold) in func- kin (IL) 6 and IL-8 secretion from human conjunctival tional assays. Levocabastine (dissociation constant, 52.6 epithelial cells. nmol/L) exhibited greater functional activity (50% in- hibitory concentration, 8-25 nmol/L) than either antazo- Methods: Primary human conjunctival epithelial cell cul- line or pheniramine. tures were stimulated with histamine in the presence or ab- sence of test drugs. Phosphatidylinositol turnover was quan- Conclusions: Histamine-stimulated phosphatidylino- tified by ion exchange chromatography and cytokine con- sitol turnover and cytokine secretion by human conjunc- tentofsupernatantsbyenzyme-linkedimmunosorbentassay. tival epithelial cells are attenuated by compounds with H1-antagonist activity. However, antihistaminic po- Results: Antazoline hydrochloride, emedastine difuma- tency alone does not predict anti-inflammatory poten- rate, levocabastine hydrochloride, olopatadine hydro- tial. Olopatadine, emedastine, and levocabastine were no- chloride, and pheniramine maleate attenuated histamine- tably more potent than pheniramine and antazoline. stimulated phosphatidylinositol turnover and IL-6 and IL-8 secretion. Emedastine was the most potent in li- Clinical Relevance: Selected topical ocular drugs with gand binding, phosphatidylinositol turnover, and IL-6 se- antihistaminic activity may offer therapeutic advan- cretion, with dissociation constant and 50% inhibitory tages to patients with allergic conjunctivitis by inhibit- concentrations of 1-3 nmol/L.