Wo 2010/075090 A2

Total Page:16

File Type:pdf, Size:1020Kb

Wo 2010/075090 A2 (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 1 July 2010 (01.07.2010) WO 2010/075090 A2 (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C07D 409/14 (2006.01) A61K 31/7028 (2006.01) kind of national protection available): AE, AG, AL, AM, C07D 409/12 (2006.01) A61P 11/06 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US2009/068073 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 15 December 2009 (15.12.2009) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (25) Filing Language: English SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, (26) Publication Language: English TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 61/122,478 15 December 2008 (15.12.2008) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, (71) Applicant (for all designated States except US): AUS- ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, PEX PHARMACEUTICALS, INC. [US/US]; 1261 TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, Liberty Way, Suite C, Vista, CA 9208 1 (US). ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM, (72) Inventor; and TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, (75) Inventor/Applicant (for US only): GANT, Thomas, G. ML, MR, NE, SN, TD, TG). [US/US]; 1261 Liberty Way, Suite C, Vista, CA 92081 (US). Published: (74) Agent: BENNETT, Dennis, A.; Global Patent Group, — without international search report and to be republished LLC, 104 11 Clayton Road, Suite 304, St. Louis, MO upon receipt of that report (Rule 48.2(g)) 63 13 1 (US). (54) Title: SCOPINE MODULATORS OF MUSCARINIC ACETYLCHOLINE RECEPTOR (57) Abstract: The present invention relates to new scopine modulators of muscarinic acetylcholine receptors, pharmaceutical compositions thereof, and methods of use thereof. (I) Formula I SCOPINE MODULATORS OF MUSCARINIC ACETYLCHOLINE RECEPTOR [0001] This application claims the benefit of priority of United States provisional application No. 61/122,478, filed December 15, 2008, the disclosure of which is hereby incorporated by reference as if written herein in its entirety. [0002] Disclosed herein are new tropine compounds and compositions and their application as pharmaceuticals for the treatment of disorders. Methods of modulation of muscarinic acetylcholine receptor activity in a subject are also provided for the treatment of disorders such as chronic obstructive pulmonary disorder and asthma. [0003] Tiotropium bromide (Ba-679, Ba-679 Br, Ba-679-BR, Spiriva®, CAS # 136310-93-5), (l α,2β,4β,7β)-7-[(hydroxidi-2-thienylacetyl)oxy]-9,9-dimethyl-3- oxa-9-azoniatricyclo[3.3.1.02,4]nonane, is a muscarinic acetylcholine receptor antagonist. Tiotropium bromide is commonly prescribed for the treatment of chronic obstructive pulmonary disorder (Drug Report for Tiotropium Bromide, Thompson Investigational Drug Database (Sept. 15, 2008); Van Noord et al., Eur. Resp. J. 2002, 19(4), 639-644; Mundy et al., Nature Rev. Drug Disc. 2004, 3(8), 643-644; Koumis et al. Clin. Ther., 2005, 27(4), 377-392; Joos et al., Int. J. Clin. Pract. 2003, 57(10), 906-909; Hvizdos et al., Drugs 2002, 62(8), 1195-1203; and Barnes, Chest 2000, 117(2, Suppl.), 63S-66S. Tiotropium bromide has also shown promise in treating asthma (Drug Report for Tiotropium Bromide, Thompson Investigational Drug Database (Sept. 15, 2008); and Koumis et al., Clin. Ther. 2005, 27(4), 377-392). Tiotropium bromide [0004] Tiotropium bromide is subject to CYP3A4 and CYP2D6-mediated oxidative metabolism (Koumis et al., Clin. Ther. 2005, 27(4), 377-392). Adverse effects associated with tiotropium bromide administration include: dry mouth, chest pain, fatigue, headache, dizziness, hypoesthesia, abdominal pain, constipation, diarrhea, cough, pharyngitis, sinusitis, influenza-like symptoms, upper respiratory tract infection, and pneumonia. Deuterium Kinetic Isotope Effect [0005] In order to eliminate foreign substances such as therapeutic agents, the animal body expresses various enzymes, such as the cytochrome P450 enzymes (CYPs), esterases, proteases, reductases, dehydrogenases, and monoamine oxidases, to react with and convert these foreign substances to more polar intermediates or metabolites for renal excretion. Such metabolic reactions frequently involve the oxidation of a carbon-hydrogen (C-H) bond to either a carbon-oxygen (C-O) or a carbon-carbon (C-C) π-bond. The resultant metabolites may be stable or unstable under physiological conditions, and can have substantially different pharmacokinetic, pharmacodynamic, and acute and long-term toxicity profiles relative to the parent compounds. For most drugs, such oxidations are generally rapid and ultimately lead to administration of multiple or high daily doses. [0006] The relationship between the activation energy and the rate of reaction may be quantified by the Arrhenius equation, k = Ae Eact/RT. The Arrhenius equation states that, at a given temperature, the rate of a chemical reaction depends exponentially on the activation energy (Eact). [0007] The transition state in a reaction is a short lived state along the reaction pathway during which the original bonds have stretched to their limit. By definition, the activation energy E for a reaction is the energy required to reach the transition state of that reaction. Once the transition state is reached, the molecules can either revert to the original reactants, or form new bonds giving rise to reaction products. A catalyst facilitates a reaction process by lowering the activation energy leading to a transition state. Enzymes are examples of biological catalysts. [0008] Carbon-hydrogen bond strength is directly proportional to the absolute value of the ground-state vibrational energy of the bond. This vibrational energy depends on the mass of the atoms that form the bond, and increases as the mass of 9 one or both of the atoms making the bond increases. Since deuterium (D) has twice the mass of protium (1H), a C-D bond is stronger than the corresponding C-1H bond. If a C-1H bond is broken during a rate-determining step in a chemical reaction (i.e. the step with the highest transition state energy), then substituting a deuterium for that protium will cause a decrease in the reaction rate. This phenomenon is known as the Deuterium Kinetic Isotope Effect (DKIE). The magnitude of the DKIE can be expressed as the ratio between the rates of a given reaction in which a C-1H bond is broken, and the same reaction where deuterium is substituted for protium. The DKIE can range from about 1 (no isotope effect) to very large numbers, such as 50 or more. Substitution of tritium for hydrogen results in yet a stronger bond than deuterium and gives numerically larger isotope effects [0009] Deuterium (2H or D) is a stable and non-radioactive isotope of hydrogen which has approximately twice the mass of protium (1H), the most common isotope of hydrogen. Deuterium oxide (D O or "heavy water") looks and tastes like H O, but has different physical properties. [0010] When pure D O is given to rodents, it is readily absorbed. The quantity of deuterium required to induce toxicity is extremely high. When about 0-15% of the body water has been replaced by D2O, animals are healthy but are unable to gain weight as fast as the control (untreated) group. When about 15-20% of the body water has been replaced with D2O, the animals become excitable. When about 20-25% of the body water has been replaced with D2O, the animals become so excitable that they go into frequent convulsions when stimulated. Skin lesions, ulcers on the paws and muzzles, and necrosis of the tails appear. The animals also become very aggressive. When about 30% of the body water has been replaced with D2O, the animals refuse to eat and become comatose. Their body weight drops sharply and their metabolic rates drop far below normal, with death occurring at about 30 to about 35% replacement with D2O. The effects are reversible unless more than thirty percent of the previous body weight has been lost due to D2O. Studies have also shown that the use of D2O can delay the growth of cancer cells and enhance the cytotoxicity of certain antineoplastic agents. [001 1] Deuteration of pharmaceuticals to improve pharmacokinetics (PK), pharmacodynamics (PD), and toxicity profiles has been demonstrated previously with some classes of drugs. For example, the DKIE was used to decrease the hepatotoxicity of halothane, presumably by limiting the production of reactive species such as trifluoroacetyl chloride. However, this method may not be applicable to all drug classes. For example, deuterium incorporation can lead to metabolic switching. Metabolic switching occurs when xenogens, sequestered by Phase I enzymes, bind transiently and re-bind in a variety of conformations prior to the chemical reaction (e.g., oxidation). Metabolic switching is enabled by the relatively vast size of binding pockets in many Phase I enzymes and the promiscuous nature of many metabolic reactions. Metabolic switching can lead to different proportions of known metabolites as well as altogether new metabolites.
Recommended publications
  • Isopropamide Iodide
    www.chemicalland21.com ISOPROPAMIDE IODIDE SYNONYMS (3-Carbamoyl-3,3-diphenylpropyl)diisopropylmethylammonium iodide; 2,2-Diphenyl-4- diisopropylaminobutyramide methiodide; 4-(Diisopropylamino)-2,2-diphenylbutyramide methiodide; gamma-(Aminocarbonyl)-N-methyl-N,N-bis(1-methylethyl)-gamma-phenylbenzenepropanaminium iodide; Iodure d'isopropamide; Ioduro de isopropamida; Isopropamide ioduro; Isopropamidi iodidum; Isoproponum iodide; PRODUCT IDENTIFICATION CAS RN 71-81-8 EINECS RN 200-766-8 FORMULA C23H33IN2O MOL WEIGHT 480.43 PHYSICAL AND CHEMICAL PROPERTIES PHYSICAL STATE white to off-white powder MELTING POINT 199 C BOILING POINT DENSITY SOLUBILITY IN WATER pH VAPOR DENSITY REFRACTIVE INDEX FLASH POINT GENERAL DESCRIPTION Isopropamide is a long-acting anticholinergic and antimuscarinic drug of quaternary ammonium structure. It is used in the form of the iodide, (also bromide or chloride) to treat peptic ulcer and to suppress gastric secretion other gastrointestinal disorders. Brands of Isopropamide drugs: Darbid Dipramide Isamide Marygin-M Piaccamide Priamide Priazimide Sanulcin Tyrimide Quaternary ammonium anticholinergics (Synthetic) ATC Code Product CAS RN. A03AB01 Benzilonium bromide 1050-48-2 A03AB02 Glycopyrrolate 596-51-0 A03AB03 Oxyphenonium 14214-84-7 A03AB04 Penthienate 22064-27-3 A03AB05 Propantheline 50-34-0 A03AB06 Otilonium bromide 26095-59-0 A03AB07 Methantheline 5818-17-7 Please mail us if you want to sell your product or need to buy some products) www.chemicalland21.com ISOPROPAMIDE IODIDE A03AB08 Tridihexethyl 60-49-1 A03AB09 Isopropamide 7492-32-2 A03AB10 Hexocyclium 6004-98-4 A03AB11 Poldine 596-50-9 A03AB12 Mepenzolic acid 25990-43-6 A03AB13 Bevonium 33371-53-8 A03AB14 Pipenzolate 13473-38-6 A03AB15 Diphemanil methylsulfate 62-97-5 A03AB16 (2-Benzhydryloxyethyl)diethyl-methylammonium iodide A03AB17 Tiemonium iodide 144-12-7 A03AB18 Prifinium bromide 4630-95-9 A03AB19 Timepidium bromide 35035-05-3 A03AB21 Fenpiverinium bromide 125-60-0 03AB53 Oxyphenonium, combinations STABILITY AND REACTIVITY STABILITY Stable under normal conditions.
    [Show full text]
  • Muscarinic Acetylcholine Receptor
    mAChR Muscarinic acetylcholine receptor mAChRs (muscarinic acetylcholine receptors) are acetylcholine receptors that form G protein-receptor complexes in the cell membranes of certainneurons and other cells. They play several roles, including acting as the main end-receptor stimulated by acetylcholine released from postganglionic fibersin the parasympathetic nervous system. mAChRs are named as such because they are more sensitive to muscarine than to nicotine. Their counterparts are nicotinic acetylcholine receptors (nAChRs), receptor ion channels that are also important in the autonomic nervous system. Many drugs and other substances (for example pilocarpineand scopolamine) manipulate these two distinct receptors by acting as selective agonists or antagonists. Acetylcholine (ACh) is a neurotransmitter found extensively in the brain and the autonomic ganglia. www.MedChemExpress.com 1 mAChR Inhibitors & Modulators (+)-Cevimeline hydrochloride hemihydrate (-)-Cevimeline hydrochloride hemihydrate Cat. No.: HY-76772A Cat. No.: HY-76772B Bioactivity: Cevimeline hydrochloride hemihydrate, a novel muscarinic Bioactivity: Cevimeline hydrochloride hemihydrate, a novel muscarinic receptor agonist, is a candidate therapeutic drug for receptor agonist, is a candidate therapeutic drug for xerostomia in Sjogren's syndrome. IC50 value: Target: mAChR xerostomia in Sjogren's syndrome. IC50 value: Target: mAChR The general pharmacol. properties of this drug on the The general pharmacol. properties of this drug on the gastrointestinal, urinary, and reproductive systems and other… gastrointestinal, urinary, and reproductive systems and other… Purity: >98% Purity: >98% Clinical Data: No Development Reported Clinical Data: No Development Reported Size: 10mM x 1mL in DMSO, Size: 10mM x 1mL in DMSO, 1 mg, 5 mg 1 mg, 5 mg AC260584 Aclidinium Bromide Cat. No.: HY-100336 (LAS 34273; LAS-W 330) Cat.
    [Show full text]
  • Health Reports for Mutual Recognition of Medical Prescriptions: State of Play
    The information and views set out in this report are those of the author(s) and do not necessarily reflect the official opinion of the European Union. Neither the European Union institutions and bodies nor any person acting on their behalf may be held responsible for the use which may be made of the information contained therein. Executive Agency for Health and Consumers Health Reports for Mutual Recognition of Medical Prescriptions: State of Play 24 January 2012 Final Report Health Reports for Mutual Recognition of Medical Prescriptions: State of Play Acknowledgements Matrix Insight Ltd would like to thank everyone who has contributed to this research. We are especially grateful to the following institutions for their support throughout the study: the Pharmaceutical Group of the European Union (PGEU) including their national member associations in Denmark, France, Germany, Greece, the Netherlands, Poland and the United Kingdom; the European Medical Association (EMANET); the Observatoire Social Européen (OSE); and The Netherlands Institute for Health Service Research (NIVEL). For questions about the report, please contact Dr Gabriele Birnberg ([email protected] ). Matrix Insight | 24 January 2012 2 Health Reports for Mutual Recognition of Medical Prescriptions: State of Play Executive Summary This study has been carried out in the context of Directive 2011/24/EU of the European Parliament and of the Council of 9 March 2011 on the application of patients’ rights in cross- border healthcare (CBHC). The CBHC Directive stipulates that the European Commission shall adopt measures to facilitate the recognition of prescriptions issued in another Member State (Article 11). At the time of submission of this report, the European Commission was preparing an impact assessment with regards to these measures, designed to help implement Article 11.
    [Show full text]
  • Customs Tariff - Schedule
    CUSTOMS TARIFF - SCHEDULE 99 - i Chapter 99 SPECIAL CLASSIFICATION PROVISIONS - COMMERCIAL Notes. 1. The provisions of this Chapter are not subject to the rule of specificity in General Interpretative Rule 3 (a). 2. Goods which may be classified under the provisions of Chapter 99, if also eligible for classification under the provisions of Chapter 98, shall be classified in Chapter 98. 3. Goods may be classified under a tariff item in this Chapter and be entitled to the Most-Favoured-Nation Tariff or a preferential tariff rate of customs duty under this Chapter that applies to those goods according to the tariff treatment applicable to their country of origin only after classification under a tariff item in Chapters 1 to 97 has been determined and the conditions of any Chapter 99 provision and any applicable regulations or orders in relation thereto have been met. 4. The words and expressions used in this Chapter have the same meaning as in Chapters 1 to 97. Issued January 1, 2020 99 - 1 CUSTOMS TARIFF - SCHEDULE Tariff Unit of MFN Applicable SS Description of Goods Item Meas. Tariff Preferential Tariffs 9901.00.00 Articles and materials for use in the manufacture or repair of the Free CCCT, LDCT, GPT, UST, following to be employed in commercial fishing or the commercial MT, MUST, CIAT, CT, harvesting of marine plants: CRT, IT, NT, SLT, PT, COLT, JT, PAT, HNT, Artificial bait; KRT, CEUT, UAT, CPTPT: Free Carapace measures; Cordage, fishing lines (including marlines), rope and twine, of a circumference not exceeding 38 mm; Devices for keeping nets open; Fish hooks; Fishing nets and netting; Jiggers; Line floats; Lobster traps; Lures; Marker buoys of any material excluding wood; Net floats; Scallop drag nets; Spat collectors and collector holders; Swivels.
    [Show full text]
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • Cilostazol Protects Rats Against Alcohol‑Induced Hepatic Fibrosis Via Suppression of TGF‑Β1/CTGF Activation and the Camp/Epac1 Pathway
    EXPERIMENTAL AND THERAPEUTIC MEDICINE 17: 2381-2388, 2019 Cilostazol protects rats against alcohol‑induced hepatic fibrosis via suppression of TGF‑β1/CTGF activation and the cAMP/Epac1 pathway KUN HAN, YANTING ZHANG and ZHENWEI YANG Department of Gastroenterology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China Received July 2, 2018; Accepted November 23, 2018 DOI: 10.3892/etm.2019.7207 Abstract. Alcohol abuse and chronic alcohol consump- Introduction tion are major causes of alcoholic liver disease worldwide, particularly alcohol‑induced hepatic fibrosis (AHF). Liver Liver fibrosis is a wound‑healing response to a variety of liver fibrosis is an important public health concern because of its insults, including excessive alcohol intake. Alcohol abuse and high morbidity and mortality. The present study examined chronic alcohol consumption are major causes of alcoholic the mechanisms and effects of the phosphodiesterase III liver disease (ALD) worldwide (1). Alcohol‑induced hepatic inhibitor cilostazol on AHF. Rats received alcohol infu- fibrosis (AHF) may cause serious hepatic cirrhosis, and is sions via gavage to induce liver fibrosis and were treated widely accepted as a milestone event in ALD (2). However, with colchicine (positive control) or cilostazol. The serum recent evidence indicates that liver fibrosis is reversible and alcohol dehydrogenase (ADH) and acetaldehyde dehydro- that the liver may recover from cirrhosis (3). Therefore, eluci- genase (ALDH) activities and the albumin/globulin (A/G), dation of the cellular and molecular mechanisms is urgently enzymes and hyaluronic acid (HA), type III precollagen required to prevent AHF. (PC III), laminin (LA), and type IV collagen (IV‑C) levels The exact mechanism remains unclear, but certain changes were measured using commercially available kits.
    [Show full text]
  • Adverse Drug Reaction with Hyoscine and Valethamate for Cervical Dilation During Labour
    NepalOriginal Medical Article College Journal Nepal Med Coll J 2019; 21(2): 128-33 Adverse drug reaction with hyoscine and valethamate for cervical dilation during labour Tuladhar LR1, Shrestha A1, Shrestha RK2 1Department of Pharmacology, Nepal Medical College Teaching Hospital, Attarkhel, Gokarneshwor-8, Kathmandu, 2Patan Academy of Health Sciences (PAHS), Patan, Nepal. ABSTRACT Adverse drug reaction (ADR) is an injury caused by taking medication. ADR may occur following single dose or prolong administration of drug or combination of two or more drugs. While major advancements of discipline of pharmacovigilance have taken place in the West, not much has been achieved in Asian countries. Labour is characterised by forceful and painful uterine contraction that result in cervical dilation and foetus decent from the birth canal. Anti-spasmodic drugs like hyoscine butylbromide and valethamate bromide have been used to accelerate cervical dilation and thus reduce the labor duration. The objective was to observe ADR with hyoscine and valethamate for cervical dilation during labor. It was a hospital based cross sectional study. Investigation was carried out in the form of questionnaire. All the consecutive patients who were in active stage of labor were included in the study. They were given Intravenous (IV) valethamate bromide 8mg and hyoscine butylbromide 20mg, 3 doses half an hour apart. After administration of the drug, the progress of labor was monitored and management was done as per protocol in obstetrics and gynaecology department. ADR reported were blurred vision in 47.7% of the patients, followed by dry mouth (36.9%) and tachycardia (19.2%). Other ADRs were nausea (6.2%), dizziness (3.8%), flushing (2.3%), vomiting (1.5%), fever (1.5%) and constipation (1.5%).
    [Show full text]
  • Ophthalmic Antihistamines
    Ophthalmics for Allergic Conjunctivitis Review 04/12/2011 Copyright © 2004 - 2011 by Provider Synergies, L.L.C. All rights reserved. Printed in the United States of America. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, digital scanning, or via any information storage and retrieval system without the express written consent of Provider Synergies, L.L.C. All requests for permission should be mailed to: Attention: Copyright Administrator Intellectual Property Department Provider Synergies, L.L.C. 10101 Alliance Rd, Ste 201 Cincinnati, Ohio 45242 The materials contained herein represent the opinions of the collective authors and editors and should not be construed to be the official representation of any professional organization or group, any state Pharmacy and Therapeutics committee, any state Medicaid Agency, or any other clinical committee. This material is not intended to be relied upon as medical advice for specific medical cases and nothing contained herein should be relied upon by any patient, medical professional or layperson seeking information about a specific course of treatment for a specific medical condition. All readers of this material are responsible for independently obtaining medical advice and guidance from their own physician and/or other medical professional in regard to the best course of treatment for their specific medical condition. This publication, inclusive of all forms contained herein,
    [Show full text]
  • Transdermal Drug Delivery Device Including An
    (19) TZZ_ZZ¥¥_T (11) EP 1 807 033 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61F 13/02 (2006.01) A61L 15/16 (2006.01) 20.07.2016 Bulletin 2016/29 (86) International application number: (21) Application number: 05815555.7 PCT/US2005/035806 (22) Date of filing: 07.10.2005 (87) International publication number: WO 2006/044206 (27.04.2006 Gazette 2006/17) (54) TRANSDERMAL DRUG DELIVERY DEVICE INCLUDING AN OCCLUSIVE BACKING VORRICHTUNG ZUR TRANSDERMALEN VERABREICHUNG VON ARZNEIMITTELN EINSCHLIESSLICH EINER VERSTOPFUNGSSICHERUNG DISPOSITIF D’ADMINISTRATION TRANSDERMIQUE DE MEDICAMENTS AVEC COUCHE SUPPORT OCCLUSIVE (84) Designated Contracting States: • MANTELLE, Juan AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Miami, FL 33186 (US) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • NGUYEN, Viet SK TR Miami, FL 33176 (US) (30) Priority: 08.10.2004 US 616861 P (74) Representative: Awapatent AB P.O. Box 5117 (43) Date of publication of application: 200 71 Malmö (SE) 18.07.2007 Bulletin 2007/29 (56) References cited: (73) Proprietor: NOVEN PHARMACEUTICALS, INC. WO-A-02/36103 WO-A-97/23205 Miami, FL 33186 (US) WO-A-2005/046600 WO-A-2006/028863 US-A- 4 994 278 US-A- 4 994 278 (72) Inventors: US-A- 5 246 705 US-A- 5 474 783 • KANIOS, David US-A- 5 474 783 US-A1- 2001 051 180 Miami, FL 33196 (US) US-A1- 2002 128 345 US-A1- 2006 034 905 Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0024365A1 Vaya Et Al
    US 2006.0024.365A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0024365A1 Vaya et al. (43) Pub. Date: Feb. 2, 2006 (54) NOVEL DOSAGE FORM (30) Foreign Application Priority Data (76) Inventors: Navin Vaya, Gujarat (IN); Rajesh Aug. 5, 2002 (IN)................................. 699/MUM/2002 Singh Karan, Gujarat (IN); Sunil Aug. 5, 2002 (IN). ... 697/MUM/2002 Sadanand, Gujarat (IN); Vinod Kumar Jan. 22, 2003 (IN)................................... 80/MUM/2003 Gupta, Gujarat (IN) Jan. 22, 2003 (IN)................................... 82/MUM/2003 Correspondence Address: Publication Classification HEDMAN & COSTIGAN P.C. (51) Int. Cl. 1185 AVENUE OF THE AMERICAS A6IK 9/22 (2006.01) NEW YORK, NY 10036 (US) (52) U.S. Cl. .............................................................. 424/468 (22) Filed: May 19, 2005 A dosage form comprising of a high dose, high Solubility active ingredient as modified release and a low dose active ingredient as immediate release where the weight ratio of Related U.S. Application Data immediate release active ingredient and modified release active ingredient is from 1:10 to 1:15000 and the weight of (63) Continuation-in-part of application No. 10/630,446, modified release active ingredient per unit is from 500 mg to filed on Jul. 29, 2003. 1500 mg, a process for preparing the dosage form. Patent Application Publication Feb. 2, 2006 Sheet 1 of 10 US 2006/0024.365A1 FIGURE 1 FIGURE 2 FIGURE 3 Patent Application Publication Feb. 2, 2006 Sheet 2 of 10 US 2006/0024.365A1 FIGURE 4 (a) 7 FIGURE 4 (b) Patent Application Publication Feb. 2, 2006 Sheet 3 of 10 US 2006/0024.365 A1 FIGURE 5 100 ov -- 60 40 20 C 2 4.
    [Show full text]
  • Partial Agreement in the Social and Public Health Field
    COUNCIL OF EUROPE COMMITTEE OF MINISTERS (PARTIAL AGREEMENT IN THE SOCIAL AND PUBLIC HEALTH FIELD) RESOLUTION AP (88) 2 ON THE CLASSIFICATION OF MEDICINES WHICH ARE OBTAINABLE ONLY ON MEDICAL PRESCRIPTION (Adopted by the Committee of Ministers on 22 September 1988 at the 419th meeting of the Ministers' Deputies, and superseding Resolution AP (82) 2) AND APPENDIX I Alphabetical list of medicines adopted by the Public Health Committee (Partial Agreement) updated to 1 July 1988 APPENDIX II Pharmaco-therapeutic classification of medicines appearing in the alphabetical list in Appendix I updated to 1 July 1988 RESOLUTION AP (88) 2 ON THE CLASSIFICATION OF MEDICINES WHICH ARE OBTAINABLE ONLY ON MEDICAL PRESCRIPTION (superseding Resolution AP (82) 2) (Adopted by the Committee of Ministers on 22 September 1988 at the 419th meeting of the Ministers' Deputies) The Representatives on the Committee of Ministers of Belgium, France, the Federal Republic of Germany, Italy, Luxembourg, the Netherlands and the United Kingdom of Great Britain and Northern Ireland, these states being parties to the Partial Agreement in the social and public health field, and the Representatives of Austria, Denmark, Ireland, Spain and Switzerland, states which have participated in the public health activities carried out within the above-mentioned Partial Agreement since 1 October 1974, 2 April 1968, 23 September 1969, 21 April 1988 and 5 May 1964, respectively, Considering that the aim of the Council of Europe is to achieve greater unity between its members and that this
    [Show full text]
  • Prohibited Substances List
    Prohibited Substances List This is the Equine Prohibited Substances List that was voted in at the FEI General Assembly in November 2009 alongside the new Equine Anti-Doping and Controlled Medication Regulations(EADCMR). Neither the List nor the EADCM Regulations are in current usage. Both come into effect on 1 January 2010. The current list of FEI prohibited substances remains in effect until 31 December 2009 and can be found at Annex II Vet Regs (11th edition) Changes in this List : Shaded row means that either removed or allowed at certain limits only SUBSTANCE ACTIVITY Banned Substances 1 Acebutolol Beta blocker 2 Acefylline Bronchodilator 3 Acemetacin NSAID 4 Acenocoumarol Anticoagulant 5 Acetanilid Analgesic/anti-pyretic 6 Acetohexamide Pancreatic stimulant 7 Acetominophen (Paracetamol) Analgesic/anti-pyretic 8 Acetophenazine Antipsychotic 9 Acetylmorphine Narcotic 10 Adinazolam Anxiolytic 11 Adiphenine Anti-spasmodic 12 Adrafinil Stimulant 13 Adrenaline Stimulant 14 Adrenochrome Haemostatic 15 Alclofenac NSAID 16 Alcuronium Muscle relaxant 17 Aldosterone Hormone 18 Alfentanil Narcotic 19 Allopurinol Xanthine oxidase inhibitor (anti-hyperuricaemia) 20 Almotriptan 5 HT agonist (anti-migraine) 21 Alphadolone acetate Neurosteriod 22 Alphaprodine Opiod analgesic 23 Alpidem Anxiolytic 24 Alprazolam Anxiolytic 25 Alprenolol Beta blocker 26 Althesin IV anaesthetic 27 Althiazide Diuretic 28 Altrenogest (in males and gelidngs) Oestrus suppression 29 Alverine Antispasmodic 30 Amantadine Dopaminergic 31 Ambenonium Cholinesterase inhibition 32 Ambucetamide Antispasmodic 33 Amethocaine Local anaesthetic 34 Amfepramone Stimulant 35 Amfetaminil Stimulant 36 Amidephrine Vasoconstrictor 37 Amiloride Diuretic 1 Prohibited Substances List This is the Equine Prohibited Substances List that was voted in at the FEI General Assembly in November 2009 alongside the new Equine Anti-Doping and Controlled Medication Regulations(EADCMR).
    [Show full text]