Quaternary Evolution of a Mountainous Area in N.W. Tunisia

Total Page:16

File Type:pdf, Size:1020Kb

Quaternary Evolution of a Mountainous Area in N.W. Tunisia QUATERNARY EVOLUTION OF A MOUNTAINOUS AREA IN N.W. TUNISIA. A GEOMORPHOLOGICAL AND PEDOLOGICAL ANALYSIS Dr. R. H. G. Bos PUBLICATIES VAN HET FYSISCH-GEOGRA- FISCH EN BODEMKUNDIG LABORATORIUM VAN DE UNIVERSITEIT VAN AMSTERDAM nr. 19 (1971) SOL OFFSETDRUK/AMSTERDAM QUATERNARY EVOLUTION OF A MOUNTAINOUS AREA IN N.W. TUNISIA. A GEOMORPHOLOGICAL AND PEDOLOGICAL ANALYSIS Dr. R. H. G. Bos PUBLICATIES VAN HET FYSISCH-GEOGRA- FISCH EN BODEMKUNDIG LABORATORIUM VAN DE UNIVERSITEIT VAN AMSTERDAM nr. 19 (1971) CONTENTS ABSTRACT page 9 ACKNOWLEDGEMENTS 11 SUMMARY 13 PART ONE : GENERAL ASPECTS OF THE AREA STUDIED AND ITS SURROUNDINGS Chapter I 21 INTRODUCTION 1.1. Material 1.2. Field work Chapter II 25 CLIMATE Chapter in 27 GEOLOGY HI. 1. General HI. 2. Northern Part in. 3. Southern Part Chapter IV 33 HYDROGRAPHY IV. 1. General IV. 2. Subdivision of the River System TV. 3. Development of the River System IV. 4. Conclusions PART TWO : THE VALLEY OF THE OUED SELOUL Chapter V 37 THE GEOLOGICAL SETTING V.l. Numidian Flysch V. 2. Medjanian Flysch V. 3. Triassic Breccia V.4. Relationship between Parent Rock and Slope Chapter VI 41 THE OUED SELOUL VI. 1. Phases of Incision of the Oued Seloul VI. 2. Old Flat Parts of the Terrain on the Marls VI. 3. Flat Parts of the Terrain on the Soft Shales VI. 4. Conclusions Chapter Vu 47 MASS MOVEMENTS Vu. 1. General Classification of the Mass Movements VE. 2. Concentrated Types of Mass Movement on the Soft Shales VH.2.1. Earthflow Vu. 2.2. Debris Avalanche VII. 2. 3. Slump Vu. 2.4. Subsidence VII. 3. Concentrated Types of Mass Movement on the Marls VH. 3.1. Rockslide Vu. 4. Areal Types of Mass Movement Vn.4.1. Humid Solifluction VH.4.2. Mudflow Vu. 4.3. Distribution of the Areal Types over the Slopes Vu. 4.4. Explanation of the Complex of Stabilized Slope Deposits Vu. 4.5. Tor-like Sandstone Outcrops Vu. 4.6. Conclusions Chapter Vm 65 COLLUVIUM Vm. 1. Mass Movement and Mass Transport . 2. Normal Soil Erosion and Accelerated Soil Erosion . 3. Accumulation of Colluvium in the Corrasional Troughs Chapter IX 69 NATURE OF THE MASS MOVEMENTS RELATIVE TO THE CLIMATE IX. 1. Scheme of the Mass Movements in the Valley of the Oued Seloul IX. 2. Changes in the Nature and Extent of the Mass Movements Chapter X 73 SLOPE DEVELOPMENT IN CONNECTION WITH THE PARENT ROCK AND THE NATURE OF THE PREVAILING PROCESSES X. 1. Effect of the Parent Rock on Slope Development X. 2. Effect of the Areal Types of Mass Movement on Slope Development X. 3. Effect of the Concentrated Types of Mass Movement on Slope Development Chapter XI 77 EVOLUTION OF THE SELOUL VALLEY AS EVIDENCED BY GEOMORPHOLOGICAL DATA XI. 1. Table of the Geomorphological Processes XI. 2. Relative Dating XI. 3. Scheme of the Relative Dating XI. 4. Absolute Dating Chapter XII 87 PEDOLOGY XH. 1. Soil Map, Scale 1 : 25,000 Xu. 1.1. Introduction Xu. 1.2. Legend XII. 1.3. Description of the Indivudual Soil Mapping Units shown on the Map (supplemented with Profile Descriptions and Tables) Xu. 1.4. Relationship between Some of the Most Wide- spread Soil Units in the Valley of the Oued Seloul XII. 2. Summary of the Recent Pedogenesis XH. 3. Polygenetic Phenomena Xu. 3.1. Soils of the Triassic Breccia XII. 3.2. Soils of the Transition of the Triassic Breccia to the Oligocène Flysch Deposits XII. 3. 3. Soils of the Oligocène Flysch Deposits XH. 3.4. A Pseudo fossil Phenomenon XH. 4. Interpretation of the Polygenetic Phenomena Relative to the Climate XII. 4.1. Pedological Scheme XII. 4.2. Effect of the Parent Rock and the Geomorpho- logical Development on the Soil Profile PART THREE : THE VALLEY OF BEN METIR Chapter xm 115 SIMILARITIES AND DISSIMILARITIES BETWEEN THE VALLEY OF THE OUED SELOUL AND THE VALLEY OF BEN METIR xm. 1. Geological setting of the Valley of Ben Metir Xm. 2. Geomorphology of the Valley of Ben Metir Xm. 3. Mass Movements in the Valley of Ben Metir Xm. 4. Pedology of the Valley of Ben Metir XIII. 4.1. Soils of the Oligocène Flysch Deposits Xm. 4.2. Soils of the Miocene Lagoonal Deposits and the Mio-Pliocene Continental Deposits xm. 4.3. Recent Pedological Development of the Valley of Ben Metir Xin. 5. Conclusions Xin. 5.1. Conclusions as to the Geomorphology Xm. 5.2. Conclusions as to the Pedology SAMENVATTING 127 APPENDIX 135 INVESTIGATION INTO THE PROBABLE CAUSES FOR THE DIFFERENCES IN STABILITY OBSERVED ON THE SLOPES IN THE TRIASSIC BRECCIA AND ESF THE SHALES OF THE OLIGOCENE FLYSCH 1. Grain-size Distribution 2. Morphoscopic Rounding Index Analysis 3. X-ray Analysis with the Guinier-De Wolff Camera 4. Swelling Capacity 5. Soil Aggregate Stability 6. Plasticity Index 7. Moisture Adsorption in a Climatic Cabinet 8. Determination of the Liquid, Solid and Gaseous Phase 9. Differential Thermal Analysis and the Thermo-gravi- metric Analysis 10. X-ray Diffractometer Analysis 11. Conclusions REFERENCES 161 INLAYS fig. 2, 5 and 21. ABSTRACT An anticlinal valley developed in Oligocène flysch deposits (soft shale, marl, sandstone), including a diapyric injection of Triassic breccia, was subjected to a detailed geomorphological study. It was established that periods of areal mass movements of the flow- type (including humid solifluction) have been active on all parent mat- erials of the flysch area. At present mass movements are operative in the flysch deposits by means of linearly concentrated slide movements limited to one of the parent materials: the soft shales. Neither now nor in the past have mass movements affected the Triassic breccia, as is evidenced by the fossil and polygenetic character of the soils in these breccia. Three types of slopes were distinguished dependent on the rock; the slope development proved to be highly related to the parent rock and the nature of the mass movements. Due to the periodically unstable conditions in the flysch area the soils encountered date nearly all from the Holocene. The geomorphological phenomena closely match the pedological data and may truthfully project the evolution of the landscape in this part of NW Tunisia. It was established that the inter-pluvials were the stable, soil forming periods in this morphogenetic environment. ACKNOWLEDGEMENTS The author wishes to record his sincere appreciation of the assistance and encouragement rendered him during the preparation of this thesis by Prof. Dr. P.D. Jungerius and Prof. Dr. Ir. A. P.A. Vink. Special thanks are also due to the following persons: Dr. Ir. J. van Schuylenborgh, Dr. J. Rupke, Mr. E.A. Kummer, Mr. P.A. Riezebos and Dr. H.R. Volk for kindly reading through part of the manuscript. Mr. D. F. Karel for interpretation of X-ray analyses. Mr. P.C. Beukenkamp for interpretation of Differential Thermal and Thermo-gravimetric Analyses. Mr. E. A. Kummer for interpretation of X-ray diffractograms. Mr. O.K. Hulshof for counting and interpretation of pollen samples. Mr. C. J. Snabilié for drawings and assistance in printing. Miss P. de With for drawings. Mr. A. Eikeboom for preparation of the photographs. Mr. D. Linthout for the translation. Further to Dr. D. G. Jongmans for his hospitality and assistance in Tunisia, and to Dr. S. Segal for discussions and advice. 11 SUMMARY All geomorphological and pedological data discussed in this summary have been compiled in figure 26, the scheme of the landscape and pedogenetic evolution in the area studied. The purpose of this study has been to reconstruct the evolution of the landscape in a mountainous part of the Kroumirie (NW Tunisia) on the basis of geomorphological and pedological observations. Two valleys were studied, the narrow anticlinal valley of the Oued Seloul and the wide synclinal valley of Ben Metir. THE VALLEY OF THE OUED SELOUL Geological Structure The steep anticlinal valley of the Oued Seloul was given special atten- tion to in the course of this study. The interfluves consist of sandstone, and lower in the valley soft shales and marls occur. Together these rocks constitute the Oligocène flysch deposits. Folding of these sedi- ments took place during the lower Miocene and is directed NNE-SSW. The folding is on the whole of a rather simple anticlinal-synclinal nature, locally with injections of Triassic material ('Triassic' diapyr). The eastern valley side of the Oued Seloul locally consists of this Triassic breccia (fig. 6). Mass movements The geomorphological forms in the valley of the Oued Seloul are de- termined especially by processes of mass movement. Results of the mass movements still visible in the landscape indicate that nature and extent of these processes were dependent on the rock on which they 13 were active and on the fluctuating climatic conditions during the Quater- nary. Three criteria were used to arrive at a first subdivision of the mass movements. Apart from water content of the masses and the nature of the movement (flow or slide), two criteria already used by Sharpe (1960), the lithology of the material served to subdivide the mass movements (fig. 18). Present shape and position of the deposits made it possible to desig- nate the processes as active or no longer active, which proved to be an important factor in the reconstruction of the landscape development in the Seloul valley (fig. 10). This permitted a second subdivision into active and fossil (stabilized) mass movements (fig. 18). With regard to the relations rock/mass movement and geological time/mass movements the following has been observed: On the Triassic breccia no traces have been found indicative of recent or past activity of mass movements. Furthermore, a steep valley-side still bears witness of very old vertical incisions of the Oued Seloul in the Triassic deposits.
Recommended publications
  • Summary Report of the Geological Survey for the Calendar Year 1911
    5 GEORGE V. SESSIONAL PAPER No. 26 A. 1915 SUMMARY REPORT OK THE GEOLOGICAL SURVEY DEPARTMENT OF MINES FOR THE CALENDAR YEAR 1914 PRINTED BY ORDER OF PARLIAMENT. OTTAWA PRTNTKD BY J. i»k L TAOHE, PRINTER TO THE KING'S MOST EXCELLENT IfAJESTS [No. 26—1915] [No , 15031 5 GEORGE V. SESSIONAL PAPER No. 26 A. 1915 To Field Marshal, Hit Hoi/al Highness Prince Arthur William Patrick Albert, Duke of Connaught and of Strath-earn, K.G., K.T., K.P., etc., etc., etc., Governor General and Commander in Chief of the Dominion of Canada. May it Please Youb Royal Highness.,— The undersigned has the honour to lay before Your Royal Highness— in com- pliance with t>-7 Edward YIT, chapter 29, section IS— the Summary Report of the operations of the Geological Survey during the calendar year 1914. LOUIS CODERRK, Minister of Mines. 5 GEORGE V. SESSIONAL PAPER No. 26 A. 1915 To the Hon. Louis Codebrk, M.P., Minister of Mines, Ottawa. Sir,—I have the honour to transmit, herewith, my summary report of the opera- tions of the Geological Survey for the calendar year 1914, which includes the report* of the various officials on the work accomplished by them. I have the honour to be, sir, Your obedient servant, R. G. MrCOXXFI.L, Deputy Minister, Department of Mines. B . SESSIONAL PAPER No. 28 A. 1915 5 GEORGE V. CONTENTS. Paok. 1 DIRECTORS REPORT REPORTS FROM GEOLOGICAL DIVISION Cairncs Yukon : D. D. Exploration in southwestern "" ^ D. MacKenzie '\ Graham island. B.C.: J. M 37 B.C.
    [Show full text]
  • The Big Chill
    THE BIG CHILL Royal Saskatchewan Museum THE BIG CHILL For further information please contact: Public Programs Royal Saskatchewan Museum 2445 Albert Street Regina, Saskatchewan S4P 4W7 Email: [email protected] Website: www.royalsaskmuseum.ca © Royal Saskatchewan Museum 2012 The contents of this resource package may be reproduced for classroom use only. No portion may be duplicated for publication or sale. The following material provides teachers and students with information about the Ice Age in what is now Saskatchewan (remember, there was no such thing as Saskatchewan in those days!): • To describe Saskatchewan’s climate during the Ice Age. • To illustrate the geological effects of glaciation. • To recognize a variety of animals that lived in Saskatchewan during the Ice Age. Vocabulary advance geology climate glacier debris ice age deposit drumlin esker meltwater erratic moraine evaporation fauna retreat flora stagnant flow till fossil Laurentide Ice Sheet knob and kettle Wisconsin Glacial Period Pleistocene Epoch BACKGROUND INFORMATION Ice Ages The Ice Age or Pleistocene Epoch refers to the last two million years of our geological history when there were at least five periods of glaciation in North America. Gradual climate cooling caused huge continental ice sheets to form. Later, gradual warming caused these to melt during the interglacial periods. The last glacier began forming approximately 110,000 years ago, building until it covered all but the Cypress Hills and the Wood Mountain Plateau region of the Province. The last interglacial period started about 17,000 years ago. The ice sheet melted completely from our borders about 10,000 years ago. This last period of glaciation is called the Wisconsin Glacial Period.
    [Show full text]
  • Paleosols of the Interglacial Climates in Canada
    Document generated on 09/28/2021 2:47 p.m. Géographie physique et Quaternaire Paleosols of the Interglacial Climates in Canada Les paléosols du Canada au cours des périodes interglaciaires Paläoböden zur Zeit der Interglaziale in Kanada Charles Tarnocai The Last? Interglaciation in Canada Article abstract Le dernier (?) interglaciaire au Canada Although paleosols are useful indicators of paleoclimates. it is first necessary to Volume 44, Number 3, 1990 establish the relationships between the northern limits of the various contemporary soils and the pertinent climatic parameters. It is then necessary URI: https://id.erudit.org/iderudit/032836ar to determine the age of the various paleosols and, if possible, their northern DOI: https://doi.org/10.7202/032836ar limits. Comparison of the distribution and northern limits of the contemporary soils with the distribution and northern limits of the analogous paleosols then permits the reconstruction of the paleoenvironments. For the purposes of See table of contents comparison the mean annual temperature of the Old Crow area during the Pliocene epoch was also determined (about 4°C) even though this was not an interglacial period. It was found that during the pre-lllinoian interglacial Publisher(s) periods the central Yukon had a mean annual temperature of about 7°C while during the Sangamonian interglacial period it had a mean annual temperature Les Presses de l'Université de Montréal of about - 3°C. During the Holocene epoch, the current interglacial period, the climate has been similar to or only slightly cooler than that existing during the ISSN Sangamonian interglacial period. The fluctuating position of the arctic tree line 0705-7199 (print) (and associated forest soils) during the Holocene epoch, however, indicates 1492-143X (digital) that the climate has also been fluctuating during this time.
    [Show full text]
  • The Forest Vegetation of the Driftless Area, Northeast Iowa Richard A
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1976 The forest vegetation of the driftless area, northeast Iowa Richard A. Cahayla-Wynne Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Botany Commons, Ecology and Evolutionary Biology Commons, Other Forestry and Forest Sciences Commons, and the Plant Pathology Commons Recommended Citation Cahayla-Wynne, Richard A., "The forest vegetation of the driftless area, northeast Iowa" (1976). Retrospective Theses and Dissertations. 16926. https://lib.dr.iastate.edu/rtd/16926 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. The forest vegetation of the driftless area, northeast Iowa by Richard A. Cahayla-Wynne A Thesis Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of MASTER OF SCIENCE Department: Botany and Plant Pathology Major: Botany (Ecology) Signatures have been redacted for privacy Iowa State University Ames, Iowa 1976 ii TABLE OF CONTENTS Page INTRODUCTION 1 STUDY AREA 6 METHODS 11 RESULTS 17 DISCUSSION 47 SUMMARY 55 LITERATURE CITED 56 ACKNOWLEDGMENTS 59 APPENDIX A: SPECIES LIST 60 APPENDIX B: SCIENTIFIC AND COMMON NAMES OF TREES 64 APPENDIX C: TREE BASAL AREA 65 1 INTRODUCTION Iowa is generally pictured as a rolling prairie wooded only along the water courses. The driftless area of northeast Iowa is uniquely contrasted to this image; northeast Iowa is generally forested throughout, often with rugged local relief.
    [Show full text]
  • 88 Reasons to Love Alberta Parks
    88 Reasons to Love Alberta Parks 1. Explore the night sky! Head to Miquelon Lake Provincial Park to get lost among the stars in the Beaver Hills Dark Sky Preserve. 2. Experience Cooking Lake-Blackfoot Provincial Recreation Area in the Beaver Hills UNESCO Biosphere Reserve. This unique 1600 square km reserve has natural habitats that support abundant wildlife, alongside agriculture and industry, on the doorstep of the major urban area of Edmonton. 3. Paddle the Red Deer River through the otherworldly shaped cliffs and badlands of Dry Island Buffalo Jump Provincial Park. 4. Wildlife viewing. Our parks are home to many wildlife species. We encourage you to actively discover, explore and experience nature and wildlife safely and respectfully. 5. Vibrant autumn colours paint our protected landscapes in the fall. Feel the crunch of fallen leaves underfoot and inhale the crisp woodland scented air on trails in many provincial parks and recreation areas. 6. Sunsets illuminating wetlands and lakes throughout our provincial parks system, like this one in Pierre Grey’s Lakes Provincial Park. 7. Meet passionate and dedicated Alberta Parks staff in a visitor center, around the campground, or out on the trails. Their enthusiasm and knowledge of our natural world combines adventure with learning to add value to your parks experiences!. 8. Get out in the crisp winter air in Cypress Hills Provincial Park where you can explore on snowshoe, cross-country ski or skating trails, or for those with a need for speed, try out the luge. 9. Devonshire Beach: the natural white sand beach at Lesser Slave Lake Provincial Park is consistently ranked as one of the top beaches in Canada! 10.
    [Show full text]
  • The Flaxville Gravel and ·Its Relation to Other Terrace Gravels of the Northern Great Plains
    DEPARTMENT OF THE INTERIOR FRANKLIN K. LANE, Secretary . -UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, Director Professional Paper 108-J THE FLAXVILLE GRAVEL AND ·ITS RELATION TO OTHER TERRACE GRAVELS OF THE NORTHERN GREAT PLAINS BY ARTHUR J. COLLIER AND W. T. THOM, JR. Published January 26,1918 Shorter contributions to general geology, 1917 ( Paates 179-184 ) WASHINGTON GOVERNMENT PRINTING OFFICE 1918 i, '!· CONTENTS. Page. Introduction ............... ~ ... ~ ........... , ........... .......... ~ ......................... ~ .... -.----- 179 Flaxville gravel ......................................................................· .. ............ ·.... 179 Late Pliocene or early Pleistocene gravel. ..................................... ..... .. .................• - 182 Late Pleistocene and Recent erosion and deposition ........................ ..... ............ ~ ............ 182 Oligocene beds in Cypress Hilla .................... .' ................. ........................ .......... 183 Summary ....•......................... ················· · ·· · ·········.···············"···················· 183 ILLUSTRA 'fl ONS. Page. PLATE LXII. Map of northeastern Montana and adjacent parts of Canada, showing the distribution of erosion levels and gravel horizons................................................................ 180 J,XIII. A, Surface of the Flaxville plateau, northeastern Montana; B, Outcrop of cemented Flaxville gravel in escarpment ·of plateau northwest of Opheim, Mont.; C; Escarpment of the Flaxville plateau, northeastern
    [Show full text]
  • Cenozoic History of Northeastern Montana and Northwestern North Dakota with Emphasis on the Pleistocene
    Cenozoic History of Northeastern Montana and Northwestern North Dakota With Emphasis on the Pleistocene GEOLOGICAL SURVEY PROFESSIONAL PAPER 326 Cenozoic History of Northeastern Montana and Northwestern North Dakota With Emphasis on the Pleistocene By ARTHUR DAVID HOWARD GEOLOGICAL SURVEY PROFESSIONAL PAPER 326 A study emphasizing the Pleistocene history of the north-central Great Plains, with descriptions of glacial and nonglacial deposits and of major drainage changes UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1960 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library catalog card for this publication appears after page 107 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington 25, D.C. CONTENTS Page Page Abstract, _ __________ _______________________________ 1 Quaternary stratigraphy Continued Introduction _______________________________________ 3 Early Wisconsin (?) drift Continued Purpose of study ______________________________ 3 Surface topography. ________________-_----__ 33 Field methods. ________________________________ 3 Differentiation _____________________________ 34 Pebble analyses. _ ___________________________ 3 Age of drift. ____-_-_-_____-______----_----_ 35 Isopleth maps. _____________________________ 4 Wisconsin age. _ ________________________ 35 Acknowledgments------ __---_-_-_-______________ 7 Summary of age discussion__ _______ ______ 36 Physiographic setting _______________________________
    [Show full text]
  • Ecosystem-Based Management Plan for Cypress Hills Interprovincial Park
    Cypress Hills Interprovincial Park ECOSYSTEM-BASED MANAGEMENT PLAN Saskatchewan.ca Ecosystem-Based Management Plan February 19, 2020 Cypress Hills Interprovincial Park ECOSYSTEM-BASED MANAGEMENT PLAN PROJECT REFERENCE NUMBER: 1467-5 March 11, 2020 Revised: March 2021 Prepared for: Saskatchewan Ministry of Parks, Culture and Sport 3211 Albert St Regina, SK S4S 5W6 Cypress Hills Interprovincial Park Page | 1 Approval Form The Ecosystem-based Management Plan for Cypress Hills Interprovincial Park (2020) is hereby approved for use by the Ministry of Parks, Culture and Sport in the management of the ecosystem and landscape of Cypress Hills Interprovincial Park. March 11, 2020 Darryl Sande, RPF, Plan Author Date FORSITE Inc. Recommended for approval by: March 1, 2021 Thuan Chu, Senior Park Landscape Ecologist Date Landscape Protection Unit Ministry of Parks, Culture and Sport Cypress Hills Interprovincial Park Page | ii EXECUTIVE SUMMARY Cypress Hills Interprovincial Park (CHIPP) is a 183 square kilometre Natural Environment Park within the southwestern corner of Saskatchewan. The park encompasses the unique geological features and elevation of the Cypress Hills formation. The area contains a mix of Boreal and Montane forest elements as well as Prairie grassland elements. The area is surrounded by agricultural and pasture lands. The park is made up of a mix of natural forests and grasslands, which is classified into nine ecosites. Upland ecosites include plains rough fescue grassland on silty clay loam, lodgepole pine-dominated stands on sandy clay, white spruce stands on silty clay, aspen stands on clay loam, aspen-white spruce mixedwoods on silty clay soils, and aspen-lodgepole pine mixedwoods on clay loam.
    [Show full text]
  • AER/AGS Open File Report 2015-01: Synthesis of a Post-Laramide
    AER/AGS Open File Report 2015-01 Synthesis of a Post-Laramide Stratigraphic Framework of the South Saskatchewan River Basin, Alberta, in Support of Hydrostratigraphic Modelling AER/AGS Open File Report 2015-01 Synthesis of a Post-Laramide Stratigraphic Framework of the South Saskatchewan River Basin, Alberta, in Support of Hydrostratigraphic Modelling G. Hartman Alberta Energy Regulator Alberta Geological Survey May 2015 ©Her Majesty the Queen in Right of Alberta, 2015 ISBN 978-1-4601-0138-4 The Alberta Energy Regulator/Alberta Geological Survey (AER/AGS), its employees and contractors make no warranty, guarantee or representation, express or implied, or assume any legal liability regarding the correctness, accuracy, completeness or reliability of this publication. Any references to proprietary software and/or any use of proprietary data formats do not constitute endorsement by AER/AGS of any manufacturer’s product. If you use information from this publication in other publications or presentations, please acknowledge the AER/AGS. We recommend the following reference format: Hartman, G. (2015): Synthesis of a post-Laramide stratigraphic framework of the South Saskatchewan River Basin, Alberta, in support of hydrostratigraphic modelling; Alberta Energy Regulator, AER/ AGS Open File Report 2015-01, 36 p. Published May 2015 by: Alberta Energy Regulator Alberta Geological Survey 4th Floor, Twin Atria Building 4999 – 98th Avenue Edmonton, AB T6B 2X3 Canada Tel: 780.638.4491 Fax: 780.422.1459 E-mail: [email protected] Website: www.ags.gov.ab.ca
    [Show full text]
  • Quaternary and Late Tertiary of Montana: Climate, Glaciation, Stratigraphy, and Vertebrate Fossils
    QUATERNARY AND LATE TERTIARY OF MONTANA: CLIMATE, GLACIATION, STRATIGRAPHY, AND VERTEBRATE FOSSILS Larry N. Smith,1 Christopher L. Hill,2 and Jon Reiten3 1Department of Geological Engineering, Montana Tech, Butte, Montana 2Department of Geosciences and Department of Anthropology, Boise State University, Idaho 3Montana Bureau of Mines and Geology, Billings, Montana 1. INTRODUCTION by incision on timescales of <10 ka to ~2 Ma. Much of the response can be associated with Quaternary cli- The landscape of Montana displays the Quaternary mate changes, whereas tectonic tilting and uplift may record of multiple glaciations in the mountainous areas, be locally signifi cant. incursion of two continental ice sheets from the north and northeast, and stream incision in both the glaciated The landscape of Montana is a result of mountain and unglaciated terrain. Both mountain and continental and continental glaciation, fl uvial incision and sta- glaciers covered about one-third of the State during the bility, and hillslope retreat. The Quaternary geologic last glaciation, between about 21 ka* and 14 ka. Ages of history, deposits, and landforms of Montana were glacial advances into the State during the last glaciation dominated by glaciation in the mountains of western are sparse, but suggest that the continental glacier in and central Montana and across the northern part of the eastern part of the State may have advanced earlier the central and eastern Plains (fi gs. 1, 2). Fundamental and retreated later than in western Montana.* The pre- to the landscape were the valley glaciers and ice caps last glacial Quaternary stratigraphy of the intermontane in the western mountains and Yellowstone, and the valleys is less well known.
    [Show full text]
  • Region 6 Map Side
    Special Interest Sites : 20. Pinto MacBean Icon 21. Prairie Tractor and Engine Museum 1. Bassano Dam 22. Redcliff Museum 2. Brooks & District Museum 23. Saamis Archaeological Site Cypress Hills Interprovincial Park 3. Cornstalk Icon The wheelchair accessible Shoreline Trail (2.4 km) follows the south shoreline of Elkwater Lake, offering bird watching opportunities 24. Saamis Teepee Icon Straddling the Alberta-Saskatchewan border, Cypress Hills Interprovincial Park (www.cypresshills.com) is an island of cool, 4. Devil’s Coulee Dinosaur & Heritage Museum from the paved trail and boardwalks. The remaining park pathways are on natural surfaces, with easily accessed trailheads. A 25. Sammy and Samantha Spud Icon moist greenery perched more than 600 metres above the surrounding prairie, making it the highest point between the Rocky 5. EID (Eastern Irrigation District) Historical Park Mountains and Labrador. This unique mix of forests, wetlands and rare grasslands is home to more than 220 bird, 47 mammal and pleasant short walk is the 1.3 km Beaver Creek Loop, which winds through poplar and spruce forest past a beaver pond. 26. Trekcetera Museum 6. Esplanade Arts and Heritage Centre2 700 plant species, including more types of orchids than anywhere else on the prairies. Untouched by glaciation, the Cypress Hill 27. Sunflower Icon A more strenuous outing, popular among mountain bikers, is the Horseshoe Canyon Trail (4.1 km one way), climbing through 7. Etzikom Museum and Historical Windmill Centre landscape is an erosional plateau, resulting from millions of years of sedimentary deposits, followed by an equally long period of 28. Taber Irrigation Impact Museum open fields and mixed forest to a plateau, with a spectacular view of an old landslide in the canyon and rolling grasslands to the north.
    [Show full text]
  • Evolution of the Driftless Area and Contiguous Regions of Midwestern USA Through Pleistocene Periglacial Processes Michael Iannicelli*
    The Open Geology Journal, 2010, 4, 35-54 35 Open Access Evolution of the Driftless Area and Contiguous Regions of Midwestern USA Through Pleistocene Periglacial Processes Michael Iannicelli*,# 1429 76 Street, Brooklyn, New York, NY 11228, USA Abstract: In the Driftless Area region and contiguous regions (Paleozoic Plateau and Iowan Erosion Surface) within the U.S.A., there are a variety of northwest to southeast oriented landforms. They are interpreted to have been formed by periglacial nival and cryoplanation erosion processes during the Pleistocene. It is proposed that the oriented landforms are initiated by erosion focused along the edges of northwest-southeast trending snow dunes. Over time, cryopedimentation/cryoplanation widens some of the landforms into broad pediments or planed surfaces. These processes left other landforms standing as narrow, northwest-southeast trending, isolated ridges (paha and rock paha). Oriented valleys were carved in bedrock in some areas and were also carved in loess or loess underlain by till within other areas. An overall regional northeast to southwest trend of increasing amounts of pre-Illinoian till cover is interpreted to form by different degrees of widespread nival erosion. The Pleistocene wind was an important, indirect cofactor in the development of both the till pattern and the previously mentioned landforms. Determining these events not only helps us to formulate an evolutionary model for all three regions as a unit but also justifies speculation that the Driftless Area may have been glaciated during pre-Illinoian times. Keywords: Driftless area, snow dunes, rock paha, cryopedimentation, cryoplanation. 1. INTRODUCTION about why the Driftless Area is “driftless”.
    [Show full text]